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1 Probability and Statistical Inference

1.1 Logic and Probability

There are numerous interpretations of probability, but one which
applies well to observational science is that of an extended logic.

Let A be a proposition which could be either true or false, e.g.,
“The orbital period of Mars is between 686 and 687 days,” “John
Whelan is an Indian citizen as of Jan 1, 2020,” or “My detector
will collect 427 photons in the next two hours.” We may know,
given the information at hand, that A is definitely true or definitely
false, or we may be uncertain about the answer, either because our
knowledge of the situation is incomplete, or because it refers to the
outcome of an experiment with a random element, which has not
occurred yet. The probability of the proposition A (which we also
call an “event”) is a number between 0 and 1 which quantifies
our degree of certainty, given the information at hand. We write
this as P (A|I), where I represents some state of knowledge, to
emphasize that the probability we assign always depends on the
information we have, the assumption that a model is correct, etc.
If A is definitely true, in the context of I, then P (A|I) = 1. If it’s
definitely false, P (A|I) = 0.

If A represents the outcome of an experiment which we could
somehow arrange to repeat under identical circumstances, then
P (A|I) will be approximately equal to the long-term frequency of
the event A. I.e., if we do some large number N of repetitions of
the experiment, at the beginning of which we recreate the situation
described by I, the approximate number of experiments in which
A will turn out to be true is N × P (A|I). In the classical or
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“frequentist” approach to statistics, this is the only sort of event
to which we’re allowed to assign a probability, but in the more
general “Bayesian” framework we are free to assign probabilities
to any logical proposition.

Several basic operations can be used to combine logical propo-
sitions:

• Negation. A is true if A is false, and vice-versa. In words, we
can think of A as “not A”. (Other notations include A′ and
¬A.)

• Intersection. A,B is true if A and B are both true. In words,
this is “A and B”. (Other notations include A ∩ B and A ∧
B.) The advantage of the comma is that P (A,B|I) is the
probability that both A and B are true, given I.

• Union. A + B is true if either A or B (or both) is true. In
words, this is “A or B”. (Other notations include A ∪B and
A ∨ B.) Note the unfortunate aspect of this notation that +
is to be read as “or” rather than “and”.

There are basic rules of probability corresponding to these logical
operations:

• P (A|I) + P (A|I) = 1

• The product rule: P (A,B|I) = P (A|B, I)P (B|I)

• The sum rule: if A and B are mutually exclusive, i.e., if
P (A,B|I) = 0, then P (A+B|I) = P (A|I) + P (B|I).

Note that in this approach, where all probabilities are condi-
tional, the product rule is really what’s fundamental. Classical
approaches to probability instead define the conditional probabil-
ity as P (A|B) = P (A,B)

P (B)
, and therefore only entertain consideration

of the conditional probability P (A|B) if B is not only something

to which they’re allowed assign a probability, but for which that
probability is nonzero.

Because the logical “and” and “or” operations are symmetrical,
i.e., A,B is equivalent to B,A and A+ B is equivalent to B + A,
we can write the product rule in two different ways:

P (A,B|I) = P (A|B, I)P (B|I) = P (B|A, I)P (A|I) (1.1)

this can be rearranged into Bayes’s Theorem, which says that

P (A|B, I) =
P (B|A, I)P (A|I)

P (B|I)
(1.2)

which is incredibly useful when you naturally know P (B|A, I) but
would like to know P (A|B, I). For instance, suppose A refers
to “I have terrible-disease-of-the-year (TDY)”, B refers to “I test
positive for TDY”, and I represents the information that I had no
extra risk factors or symptoms for TDY but was routinely tested,
0.1% of people in such a group have TDY, the test has a 2% false
positive rate (2% of people without TDY will test positive for it)
and a 1% false negative rate (1% of people with TDY will test
negative for it). This information tells us that:

• P (A|I) = 0.001 so P (A|I) = 0.999.

• P (B|A, I) = 0.01 so P (B|A, I) = 0.99.

• P (B|A, I) = 0.02 so P (B|A, I) = 0.98.

Additionally, since B = B,A+B,A,

P (B|I) = P (B,A|I) + P (B,A|I)

= P (B|A, I)P (A|I) + P (B|A, I)P (A|I)

= 0.99× 0.001 + 0.02× 0.999 = 0.00099 + 0.01998

= 0.02097

(1.3)
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We can then use Bayes’s theorem to show that

P (A|B, I) =
0.00099

0.02097
≈ 0.04721 (1.4)

I.e., if I test positive for TDY, I have about a 4.7% chance of
actually having the disease. This is a lot less than P (B|A, I),
which is 99%!

