
aLIGO Guardian overview

Jameson Graef Rollins

January 7, 2014

Introduction

Guardian is the new aLIGO automation system.

It will take over for all “scripts” and old-style auto-lockers to
handle automation of the interferometers and all subsystems.

2/ 32

Overview

The implementation has been much improved, but the basic
concept remains the same:

Distributed guardian processes (nodes) oversee particular
domains of the interferometer.
Each node understands states for their domain. State code
describes transitions and verification of the state of the
domain.
A hierarchy of nodes control the full IFO, with top level
manager nodes controlling sets of lower-levels nodes, down
to lowest level device layer that talks directly to the
real-time front-ends and Beckhoff.

3/ 32

Overview

Top level manager nodes
control lower level
subordinates, down to
device nodes that talks
directly to the real-time
system.

A single IFO manager
will sit at the top,
accepting state requests
for the entire
interferometer.

Beckhoff

fa
st

 c
on

tr
ol

PSL SUSSEI ISCSEI

p
h

ys
ic

a
l

p
la

n
t

IO
re

a
lt

im
e

c
o

n
tr

o
l

Guardian

EtherCat PCIe

ETM

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

fa
st

 c
on

tr
ol

EPICS

IFO

SUS

ITM

manager node

device node

4/ 32

System and state behavior

System behavior

Each node is programmed as a
state machine.

The state machine can be
represented as a directed
graph, where states are
connected by edges.

Each edge represents a possible
transition between states.

MISALIGNED

SAFE

DAMPED

ALIGNED

TRIPPED

6/ 32

System behavior

Guardian accepts commands in
the form of a request state.

Guardian then looks at the
current state and calculates
the shortest path to reach the
request.

The code for the current state
is executed to completion. Once
done, Guardian transitions to
the next state in the path and
executes its code. Once it
reaches the requested state it
holds there.

MISALIGNED

SAFE

DAMPED

ALIGNED

TRIPPED

7/ 32

System behavior

States can also specify jump
transitions that bypass the
normal dynamics of the graph.

Jump transitions are used for
recovery from conditions that
are in some sense undesirable
(e.g. lock loss, watchdog trip,
etc).

MISALIGNED

SAFE

DAMPED

ALIGNED

TRIPPED

8/ 32

State behavior

The states themselves have very simple behavior. There are two
state methods (i.e. functions):

main run

STATE0

main executed once immediately upon entering state.
This is the primary state code.

run executed in a loop continuously until it returns
True or a jump state name. This should be used to
check conditions for completing the state and/or
jumping to a recovery state.

9/ 32

Code structure and syntax

System description modules

System definitions are python modules. The modules include
all state definitions, and the edges that connect the states:

from guardian import GuardState

prefix = ’SUS -MC2 ’

class SAFE(GuardState):
...

class DAMPED (GuardState):
...

edges = [...]

11/ 32

State definition

States are class definitions that inherit from the GuardState
base class. Each GuardState includes the two state methods
that are overriden by the user to program state behavior:

class DAMPED (GuardState):

This function is executed once
def main(self):

...

This function is executed in a loop
def run(self):

...

12/ 32

State execution model

The execution model of a state is straightforward, e.g.:

initialize state object
state = system . DAMPED ()

execute main state code
state.main ()

execute run state code in loop
until it returns True
while True:

status = state.run ()
if status is True:

break

13/ 32

Edges

Directed edges between states are specified in the edges variable
as a list of tuples of the form (FROM_STATE, TO_STATE):

edges = [
(’DAMPED ’, ’ALIGNED ’),
]

goto states, i.e. states with implicit edges coming from every
other state in the graph, are specified by adding the ’goto’ flag
in the state definition, e.g.:

class SAFE(GuardState):
goto = True

14/ 32

Jump transitions

If a state method returns a string it is interpreted as a state
name and Guardian immediately transitions to that state. This
is known as a jump transition:

class ALIGNED (GuardState):
def run(self):

if is_watchdog_tripped ():
return ’TRIPPED ’

15/ 32

Support code and importing

Modules can include arbitrary other function/class/variable
definitions.

def helper_function ():
...

class DAMPED (GuardState):
def main(self):

helper_function ()

Modules can also import other modules, or objects from other
modules. For instance the SUS-MC2.py system description
imports states from a base SUS.py suspension module:

from SUS import *

16/ 32

Ezca EPICS channel access

All channel access is done through the LIGO custom Ezca
EPICS channel access interface.

The ezca object is available from anywhere in the system
description module:

prefix = ’SUS -MC2 ’

class ALIGNED (GuardState):
def main(self):

ezca[’M2_LOCK_L_GAIN ’] = 10

17/ 32

Ezca EPICS channel access

If a prefix is specified in the system description module it will
be combined with the local IFO variable to produce a proper
channel prefix that is then passed to the Ezca object upon
initialization. E.g.:

prefix = ’SUS -MC2 ’

becomes:

ezca = Ezca(’L1:SUS -MC2_ ’)

Further ezca calls then only need to reference the rest of the
channel name:

ezca[’M2_LOCK_L_GAIN ’]

18/ 32

Ezca EPICS channel access

Ezca includes the usual read/write methods (accessible via
two forms):

ezca.read(’M2_LOCK_L_GAIN ’)
ezca[’M2_LOCK_L_GAIN ’]

ezca.write(’M2_LOCK_L_GAIN ’, 10)
ezca[’M2_LOCK_L_GAIN ’] = 10

as well as the switch method for dealing with LIGO standard
filter modules (SFM):

ezca. switch (’M2_LOCK_L ’,’FM1 ’,’ON’)

(SFM interface is being improved to add more useful methods.)

