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1 Introduction

This document describes an upgrade of the interferometer simulation tool Finesse [1]. With the release of
Finesse version 1.1 on 04/11/2013, the modelling of so-called ‘sidebands of sidebands’ has been improved. To
simulate these objects in previous versions of Finesse, one had to use a series of workarounds, as documented in
a note by Keita Kawabe [4]. Although the note still provides a useful introduction to the topic, the workarounds
described there are no longer necessary.

1.1 The Sideband Picture

Laser interferometers for precision length measurements, such as interferometer gravitational wave detectors,
can offer a rich and complex field for study. Many such investigations can be performed assuming a steady
state of the interferometer and only linear optical couplings, such that the light field can be described in the
frequency domain. In the following, we assume a stable central laser frequency, and describe all other frequency
components as sidebands (i.e. components with an offset to the laser frequency).

Such sidebands are generated, for example, via the modulation of the laser field, that is, with a periodic
change of a parameter of the light field, such as phase or amplitude [3]. We distinguish ‘modulation sidebands’,
created by electro-optical modulators (EOMs) for control purposes (typically at radio frequency), and ‘signal
sidebands’ (also sometimes called ‘audio-sidebands’), which are generated by small changes in the optical set-up,
for example, the oscillation of a mirror position. When a light field containing sidebands is modulated again,
we say that we have created ‘sidebands of sidebands’ (SoS).

1.2 Sidebands in Finesse

Earlier versions of Finesse (1.0, and any before that) computed the various frequency components of the light
fields sequentially. First the carrier frequencies were considered, then the sidebands from EOMs, and finally
the signal sidebands (created with the fsig command). The purpose of this separation was a decrease in the
computational complexity and thus faster simulation times. Unfortunately, it limited Finesse such that it
could not compute the full couplings between different types of frequency components. Sidebands of sidebands
were generated in a limited fashion. While the majority of simulation tasks do not require a more complete
treatment, certain cases were difficult or impossible to model [4].

As of Finesse 1.1, all components are computed simultaneously and all couplings are described correctly. Hence,
SoS are now implemented correctly. It is, however, still necessary to limit the number of frequency components;
otherwise for example, a modulator in a cavity would create an infinite number of components. The user can
‘turn on/off’ certain SoS so that Finesse retains the balance between speed and flexibility.

In time with the recent upgrade, the purpose of this note is to highlight the new implementation of sideband
coupling in Finesse 1.1. With a few examples, we illustrate to what extent SoS may be added (or removed)
from a simulation and how this can affect the output. Whilst on the subject, we also take the opportunity to
demonstrate how the fsig command can now be used with a laser directly, in order to generate signal sidebands.

2 Producing Sidebands of Sidebands

One simple method of generating SoS is by the set-up in Figure 1. Here, two sequential EOMs apply phase
modulations to a laser beam. Although this set-up would only generate modulation sidebands, the following
mathematical analysis applies equally to signal sidebands.

If one assumes that the laser produces a monochromatic field

Ein = E0e
iω0t, (1)
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Laser EOM 1 EOM 2

Figure 1: A simple set-up for generating SoS. Firstly, a field Ein passes through EOM 1. For each
frequency component in this field, (modulation) sidebands are generated with offsets of ±pΩ1,
where p is a positive integer. On passing through EOM 2, each component thens gains its own
(modulation) sidebands, each with frequency offsets of ±qΩ2, where q is a positive integer. With
respect to the carrier, the (modulation) SoS are offset by angular frequencies ±pΩ1 ± qΩ2.

then after the EOMs, the field will, up to a phase factor, be given by

Eout = E0e
iω0teim1 cos(Ω1t+ϕ1)eim2 cos(Ω2t+ϕ2). (2)

Here, mi are the modulation indices, Ωi are the (phase) modulation frequencies, ϕi are the modulation phases
and i = {1, 2} denotes which EOM these quantities are associated with. Expanding this to first-order in m1,
m2 and the product m1m2, and writing cosines as exponentials, one finds that

Eout =

N∑
n=0

ane
iωnt = E0

[
eiω0t +

im1

2

(
ei(ω0+Ω1)t + ei(ω0−Ω1)t

)
+
im2

2

(
ei(ω0+Ω2)t + ei(ω0−Ω2)t

)
− m1m2

4

(
ei(ω0+Ω1+Ω2)t + ei(ω0+Ω1−Ω2)t + ei(ω0−Ω1+Ω2)t + ei(ω0−Ω1−Ω2)t

)]
.

