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1 Stochastic GW Backgrounds

Consider a superposition of many weak gravitational-wave sources.
This may be of cosmological origin, associated with events in the
early universe (inflation, phase transition, primordial gravitons,
. . . ), or some unresolved astrophysical source, such as millions of
white-dwarf binaries in our galaxy. The individual signals may not
be detectable, but their combined effect would produce a random

signal in gravitational wave detectors, analogous to the cosmic mi-
crowave background first observed by Penzias and Wilson.1 Unlike
Penzias and Wilson, we can’t “point our detectors away from the
sky”, but we can distinguish a random GW signal from random
instrumental noise, because of the correlations it would produce
between the outputs of different detectors.

We can describe any superposition of gravitational waves by
expanding it as a superposition of plane waves along each propa-
gation vector ~k:

h
↔

(~r, t) =
∑

A=+,×

∫ ∞
−∞

df
x

d2Ω~k hA(f,~k) e↔A(~k) exp

(
i2πf

[
t−

~k · ~r
c

])
(1.1)

The statistical properties of hA(f,~k) describe the nature of the
stochastic background. Since it’s a superposition of many individ-
ual signals, it’s reasonable to assume it’s Gaussian, stationary, and
unpolarized, so that it’s defined by its mean

E
[
hA(f,~k)

]
= 0 (1.2)

and variance

E
[
h∗A(f,~k)hA′(f ′, ~k ′)

]
= δ2(~k,~k ′) δAA′ δ(f − f ′)H(f,~k) (1.3)

1A. A. Penzias and R. W. Wilson, ApJ 142, 419 (1965)
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Specifically,

P (h) ∝ exp

(
−1

2

∑
A=+,×

∫ ∞
−∞

df
x

d2Ω~k

|hA(f,~k)|2
H(f,~k)

)
(1.4)

If we consider the stochastic signal hX(t) = h
↔

(t) : d
↔
X appearing

in a detector X, it will also be Gaussian with zero mean; the
covariance between data in detectors X and Y will be

E
[
h̃X(f ′)∗h̃Y (f)

]
=
∑

A=+,×

x
d2Ω~kH(f,~k)FX

A (~k)F Y
A (~k)

× exp

(
i2πf

[
−~k · (~rX − ~r Y )

c

])
δ(f − f ′)

(1.5)

We can gain some insight into this if we write∑
A=+,×

FX
A (~k)F Y

A (~k) =
∑

A=+,×

dXabe
ab
A (~k) ecdA (~k) dYcd

= 2dXab P
TT~kab

cd d
Y cd

(1.6)

where

PTT~kab
cd =

1

2

∑
A=+,×

eabA (~k) eAcd(~k) (1.7)

is an operator which projects onto the subspace of traceless, sym-
metric tensors transverse to the unit vector ~k.

1.1 Exercise

Show that this is a projection operator, i.e., PTT~kab
efP

TT~kef
cd =

PTT~kab
cd, by using the normalization eabA (~k) eB ab(~k) = 2δAB of the

standard polarization basis tensors (see yesterday’s lecture). What

is the trace PTT~kab
ab?

1.2 Spatial Distributions

The simplest signal geometry for a stochastic background is
isotropic, so that H(f,~k) = H(f). A slightly less specific assump-
tion (although not fully general) is that we’re interested in a back-
ground distributed in some way across the sky, whose spectrum is
the same in each direction, i.e., H(f,~k) = H(f)P(~k). There are
several different strategies that are taken to address the direction
dependence of a stochastic background:

• Search only for an isotropic background.

• Search for a background with a specified sky distribution, e.g.,
spread across a nearby galaxy cluster, or concentrated at a
point.

• Attempt to reconstruct a sky map, e.g., by measuring the
power in different spherical harmonics.

In this lecture we’ll focus on the isotropic case, although the notes
will include some formulas involving P(~k).