In the context of observational science, Bayes’s theorem is most
commonly applied to a situation where H is a hypothesis which
I’d like to evaluate and D is a particular set of data I’ve collected.
It’s usually straightforward to work out P (D|H, I), the probability
of observing a particular set of data values given a model, but I
generally want to answer the question, what is my degree of belief
in the hypothesis H after the observation. The answer, according
to Bayes’s Theorem, is

P (H|D, I) =
P (D|H, I)P (H|I)

P (D|I)
(1.5)

1.2 Probability Distributions

In what follows, we will often suppress the explicit mention of
the background information I on which all of our probabilities
are conditional. The logical propositions to which we often assign
probabilities involve the values of some random or otherwise un-
known quantities. So for example, Ncounts = 37 or 70 km/s/Mpc <
H0 < 75 km/s/Mpc. Sometimes the notation gets a bit confused
between a quantity and its value, and you’ll see things like X for
a “random variable” and x for a value it can take on. You’d like
to be able to specify the probability that X = x, as a function of
x. In practice, this is slightly complicated by whether we think of
X as taking on only discrete values, or if it can take on any value
in a continuous range.

If X is discrete, we can talk about its probability mass function
pX(x) = P (X = x). This is often just written p(x) or P (x).
For instance, if X is the number of events in a particular interval
from a stationary process in which the events are independent of
one another, and the average number of events expected in the
interval given the long-term event rate is µ it is described by the
Poisson distribution

p(x) = P (X = x) =

{
µx

x!
e−µ x = 0, 1, 2, . . .

0 otherwise
(1.6)

However, it often happens that X is continuous, so that it is
vanishingly unlikely that it takes on one specific value. For in-
stance, the height of a randomly chosen person will not be exactly
175 cm. If you measure it to more significant figures, it will turn
out to be 175.25 cm or 175.24732 cm etc. So instead we want to
talk about the probability for X to be in a small interval, which
we call the probability density function

f(x) = lim
dx→0

P (x− dx
2
< X < x+ dx

2
)

dx
(1.7)

so that

P (a < X < b) =

∫ b

a

f(x) dx (1.8)

The pdf might be called pdf(x) or even P (x). A useful notation
for the pdf is dP

dx
, which tends to make the impact of changes

of variables more obvious. In the end, it’s a bit hopeless to try
to stick to one letter, since you might want to talk about the
joint probability distribution associated with some discrete and
some continuous random variables. To give a concrete example, a
common probability distribution is the Gaussian distribution with
parameters µ and σ, which has pdf

f(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, −∞ < x <∞ (1.9)
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In either case, you can define an operation known as the expec-
tation value

E [g(X)] =

{∑
x g(x) p(x) X discrete∫∞
−∞ g(x) f(x) dx X continuous

(1.10)

with the mean µX = E [X] as a special case, and also the variance

E
[
(X − µX)2

]
= E

[
X2
]
− µ2

X (1.11)

To have a sensible probability distribution, we should satisfy a
normalization condition

∑
x p(x) = 1 or

∫∞
−∞ f(x) dx = 1.

1.3 Some Basic Statistical Inference

1.3.1 Bayesian Methods

Broadly speaking, the kinds of questions we’d like to answer using
observational data are:1

• Hypothesis testing and model selection: given some observed
data x, what can we say about the relative plausibility of
models H1 and H2?

• Parameter estimation: if our model H depends on some pa-
rameters θ, how do the data affect our judgments about the
plausible values of θ?

In principle, parameter estimation is a special case of hypothesis
testing, since we could consider different hypotheses correspond-
ing to different parameter values, but in practice the notation is
slightly different.

In any case, the easiest thing to construct is the probability
distribution for the data given the model and any parameters:

1We write both x and θ as vectors to emphasize the fact that there will in
general be multiple data points and multiple parameters.

P (x|H,θ, I). This is often used to compare models or parameter
values, and as such is considered a function of H and/or θ and
called the likelihood function. It can be related to probabilities for
H and/or θ using Bayes’s theorem.