(3)

Written in this way, one can clearly see the carrier, the first set of sidebands, the second set of sidebands, and the
sidebands of sidebands, as well as their respective amplitudes. For additional clarity, a pictorial representation
of this field is shown in Figure 2.
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Figure 2: The ‘line spectrum’ of the field Eout for Ω1 > Ω2. Labels above the lines give the
corresponding analytical angular frequencies, as seen in equation (2). Labels below each line
denote their numerical frequency offset from the carrier frequency, and are given in MHz. This
latter set of values are those handled by Finesse in the first of our examples discussed below.

3 Detecting Sidebands of Sidebands

To illustrate the presence of SoS in Finesse, we simulate photodetection via demodulation of the field Eout.
This scheme allows us to see the contribution to the power incident on a photodiode from the components of
the field, as specified in terms of their frequency1. Following [3], the intensity of a field with components of
frequencies ωn may be written as

Sout =
cε0
2
|Eout|2 =

cε0
2

N∑
n=0

N∑
m=0

ana
∗
me

i(ωn−ωm)t. (4)

1Note that we refer to intensities in the text, and yet Finesse handles power. These are numerically the same, and equivalent for
our purposes. A technical discussion of this detail may be found the Finesse manual, found at http://www.gwoptics.org/finesse.
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Passing this through mixer with we obtain a signal proportional to

S′out = Sout · cos(ωxt+ ϕx), (5)

where ωx is the demodulation frequency and ϕx is the demodulation phase and the DC part is given by

S′out,DC =
cε0
2

N∑
n=0

N∑
m=0

Re
(
ana

∗
me
−iϕx

)
with ωx = ωn − ωm. (6)

This is the quantity that we measure (by simulation) in the first two examples. In the third example, an
additional demodulation is performed, the details of which are saved until then.

4 A Simple Example

In the following example, SoS are generated with the set-up shown in Figure 1. The EOMs are set such that
Ω1 = 2π · 5 MHz and Ω2 = 2π · 1 MHz, Figure 2 may be used a reference.

Demodulation is performed with ωx = 2π · 6 MHz and ϕx = 0. As one can see from Figure 2, a difference of
f = 6 MHz appears four times. The first two are between the carrier and the ±6 MHz SoS. The second two are
between the first and second sidebands of the carrier, that is, between ±1 MHz and ∓5 MHz. The contributions
of these two pairs exactly cancels and the output signal is zero:

S′out,DC =
cε0
2

[Re (a0 a
∗
8) + Re (a5 a

∗
0) + Re (a3 a

∗
2) + Re (a1 a

∗
4)] = 0. (7)

This result is simulated by the Finesse code given below, and the output is shown by the blue trace in Figure 3.
Here, we arbitrarily tune ϕ1 the modulation phase of EOM 1 in order to produce a 2D plot.

# FINESSE 1.1 Build 1.1-21- ga21fe41

mf -6M -4M 4M 6M # Instructing Finesse to add SoS

l L1 1 0 n0 # Laser: 1W
mod EOM1 5M 0.05 1 pm 0 n0 n1 # EOM1: Omega_1 = 2pi*5 MHz , m_1 = 0.05
s S1 0 n1 n2 # Zero space
mod EOM2 1M 0.01 1 pm 0 n2 n3 # EOM2: Omega_2 = 2pi*1 MHz , m_2 = 0.01

pd1 PD 6M 0 n3 # PD: omega_x = 2pi*6 MHz

xaxis EOM1 phase lin 0 360 100 # Tuning the modulation phase of EOM1
yaxis abs # Plotting the amplitude

The first line of code requests the creation of modulation SoS. One simply specifies their frequency offsets from
the carrier and Finesse does the rest of the work. If these modulation SoS are not of interest, then one may
simply switch them off by commenting out this first line. In this case, the first two terms in equation (7) do
not appear, and the result is non-zero. The output of this simulation is shown by the red trace in Figure 3.

Clearly, there is a difference in output depending on whether these SoS are simulated or not, and only the
result including SoS is correct. However, this is due to the demodulation frequency being specifically chosen to
illustrate this effect. In many practical cases SoS can be omitted (to increase the speed of simulations) without
any change in the detector outputs.

5 Sidebands of Sidebands in a Pound-Drever-Hall Set-up

In the simple example above, it was shown how SoS can now be modelled properly in Finesse. In this section
we turn to a more practical application: SoS in a Pound-Drever-Hall (PDH) set-up [2]. We show how SoS can
complicate an error signal, and how a transfer function of laser noise into a PDH signal is now more easily
produced in Finesse.
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Figure 3: Photodiode output as a function of modulation phase at EOM 1. This is a simple
demonstration of the difference in result when SoS are ‘turned on/off’ in Finesse. In this example
(see section 4), the contribution to the photodiode signal from terms due to SoS cancel those
terms that do not originate from SoS, and the result is a zero output, as shown by the blue trace.
When SoS are not simulated (when the line mf -6M -4M 4M 6M is removed), this cancellation is
not modelled, and an incorrect, non-zero result is obtained, as shown by the red trace.