If the spectrum factors, the correlation between different detec-
tors is

E
[
h̃X(f ′)∗h̃Y (f)

]
= γXY (f)

Sgw(f)

2
δ(f − f ′) (1.8)

where

γXY (f) = dXab d
Y cd 5

4π

x
d2Ω~k P(~k)PTT~kab

cd e
−i2πf~k·(~rX−~r Y )/c

(1.9)
is known as the overlap reduction function, and

Sgw(f) =
16π

5
H(f) (1.10)

2



This normalization is chosen because, in the isotropic case where

γXY (f) = dXab d
Y cd 5

4π

x
d2Ω~k P

TT~kab
cd e
−i2πf~k·(~rX−~r Y )/c (1.11)

the overlap reduction function for a detector with itself is

γXX(f) = dXab d
X cd 5

4π

x
d2Ω~k P

TT~kab
cd = 2dXab d

X ab (1.12)

For a standard interferometer with perpendicular arms, this is just
1, and so Sgw(f) is the contribution to the power spectrum in the
detector due to the stochastic gravitational wave background.

1.3 Exercise

Show that
5

4π

x
d2Ω~kP

TT~kab
cd = 2PTab

cd (1.13)

where PTab
cd is a projector onto transverse symmetric tensors, in

the following way

1. Argue by symmetry that it must be a constant times PTab
cd.

2. Show that that constant has to be 2 by taking the trace of
both sides of the equation

5

4π

x
d2Ω~kP

TT~kab
cd ∝ PTab

cd (1.14)

1.4 Aside: Ωgw(f)

The spectrum of a gravitational wave background is often de-
scribed in terms of the contribution to the cosmological parameter
Ω = ρ/ρcrit where

ρcrit =
3H2

0

8πG
(1.15)

using the fact that the energy density in gravitational waves is

ρgw =
c2

32πG
〈ḣab(t, ~r)ḣab(t, ~r)〉 =

πc2

G

∫ ∞
0

f 2
x

d2Ω~kH(f,~k)

=
4π2c2

G

∫ ∞
0

f 2H(f) df

(1.16)

The usual definition is the logarithmic energy density

Ωgw(f) =
f

ρcrit

dρgw
df

=
32π2

3H2
0

f 3H(f) =
10π

3H2
0

f 3Sgw(f) (1.17)

This is of interest because some cosmological models (e.g., slow-
roll inflation) predict a spectrum which corresponds to a constant
Ωgw(f), but we will work in terms of Sgw(f) in this lecture because

1. The equations are simpler in terms of Sgw(f)

2. Ωgw(f) depends on the (experimentally uncertain) value of
the Hubble constant H0

1.5 Overlap Reduction Function

Restricting attention now to an isotropic background, consider the
overlap reduction function This normalization is chosen because,
in the isotropic case where

γXY (f) = dXab d
X cd 5

4π

x
d2Ω~k P

TT~kab
cd e
−i2πf~k·(~r Y −~rX)/c (1.18)

We’ve seen that it is equal to unity when X and Y refer to the
same interferometric detector (as long as the arms are perpendicu-
lar). For any pair of detectors, it’s a specific function of frequency,
and in particular won’t depend on when the observation is done.
(Isotropy means that the rotation of the Earth doesn’t change the
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observing geometry.) There are thus only Nsites(Nsites − 1)/2 dif-
ferent functions to be worked out, where Nsites is the number of
detector sites (e.g., in the initial detector era, Nsites = 4: LIGO
Hanford, LIGO Livingston, GEO and Virgo2; for the advanced de-
tector era, we can add KAGRA and LIGO India.) It might seem
like each of these just requires a numerical integration over the
sky (propagation direction ~k), but its even easier than that, since
it’s possible to work out explicit formulas for γXY (f) in terms of
the detector tensors and the separation vectors of the detectors.3

Some examples are plotted in figure 1.

