Optimal Experimental Design: Introduction and Application to System Identification

Warryprice

Why bother?

same total excitation power in each case		White noise	Stepped Sine	Optimal
Pendulum With Bounce	time (normalized)	1.	22	1
	maxerior	70\%	70\%	1\%
OLG of PDH control servo	time (normalized	4	2.8	1
	maxerror	16\%	2\%	1\%

Overview

- Introduction to optimal design
- Basics of system iolentification
- Some examples
- Future work

Optimal design in a nutshell

- First works date back to the eary 19 th centiny
- Francis Bacon (New stlantis 1624):

Then after divers meetings and consilts of our whole number to consider of the former labors and collections; we have three that take care out of them to direct new experiments; of a higherlight, more penetrating into nature than the former These we call lamps?
"Basic goal "Distribute finite resources "optimally"

What is optimal?

System identification (sys id)

- Choose an x and find $1 /$

Sys id

- In the frequency olomain
- Estimate of 4 given by
- Next parameter estimation*

Two goals of sys id

- Determine the features of your system bey ond the TF resonances, noninearity noise: (Non parametric)
- Identify the parameters of your system, e.g. for control (Parametric)
- Our use case check the location of previously determined parameters
- Excitation design is fundamentally linked to the method of parameter estimation!
- Want to minimize errors on parameter estimates

Covariance matrix

* The covariance matrix generalizes the notion of variance when you have multiple parameters
- Diagonal elements are varinaces of the variables
- Off-diagonal elements are covariances between variables

Covariance matrix cont. 'd

- In practice, the covariance matrix is difficult to compute before the experiment is performed
- Instead, we use a result from Cramer \& Rao that says a lower bound on the covariance matrix is given by the inverse of the isher information mathx.
- Maximize Fisher Minimize: Covariance
- NB in practice you tend to achieve results higher than the Cramer Rao bound indicates
- Our FOM is the maximum of the CR bounds of the system parameters

Fisher information

* Phrased in terms of the lhelihood function (probability of some outcome given a set of parameter values)
- Explicitly

What to optimize?

- Fisher is a matrix but we want a scalar? Some options:
- The trace
- The determinant
-The minimum eigenvalue
Something more complicated....
- In practice, optimization of one criteria results in a good design by other criteria

Optimal sys id

- What's the best excitation signal we can use given limited input power?
R

Fisher for generic TF

- First assume the noise is Gaissian, and wite the likelihood
- Fisher is then given by

Useful fact

* The set of all input power-constrained Fisher matrices forms the convex hull of single frequency Eisher matrices
- This means the (non uniquel) optimal excitation is a linear combination of sine waves

Example:

- Transfer function:

Example:

- Transfer function.
- Fisher matrix:

Example:

* Transfer function.
- Eisher matrix:
- Optimal design. \quad. \quad.

Same example zpk-style

- Transfer function.

Same example zpk-style

- Fisher matrix:
|r|

Same example zpk-style

- Fisher matrix:

Same example zpk-style

- Transfer function.

$$
\text { R }(\theta, 0)
$$

- Fisher matrix:
부수
- Optimal design.

$$
\omega=\frac{1}{\sqrt{3} \theta}
$$

More generally

- Use an automated procedure
- Select frequencies of interest*
- Iterate to determine the amplitudes

Simulations

- Compare white noise, swept (steppedi) sine and optimal excitations
- Chose a fixed time and ramped up the amplitude until errors were 10%
- Swept sine was chosen to take roughly the same measurement time (minus a 5 second dwell between each frequency) as the others
- Gaussian noise

Pendulum with bounce mode
Qo 20
$Q_{B}=100$
$f_{0}=.454 \mathrm{~Hz}$
$\mathrm{f}_{\mathrm{B}}=14.08 \mathrm{~Hz}$

Time domain excitations

PSDs

SNR

Results

Same total exCitation

Open-loop gain of PDH control servo (scaled)

 7 zeros, 8 poles, and a gain
Time domain excitations

PSDs

SNR

Summary

same total excitation power in each case		White noise	Stepped Sine	Optimal
Pendulum With Bounce	time (normalized)	1.	22	1
	maxerior	70\%	70\%	1\%
OLG of PDH control servo	time (normalized	4	2.8	1
	maxerror	16\%	2\%	1\%

Robustness (preliminary)

Future work

* Testing on a broader range of systems
- Better frequency selection?
- Parameter estimation
- Work on interface /integration to existing tools
- Calibration line placement
- MMOS
- Beyond sys id

Amplitude optimization

- Define the dispersion function
- Properties:
- Minimization is equivalent to maximization of det(Fisher)
- Hás a maximum value less than or equal to the number of parameters (equality at the optimal design)

Algorithm

- Choose a set of frequencies
- Distribute power equal amongst them
- Iterate until max iterations:or tolerance is reached:

$$
\mathcal{S}_{x} x^{\prime}
$$