19/ 32

Timers

Timers can be used to measure off a specific amounts of time in
a state. They are decremented every execution cycle. They
should be used instead of issuing blocking time.sleep() calls
when specific timeout conditions can’t be tested for explicitly.

Set up the timer in the main() function by giving it a name
and specifying the amount of time in seconds:

def main(self):
self.timer[’mytimer ’] = 2

The timer will automatically count down and will return True
after it reaches zero:

def run(self):
if self.timer[’mytimer ’]:

do_something ()

20/ 32

Other available methods

State can write to the guardian log:

log(’something is happening ’)

There are also special methods for manager nodes to interact
with their subordinates:

self.node[’IMC ’] = ’LOCKED ’
if self.node[’IMC ’] == ’LOCKED ’:

...

WARNING: this interface will likely be changed/improved in
the near future.

21/ 32

example: IMC device guardian module code

-*- mode: python ; tab - width : 4; indent -tabs -mode: nil -*-

from guardian import GuardState

###

prefix = ’IMC ’

###

lockthreshold = 800

###

initial request state
request = ’LOCKED ’

class INIT(GuardState):
def run(self):

if self.ezca[’MC2_TRANS_SUM_INMON ’] < lockthreshold :
return ’ACQUIRE ’

else:
return ’LOCKED ’

class ACQUIRE (GuardState):
goto = True

def main(self):
self.ezca[’REFL_SERVO_IN1GAIN ’] = -10
self.ezca[’REFL_SERVO_COMBOOST ’] = 0

def run(self):
if self.ezca[’MC2_TRANS_SUM_INMON ’] > lockthreshold :

return True

class LOCKED (GuardState):
def main(self):

self.ezca[’REFL_SERVO_IN1GAIN ’] = 0
self.ezca[’REFL_SERVO_COMBOOST ’] = 1

def run(self):
if self.ezca[’MC2_TRANS_SUM_INMON ’] < lockthreshold :

return ’ACQUIRE ’

###

edges = [
(’ACQUIRE ’, ’LOCKED ’),
]

###
SVN Id
$HeadURL$
###

22/ 32

The Guardian interface

Guardian programs

Guardian includes four programs:
guardian

Core guardian daemon program. Executes system
state machines, of single states and paths.

guardctrl
Interface to the site Guardian infrastructure, for
controlling nodes and accessing logs.

guardmedm
Launch the MEDM control interface for a
Guardian node.

guardutil
Utility program for displaying information about
systems.

24/ 32

Guardian system identifiers

All programs accept system description module names, e.g.
’SUS_MC2’, as their primary argument.

They look for the modules in Guardian-specific USERAPPS
paths:

$USERAPPS/<subsystem >/<site>/guardian

$USERAPPS/<subsystem >/common/guardian

25/ 32

Guardian daemon

The core guardian program is the guardian daemon. It loads
the system module and executes the state machine described
therein. It has three modes of operation:

guardian [<options >] <module>

guardian [<options >] <module> <state>

guardian [<options >] <module> <state> <request>

guardian [<options >] [−i <module >]

26/ 32

Guardian daemon

guardian [<options >] <module>

When given the name of a system description module, it loads
the module and starts executing the state machine described
therein.

It logs to stdout, and is controlled by the guardian medm
interface (see guardmedm below).

Usually this mode would only be run through the main site
infrastructure (see guardctrl below).

27/ 32

Guardian daemon: states and paths

guardian [<options >] <module> <state>

If guardian is called with a single additional state argument,
the single state will be executed on it’s own until it completes,
at which point guardian exits.

guardian [<options >] <module> <state> <request>

If two states arguments are specified, it is interpreted as a path
in the state graph. Guardian will attempt to execute the path,
and will exit when it completes the requested state.

These can be executed directly from the command line, and are
very useful protyping and debugging.

28/ 32

Guardian daemon: interactive shell

guardian [<options >] [−i <module >]

If no argument is given, or the “interactive” flag is specified, an
interactive shell will be launched (guardian-special ipython):

controls 0$ guardian

−−−−−−−−−−−−−−−−−−−−
aLIGO Guardian Shell

−−−−−−−−−−−−−−−−−−−−
prefix: L1:

In [1]:

This is useful for testing commands, and interacting with ezca:

In [1]: ezca[’SUS−MC2_M2_LOCK_L_GAIN ’]
Out[1]: 3

29/ 32

guardctrl

guardctrl is the main interface to the site infrastructure. It is
used for controlling nodes running on the site guardian
machines ({h1,l1}guardian0)

From this interface, new nodes can be created, started, stopped,
restarted, etc.:

controls 0$ guardctrl create SUS_MC2

controls 0$ guardctrl start SUS_MC2

controls 0$ guardctrl stop SUS_MC2

It can also be used to view node logs:

controls 0$ guardctrl log SUS_MC2

30/ 32

guardmedm

guardmedm launches the medm control interface to a specific
guardian daemon:

controls 0$ guardmedm SUS_MC2

It is used for controlling the daemon, requesting a state,
accessing logs, displaying system graph, etc.

31/ 32

guardutil

guardutil has useful functions for developing systems.

controls 0$ guardutil SUS_MC2 graph

Among other things, it draws
system graphs, which are very
useful for understanding and
debugging systems.

The graph drawings are still
underdevelopment, and will
continue to be improved to
provide more useful info about
the states.

MISALIGNED

SAFE

DAMPED

ALIGNED

TRIPPED

32/ 32

	System and state behavior
	Code structure and syntax
	The Guardian interface