2 Data Analysis Method

2.1 Likelihood Ratio

We’ve described a signal model in which the signal contribution
h̃X(f) in the Fourier domain to detector X’s output is Gaussian,

with E
[
h̃(f)

]
= 0 and

E
[
h̃X(f ′)∗h̃Y (f)

]
= γXY (f)

Sgw(f)

2
δ(f − f ′) (2.1)

If we want to talk about breaking the data up into intervals of
duration T labelled by I before Fourier transforming, this becomes

E
[
h̃XI (f ′)∗h̃YJ (f)

]
= δIJγ

XY (f)
Sgw(f)

2
δ(f − f ′) (2.2)

Note that for an isotropic background, the overlap reduction func-
tion does not change with time and therefore no additional I sub-
script is needed on γXY (f).

2Also TAMA, depending on when you define the era. Resonant bar detec-
tors can also be added to the picture, and were.

3See e.g., B. Allen and J. D. Romano PRD 59, 102001 (1999) or J. T. Whe-
lan CQG 23, 1181 (2006).
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Figure 1: Plots of the isotropic overlap reduction function γXY (f)
for pairs of detectors among LIGO Hanford (H1), LIGO Livingston
(L1) and Virgo. The overlap reduction function tends to oscillate
and decrease in amplitude with increasing frequency, as correla-
tions and anti-correlations of waves from different directions can-
cel. See Cella et al, CQG, 24, S639 (2007) for more discussion.
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If we assume that the data x̃XI (f) consist of this signal plus
instrumental noise ñXI (f) which is assumed to be zero-mean, inde-
pendent between detectors and Gaussian with a one-sided power
spectrum SXI (f), the detector output will also be Gaussian, with
E
[
x̃XI (f)

]
= 0, and

E
[
x̃XI (f ′)∗x̃YJ (f)

]
= δIJ

SXYI (f)

2
δ(f − f ′) (2.3)

with

SXYI (f) = δXY SXI (f) + γXY (f)Sgw(f) (2.4)

We’d like to construct a likelihood ratio P (x|Hs)
P (x|Hg)

between a model

consisting of a stochastic signal plus noise to one with just Gaus-
sian noise. For a given spectrum Sgw(f), our assumptions tell us

P (x|Hs, Sgw(f))) ∝ exp

(
−2

∫ fNy

0

df
∑
I

∑
X

∑
Y

x̃XI (f)∗ S−1I XY (f) x̃YJ (f)

)
(2.5)

where S−1I XY (f) is the matrix inverse of SXYI (f). If the spectrum
in each detector is dominated by the noise, i.e., Sgw(f)� SXI (f),
we can use

SXYI (f) =
√
SXI (f)

(
δXY +

γXY (f)Sgw(f)√
SXI (f)SYI (f)

)√
SYI (f) (2.6)

to approximate

S−1I XY (f) ≈ 1√
SXI (f)

(
δXY − γXY (f)Sgw(f)√

SXI (f)SYI (f)

)
1√
SYI (f)

=
δXY

SXI (f)
− γXY (f)Sgw(f)

SXI (f)SYI (f)

(2.7)

In this approximation, the logarithm of the likelihood ratio is

ln
P (x|Hs, Sgw(f))

P (x|Hg)
≈ 2

∑
I

∑
X

∑
Y

∫ fNy

0

df
γXY (f)Sgw(f)

SXI (f)SYI (f)
x̃XI (f)∗ x̃YI (f)

(2.8)
We might want to consider a whole bunch of signal hypotheses
with different spectra Sgw(f), but for simplicity we know the shape
of the spectrum so that Sgw(f) = SR S(f) where S(f) is some
known function over the frequencies of interest (e.g., constant or
proportional to f−3, the latter corresponding to constant Ωgw(f)).
Then

ln
P (x|Hs, SR)

P (x|Hg)
≈ 2SR

∑
I

∑
X

∑
Y

∫ fNy

0

df
γXY (f)S(f)

SXI (f)SYI (f)
x̃XI (f)∗ x̃YI (f)

(2.9)

