Hierarchical Control ("Classical" Approach)

J. Kissel, for the Hiers

Problem Statement

The Toy Model

UIM / M1

PUM / M2

10 [V]

DAC

[ct]

COILOUT

COILOUT

DARM

[V]

[V]

Actuator Chain Model DAC Saturation Limit

M1

M2

- DARM -- > Treat motion of one test mass
- QUAD -- > Double pendulum, parameters roughly of PUM and TST Mass (assuming local damping ON)
- UIM & PUM -- > Equal Masses, No Stage Below
- Same Actuators with Same Actuator Limits
- Same Input Amplitude Spectral Density

HIER

HIER

 Same output scheme (digital compensation of analog electronics, transformation to actuator basis for DAC)

E20

"[m]"

"[N]"

ISCINF

The Prescription The Distributed Hierarchy

- Create plant inversion filters (so we can use complementary hierarchy filters)
- Design hierarchy filters, check cross-over stability
- Design global control filter, check loop gain stability
- Compute closed loop performance and RMS, check to meet requirement (1)
- Compute control force at DAC, check probability of saturations, RMS, etc. meet requirements (2)
- Iterate on Global Control and Hierarchy authority until you get something that meets requirements
- Try it on the real thing, see if it works, and tweak if necessary

G14xxxxxx-v1

Create Plant Inversion Filters

Frequency [Hz]

10

10²

- Rely on the fact that you're blending above the suspension resonance forest --> Simple Roll-off to the right highfrequency response
- "Turn off" compensation at high frequency, so as to not have infinite gain at high-frequency, Inversion Filters

-135

-180

10⁻²

 10^{-1}

Design Hierarchy Filters

Simple Design:
Start with low-pass:
Put corner
frequency where
you expect upperstage maximum

10³ range to dominate
over lower stage. Try
a complex pair of
poles with a bit of Q
... just to make it
sassy.

Create high-pass as HP = (1 - LP).

Check Cross-over Stability

Design Global Control, Check Stability

Design Inputs:

- Knowledge of input spectral density and where you need gain.
- Guess at unity gain frequency.
- Compensate for Plant shape for a stable cross-over.
- Cut-off highfrequency "quickly" to reduce noise.
- Try to minimize gain peaking.
- Shoot for 30-45 ish degree of phase margin.
- Check for actuator saturation.

G14xxxxxxx-v1

Compute Closed Loop Performance

Compute Control Forces at DAC Modeled DAC Voltage

Desired vs. Available Control Force

Ask Brett:

What's the right metric for DAC saturations:

RMS?

Control Force Spectrum? Probability of Saturation in one

time step?

UIM / M1

Probability of Saturation over long time?

[m]

GND

Probability of Saturating

in One Time Step:

M1: 0.0038599 M2: 2.027e-29

Probability of Saturating

in One Hour: M1: 0.0008494

M2:0

G14xxxxxxx-v1

The Classical Approach

- Got it done in 3 days (using 8 years of expert controls knowledge, and intimate knowledge of parameters, having already tried 3 times before, and having a lot of software infrastructure in place)
- Lots of steps (though "straight forward" and the math is child's play)
- Needs lots of a priori knowledge, but may inform cost functions
- Lots of possible solutions that'll all get the job done "good enough" to get started

G14xxxxxx-v1 1