Putting aside the question of parameters, a comparison between
models H1 and H2 would be to compare P (H1|x, I) to P (H2|x, I),
where Bayes’s theorem tells us

P (H|x, I) =
P (x|H, I)P (H|I)

P (x|I)
(1.12)

if we take the ratio of these two probabilities, we get

P (H1|x, I)

P (H2|x, I)
=
P (x|H1, I)

P (x|H2, I)

P (H1|I)

P (H2|I)
(1.13)

To get the actual ratio, we’d need to know the ratio P (H1|I)
P (H2|I) of

probabilities that we’d assign in the absence of the data, but it’s
more unambiguous just to quote the factor by which the ratio
changed, which is the Bayes factor

P (x|H1, I)

P (x|H2, I)
(1.14)

which is just the likelihood ratio.
If we want to assume a particular hypothesis and make a state-

ment about the parameters in light of the observed data, we again
use Bayes’s theorem to construct

P (θ|x,H) =
P (x|θ,H)P (θ|H)

P (x|H)
(1.15)

It is conventional to call P (θ|x,H) the posterior probability dis-
tribution on θ and P (θ|H) the prior probability distribution. This
is in some sense an artificial distinction, but in reflects the fact
that the latter is adjusted in light of the data to give the former.
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Note, also, that for a hypothesis H concerning a model involving
parameters θ to be complete, it must also specify a prior proba-
bility distribution P (θ|H) for the parameters themselves. Finally,
note that if we have the numerator of (1.15) as a function of θ, we
can automatically calculate the denominator by a process called
marginalization, which is basically a version of the sum rule:

P (x|H) =

∫
P (x,θ|H) dθ =

∫
P (x|θ,H)P (θ|H) dθ (1.16)

1.3.2 Frequentist and Pseudo-frequentist Methods

In the frequentist formalism, you can’t define things like P (H|x);
instead you have to construct probabilistic statements about the
random observed data X, and then evaluate them in light of the
actual observation X = x. It’s usually necessary to distill the
data into a single number known as a statistic y(X) (or perhaps
a few statistics). For example, if you want to choose between two
hypotheses H1 and H0, you construct some statistic y(X), and
if it’s above some threshold value yc, you prefer H1, while if it’s
below, you prefer H0. Due to the randomness in the experiment,
this test of the validity of H1 will not be perfect, i.e., there will be
some chance you picked the wrong hypothesis. This is expressed
by

false alarm probability = P (y(X) > yc|H0) (1.17a)

false dismissal probability = P (y(X) < yc|H1) (1.17b)

If you increase the threshold, you will decrease the false alarm
probability, but increase the false dismissal probability (decrease
the efficiency of the test). Of course, many statistics are possible,
but you’d prefer to have one which minimizes the false dismissal
probability for each value of the false dismissal probability. There

is a result called the NeymanPearson lemma2 which shows that
this “most powerful test” is acheived by using as your detection
statistic the likelihood ratio:

y(x) =
P (x|H1)

P (x|H0)
(1.18)

It may happen, though, that you have other reasons for wanting
to use a sub-optimal detection statistic y(x). Perhaps the likeli-
hood ratio is too expensive or difficult to compute, or perhaps H1

is a composite hypothesis with some unknown parameters θ, and
so all you have access to is P (x|H1,θ). (Recall that in the fre-
quentist approach you can’t even define something like P (θ|H1),
so you can’t marginalize over θ to get P (x|H1).) Then you can go
ahead and apply the sub-optimal frequentist test.

Suppose, though, that after calculating your statistic y(x), you
decide you want to interpret things in a Bayesian way after all.
(This can happen in parameter estimation especially. There may
be times when no physically possible set of parameters produces
a high enough detection statistic, and you don’t really want to
do something like set a negative upper limit on an event rate or
energy density.) You can go ahead and do Bayesian inference using
the information available, which is now just y(x), and construct
something like P (H|y(x), I) or P (θ|y(x),H, I). I like to think of
it as Bayesian analysis of an experiment, where the experimental
data are the output of a frequentist experiment. Of course if y(x)
was chosen well, it may be that P (H|y(x), I) = P (H|x, I) and you
haven’t lost any information by calclulating y(x) and discarding
the rest of your data x.

