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Why bother?

same total excitation

power in each case White noise |Stepped Sine Optimal
time
Pendulum (hormalized) ] 2.2 ]
With Bounce i 0% 200 i
time
OLG of PDH (normalized) : 2.8 ]
control servo S 16% 50, =




Overview

Introduction to optimal design
Basics of system identification

Some examples

Future work




Optimal design in a nutshell

x [Frst works date back to the early: 19th century

x Francis Bacon (New Atlantis; 1624):

“T'hen after divers-meetings and-consults of our whole number, to consider
of the formerlabors-and collections, we have three that take care out of
them to direct new-experiments, of a higher light, more penetrating into
nature than the former. These we call lamps.”

®» Basic goal: Distribute finite resources “optimally”
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System identification (sys id)

x Choose an x and find H




Sys id

x |n the frequency domain
y(w) = s{w)H{B;w) + nlw)

x stimate of H given-by

Hiw) -

x Next: parameter estimation®




Iwo goals of sys Id

x Determine the features of your system beyond the TF:
resonances, nonlinearity, noise (Non-parametric)

» |dentify the parameters of your system, €.g., for control
(Parametric)

x Our use case: check the location of previously
determined parameters

x Excitation design is fundamentally linked to the
method of parameter estimation!

x \Nant to minimize errors on parameter estimates



Covariance matrix

® [he covariance matrix generalizes the notion of
variance when you have multiple parameters

x Diagonal elements are variances of the variables

x Off-diagonal elements are covariances between

variaples
i :
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Covariance matrix cont.’d

x |n practice, the covariance matrix s difficult to compute
pbefore the experiment IS performed

x [nstead, we use a result from: Cramer & Rao that says a
ower bound on the covariance matrix is given by the
iInverse of the Fisher information: matrix.

x  Maximize Fisher = Minimize Covariance

x NB: In practice you tend to achieve results higher
than the Cramer-Rao bound indicates

x Our FOM is the maximum of the CR bounds of the
System parameters



Fisher Information

x Phrased in terms of the likelihood function (probability
of some outcome given a set of parameter values)

= Explicitly
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What to optimize?

® [Fisher IS a matrix but we want a scalar.
Some options:

®x [he trace
® [he determinant
x [he minimum:eigenvalue

x  Something more complicated....

x| practice, optimization of one criteria results in a good
design by other criteria




Optimal sys id

x \What's the “best” excitation signal we can use given
imited input power?

/OOO dio S () = 1




-isher for generic |-

® First assume the noise is Gaussian, and write the

likelihood

—

L(y:0) x exp

x [isher Is then given by

Ijk ote l/ 3 Sw(w)%
O

2

Splw)

__1/00 dw
200




Usetul tact

x [he set of all Input
power-constraineo
Fisher matrices forms
the convex hull-of
single-frequency: Eisher
matrices

x [his means the (non-
unigue!) optimal
excitation Is a linear
combination of sine
Waves




Example:

» [ransfer function: H{0;w) =




Example:

» [ransfer function: H{0;w) =

x Fisher matrix: s




Example:

» [ransfer function: H{0;w) =

x Fisher matrix: s

x Optimal design: w= -




Same example zpk-style

1 /0

» [ransfer function: H (5; W) =

i+ 1/0




Same example zpk-style

» [ransfer function: H(0:w) = S
i+ 1/0
® Fisher matrix: : :
1 w4 1/0% —1/0°

SR

28 w2 1922 | —1/6°  1/6°




Same example zpk-style

» [ransfer function: H(0:w) = S
i+ 1/0
® Fisher matrix: : :
TR 1 WAL 0% =1 /07
28 w2 1922 | —1/6°  1/6°
2102
det(Z) = L

18, (0)2 (w2 + 1/62)1




Same example zpk-style

» [ransfer function: H(0:w) = - S
iw -+ 1/0
x Fisher matrix: : :
T 1 WAL 0% —1/07
Sat QSn(w)(w2 s 1/6)2)2 _ _1/92 1/92 -
w2 6*
det(Z) =
ML) = de e 100y
x Optimal design: i i




Viore generally

x Jse an automated procedure:

x Select frequencies of interest™

x [terate to determine the amplitudes




Simulations

x Compare white noise, swept (stepped!) sine, and
optimal excitations

x Chose a fixed time and ramped up-the amplitude until
errors were ~1%

x Swept sine was chosen to take roughly the same
measurement time (minus a 5 second dwell between
each frequency) as the others

® (Gaussian noise




Pendulum with bounce mode

Qo =20 Qe = 100
fo=.454 Hz fe=14.08 Hz




Time domain excitations
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Results

same total excitation
power In each case

White noise |Stepped Sinej  Optimal

L 1 2.0 1

Pendulum  (normalized)
With Bounce

max error /0% 70% 19




Open-loop gain of PDH

control servo (scaled)
(- Zeros, o poles, and a gain




Time domain excitations
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Summary.

same total excitation

power in each case White noise |Stepped Sine Optimal
time
Pendulum (hormalized) ] 2.2 ]
With Bounce i 0% 200 i
time
OLG of PDH (normalized) : 2.8 ]
control servo S 16% 50, =




Robustness (preliminary)

Jitter

MaXx error

» Pendulum with bounce

x Parameters jittered with
a random sign

x Excitation optimized for
un-jittered values

x Average max errors




Future wWork

x [esting on a broader range ot systems

x Better frequency.: selection?

x Parameter estimation

x \Work on interface / integration to existing tools
x Calibration line placement

x MIMOs
x Beyond sys Id



Amplitude optimization

x Define the dispersion function
Sy, w) = trace (T (S Z{w))
x Properties:

x Minimization is equivalent to- maximization of
det(Fisher)

x Has a maximum value less than or equal to the
number of parameters (equality at the optimal design)




Algorithm

x Choose a set of frequeNnCIES
x Distribute power egual amongst them

n [terate until max iterations or tolerance iIs reached:

V(S5 w)

1+1 ()
S:L‘ 25 Sx

n