2.2 Cross-Correlation Statistic

The standard stochastic background search doesn’t quite use this
as a detection statistic, though. That’s because the log likelihood
ratio includes terms with X = Y . These autocorrelation terms
represent the contribution of the stochastic GW background to
the power in each detector. While including them would make
the search more sensitive if all of the assumptions that went into
constructing (2.9) were true, it relies on the assumption that the
instrumental noise in each detector is Gaussian. Rather than try to
construct a more sophisticated statistic involving a more realistic
noise hypothesis, in practice we just leave out those autocorrelation
terms and construct a cross-correlation statistic

Y =
∑
X>Y

∑
Y

∑
I

YIXY (2.10)

with

YIXY = 2

∫ fNy

0

df
γXY (f)S(f)

SXI (f)SYI (f)
x̃XI (f)∗ x̃YI (f) (2.11)
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The analysis method then constructs the posterior pdf for the
stochastic background strength SR according to Bayes’s theorem

P (SR|Y) =
P (Y|SR)P (SR)

P (Y)
(2.12)

where the prior P (SR) is taken to be uniform for 0 < SR < Smax,
with Smax large enough not to influence the construction, and the
normalization 1

P (Y) calculated by requiring that
∫ Smax

0
P (SR|Y) =

1.
Rather than worry about the actual distribution P (Y|SR), we

use the fact that Y is a sum of contributions from many times and
frequencies to invoke the central limit theorem, and approximate it
as Gaussian, so we just need its mean and variance. We calculate
the mean using

E [YIXY ] = 2

∫ fNy

0

df
γXY (f)S(f)

SXI (f)SYI (f)
E
[
x̃XI (f)∗ x̃YI (f)

]
(2.13)

This seems like a bit of a problem, because taking (2.3) literally
(and recalling X 6= Y would seem to indicate

E
[
x̃XI (f)∗ x̃YI (f)

]
= γXY (f)

Sgw(f)

2
δ(0) (2.14)

which is infinite. But a careful treatment notes that since x̃XI (f)
is not literally a continuous Fourier transform, only a finite-time
approximation of one, we really should have put in the finite-time
approximation of the dirac delta, and we should replace δ(0) with
the time baseline for the Fourier transform, 1

δf
= T . Thus

E [YIXY ] = T SR

∫ fNy

0

df
[γXY (f)S(f)]2

SXI (f)SYI (f)
(2.15)

The calculation of the variance is simpler if we assume as usual

that Sgw(f)� SXI (f), leaving us with only

E
[
(YIXY )2

]
≈ T

∫ fNy

0

df

(
γXY (f)S(f)

SXI (f)SYI (f)

)2

SXI (f)SYI (f)

= T

∫ fNy

0

df
[γXY (f)S(f)]2

SXI (f)SYI (f)

(2.16)

where we have used the fact that

E
[
x̃XI (f)∗ x̃YI (f)x̃XI (f ′) x̃YI (f ′)∗

]
=
SXI (f)

2
δ(f − f ′)S

Y
I (f)

2
δ(f − f ′)

(2.17)
The mean and variance of the statistic Y are thus

E [Y ] = SR I E
[
Y2
]

= I (2.18)

where

I =
∑
I

∑
X>Y

∑
Y

T

∫ fNy

0

df
[γXY (f)S(f)]2

SXI (f)SYI (f)
(2.19)

This integral encapsulates the sensitivity of the search, since

P (Y|SR) =
1√
2πI

exp

(
−1

2

(Y − SRI)2

I

)
(2.20)

and the posterior becomes

P (SR|Y) =
e−I(SR−Y/I)2/2∫∞

0
dS ′R e

−I(S′
R−Y/I)2/2

(2.21)

2.3 Exercise: Relation to standard formulas

This is not actually the way things are usually written; instead one
normalizes a statistic EIXY = NIXYYIXY so that E [EIXY ] = SR
and E [EIXY ]2 = σ2

IXY and then constructs an optimal estimator

E =

∑
I

∑
X>Y

∑
Y σ
−2
IXY EIXY∑

I

∑
X>Y

∑
Y σ
−2
IXY

(2.22)

Show that E = Y/I, so that the two prescriptions are equivalent.
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