2J. Neyman and E. S. Pearson, Philosophical Transactions of the Royal
Society A 231, 694 (1933)
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1.4 Exercise: estimation with known Gaussian
errors

Suppose we are making a series of n measurements {xi} of some
unknown quantity θ, each of which has a known Gaussian error of
standard deviation σi associated with it. This means that the pdf
for x is

P (x|θ,H, I) =
n∏
i=1

1

σi
√

2π
exp

(
−1

2

[
xi − θ
σi

]2
)

(1.19)

where the hypothesis H includes the values of the σi. Show that

χ2(x, θ) =
n∑
i=1

(
xi − θ
σi

)2

=

(
θ − θ0(x)

σθ

)2

+ χ2
0(x) (1.20)

where

σ−2
θ =

n∑
i=1

σ−2
i (1.21a)

θ0(x) = σ2
θ

n∑
i=1

σ−2
i xi (1.21b)

χ2
0(x) =

n∑
i=1

σ−2
i x2

i − σ−2
θ θ0(x)2 (1.21c)

This means that

P (x|θ,H, I) =
1∏n

i=1 σi
√

2π
exp

(
− [θ − θ0(x)]2

2σ2
θ

+
χ2

0(x)

2

)
(1.22)

Show that we can construct the posterior P (θ|x,H, I) correspond-
ing to a specified P (θ|H, I) using only the statistic θ0(x), and
that we can construct the “evidence” P (H|x, I) corresponding to
a specified prior probability P (H|I) (suitable for the Bayes factor
construction) using only the statistic χ2

0(x).

1.5 Further Reading

• Jaynes, E. T., Probability Theory: The Logic of Science (Cam-
bridge, 2003)

• Sivia, D. S., Data Analysis: A Bayesian Tutorial, 2nd edition
(Oxford, 2006)

• Gregory, P., Bayesian Logical Data Analysis for the Physical
Sciences (Cambridge, 2005)

2 Fourier Analysis

2.1 Continuous Fourier Transforms

You’re probably familiar with the continuous Fourier transform

x̃(f) =

∫ ∞
−∞

dt x(t) e−i2πf(t−t0) (2.1)

and its inverse

x(t) =

∫ ∞
−∞

df x̃(f) ei2πf(t−t0) (2.2)

Notes:

• Lots of conventions, but note using f instead of ω gets rid of
annoying 2π normalizations.

• If x(t) is really a function of time, the origin/epoch t0 is arbi-
trary and has no physical meaning. If it’s a function of time
difference, then t0 = 0 makes sense.

The identity ∫ ∞
−∞

df ei2πf(t−t′) = δ(t− t′) (2.3)

is useful for proving properties of continuous Fourier transforms.
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2.2 Discrete Fourier Transforms

Real data is neither continuous nor infinite in duration. Consider
discretely-sampled time series data of duration T = Nδt:

xj = x(tj) = x(t+ jδt) j = 0, 1, . . . , N − 1 (2.4)

Its discrete Fourier transform is

x̂k =
N−1∑
j=0

xj e
−i2πfk(tj−t0) =

N−1∑
j=0

xj e
−i2πjk/N (2.5)

where fk = kδf , and

δf δt =
δt

T
=

1

N
. (2.6)

We can define x̂k for any integer k, but there are only N indepen-
dent values, thanks to the identifications

x̂N+k = x̂k always (2.7a)

x̂−k = x̂∗k if {xj} real (2.7b)

This means, for a real time series {xj}, the N real numbers in the
Fourier domain are (assuming N even)

• 1 real value x0

• N
2
− 2 complex values {xk|k = 1, . . . N

2
− 1}

• 1 real value x−N/2 = xN/2

The identity
N−1∑
k=0

ei2π(j−`)k/N = N δj,` mod N (2.8)

shows us the inverse transform

xj =
1

N

N−1∑
k=0

x̂k e
i2πjk/N =

1

N

N/2−1∑
k=−N/2

x̂k e
i2πjk/N (2.9)

If we consider (2.5) to be an approximation of the integral in (2.1),
we’d identify

δt x̂k ∼ x̃(fk) (2.10)

If we plug (2.2) into (2.5) we can get the actual formula

δt x̂k =

∫ ∞
−∞

df δN,δt(fk − f)h̃(f) (2.11)

with a kernel

δN,δt(x) = δt
N−1∑
j=0

e−i2πjδt x (2.12)

this is not quite a Dirac delta function for two reasons:

1. It is periodic with period 1
δt

, so it’s peaked at x = 0, x = 1
δt

,
x = − 1

δt
, etc.

2. It has an oscillatory “ringing” behavior around its peaks.

The second point is related to an issue known as spectral leakage
which we won’t go into; the first is known as aliasing, and it means
that actually δt x̂k is a sum of not only h̃(fk) but also h̃(fk + 1

δt
),

h̃(fk− 1
δt

) = h̃∗( 1
δt
−fk), etc. This means that to avoid confusion of

different frequency components, the original time series h(t) should

have undergone some analog processing so that h̃(f) is negligible
unless

− 1

2 δt
< f <

1

2 δt
(2.13)

which defines the Nyquist frequency fNy = 1
2 δt

which is half the
sampling rate 1

δt
.
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3 Random Data

We’ll often be interested in cases where the data {xi} are random
with some mean and variance defined by the expectation values

E[xj] = µj (3.1)

E[(xj − µj)(x` − µ`)] = σ2
j` (3.2)

If the data are Gaussian, these are enough to define a probability
density3

P (x) = (det 2πσ2)−1/2 exp

(
−1

2
(x− µ)Tσ−2(x− µ)

)
(3.3)

where x and µ are column vectors made up out of {xj} and {µj},
respectively, σ2 is a matrix made of {σj`} and σ−2 is its inverse.
For simplicity we’ll assume the data have zero mean. We’ll also
start in the continuous picture; the random process associated with
x(t) is stationary if

E [x(t), x(t′)] = Kx(t− t′) (3.4)

which defines the autocorrelation function Kx(t− t′) (in general it
would have to be written Kx(t, t

′)). The Fourier transform of the
autocorrelation function is the two-sided power spectral density

S2-sided
x (f) =

∫ ∞
−∞

dτ Kx(τ) e−i2πfτ (3.5)

We can use (2.3) to show that, formally,

E [x̃(f ′)∗ x̃(f)] = δ(f − f ′)S2-sided
x (f) (3.6)

3We’ll call this P (x) rather than f(x) to avoid confusion with the frequency.

Since S2-sided
x (f) = S2-sided

x (−f), for real x(t), define one-sided PSD

Sx(f) =

{
S2-sided
x (0) f = 0

S2-sided
x (−f) + S2-sided

x (f) f > 0
(3.7)

Unfortunately (?) this is what most GW observers mean by PSD,
so formulas have an extra factor of two (Sx(f) = 2S2-sided

x (f)), e.g.,

E [x̃(f)∗ x̃(f)] = δ(f − f ′) Sx(f)

2
(3.8)

We can translate this into a discrete Fourier transform; just as
x̂k ∼ x̃(fk), we can show

E
[
|x̂k|2

]
∼ N

2δt
Sx(fk) (3.9)

with the usual caveats about leakage and aliasing. Now consider
the case of zero-mean Gaussian data: let x̂k = ξk + iηk and treat
ξ0, {ξk, ηk|k = 1 . . . N

2
−1}, ξN/2 as independent and Gaussian with

E
[
ξ2
k

]
= E

[
η2
k

]
= σ2

k =
N

4δt
Sx(fk) (3.10)

so probability density is

P ({ξk, ηk|k = 1 . . .
N

2
− 1}) =

N/2−1∏
k=1

1

2πσ2
k

exp

(
− ξ2

k

2σ2
k

− η2
k

2σ2
k

)
∝ exp(Λ)

(3.11)

with log-likelihood

Λ ∼ −
N/2−1∑
k=1

2δt

N

|x̂k|2

Sx(fk)
∼ −

N/2−1∑
k=1

2δf
|x̃(fk)|2

Sx(fk)
∼ −2

∫ ∞
0

df
|x̃(f)|2

Sx(f)

(3.12)
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This means
P (x) ∝ e−

1
2
〈x|x〉 (3.13)

where the inner product is

〈y|z〉 = 4 Re

∫ ∞
0

df
ỹ∗(f) z̃(f)

Sx(f)
(3.14)

The unfamiliar factor of 4 is one factor of 2 because the integral
is only over positive frequencies and one because of the use of the
one-sided power spectral density.

If the data vary slowly over the observation time, it may be
useful to divide it into pieces of length T and Fourier transform
each of them

x̃I(f) =

∫ tI0+T

tI0

dt x(t) e−i2πf(t−tI0) (3.15)

In principle, the statistical properties of different segments will be
related because of the autocorrelation function K(t−t′). But if the
correlation length–the time over which K(τ) is non-negiligible–is
small compared to T , we can neglect this, and the log likelihood
function would become P (x) ∝ eΛ(x) with

Λ = −2 Re
∑
I

∫ fNy

0

df
|x̃I(f)|2

SI(f)
(3.16)
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