The Error Signal

Our error signal is generated by the set-up shown in Figure 4. Here, SoS are again produced by a pair of EOMs.

Laser EOM 1 EOM 2 PD Input Mirror End Mirror

Figure 4: A schematic representation of a set-up used to generate a PDH error signal. Note that
this is drawn in such a way as to match what Finesse sees. As the carrier deviates from resonance
with the cavity, the photodiode measures a changing intensity. Combined with the sidebands
whose offsets are ±Ω2, the photodiode measures a beat pattern. The side of the resonance that
the carrier is on is encapsulated its phase between these sidebands. The first EOM, and hence the
SoS, are ‘added complications’ that one may have in a real interferometer.

Suppose that the field incident on the cavity has components of angular frequency ωn with respective amplitudes
an. The reflected field is then

Eout(ω) =

N∑
n=0

F (ωn)ane
iωnt. (8)

Here, the weighting factor is the reflection coefficient of the cavity. In this document, we consider a lossless
cavity, for which

F (ω) =
−
√
R1 +

√
R2 e

iω/∆νfsr

1−
√
R1R2 eiω/∆νfsr

, (9)

where Ri and Ti are the reflection and transmission coefficients of mirror i, such that Ri + Ti = 1. In this
particular example, we consider a symmetric cavity. In this case, when the cavity is mode-matched to a
component of the field with angular frequency ω, then F (ω) = 0 and this component is absent from Eout. This
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condition is given by
ω

∆νfsr
+ 2φ = 2πN. (10)

Here, ∆νfsr is the free spectral range of the cavity, φ is a tuning parameter of the end mirror, and N is the set
of integers.

The power on the photodiode is calculated from equation (8), and in the same way as above, demodulation is
performed at angular frequency ωx. Denoted by ε, we then take the PDH error signal as the DC part of this
result. In this example, the error signal is generated by tuning the quantity φ from −15◦ to +15◦, as seen in
the corresponding simulation code below.

# FINESSE 1.1 Build 1.1-21- ga21fe41

mf -11M -3M 3M 11M # Instructing Finesse to add SoS

l L1 1 0 n0 # Laser: 1W
mod EOM1 7M 0.6 1 pm n0 n1 # EOM1: Omega_1 = 2pi*7 MHz , m_1 = 0.6
s S1 0 n1 n2 # Zero space
mod EOM2 4M 0.6 1 pm n2 n3 # EOM2: Omega_2 = 2pi*4 MHz , m_2 = 0.6
s S2 0 n3 n4 # Zero space
m M1 0.99 0.01 0 n4 n5 # Mirror1: R = 0.99, T = 0.01, phi = 0
s S3 1200 n5 n6 # Space: L = 1200 m
m M2 0.99 0.01 0 n6 dump # Mirror2: R = 0.99, T = 0.01, phi = 0

pd1 inphase 4M 0 n4 # PD: omega_x = 2pi*4 MHz

xaxis M2 phi lin -15 15 400 # Tuning the cavity length through phi
yaxis abs # Plotting the amplitude

Demodulation is performed with ωx = Ω2 = 2π · 4 MHz and ϕx = 0. Making the identity F (ωn) ≡ Fn, and
working to first order in m1, m2, and the product m1m2, the error signal is found to be

ε = −cε0E
2
0m2

16

[
4 Im (F2F

∗
0 + F4F

∗
0 ) +m2

1 Im (F5F
∗
1 + F6F

∗
1 + F7F

∗
2 + F8F

∗
2 )
]
. (11)

Note that this quantity contains a contribution from every component of the field and that terms with SoS in
them are prefixed by a small number. The output is shown in Figure 5, with the blue trace for when SoS are
simulated and the red trace for when they are not simulated.

When a component of the field meets the resonance condition, a kink is produced in the error signal. The
value of φ for a particular component is calculable directly from equation (10). The resonances of the SoS add
another layer of complexity to the error signal. For the purposes of locking, however, we see that they are not
interesting and do not need to be simulated.

Recall that, in reality, an EOM produces sidebands with angular frequency offsets ±pΩ, i.e. a whole series of
harmonics. The effect on a photodiode of higher harmonics will in general be greater than that from SoS, and
this can also be simulated with Finesse. Here, however, we simulate only the first harmonics. While the output
is therefore erroneous, the purpose is merely to illustrate the effect of SoS in an independent way.

The Transfer Function

With the set-up in Figure 6, we now turn to the analysis of frequency noise by deriving of the transfer function
of a simple cavity. Not only is this a common simulation task for Finesse, it is also one where earlier versions
required complicated workarounds in order to achieve (e.g. in adding laser noise by shaking a dummy beam
splitter after, but not before, the EOM).
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Figure 5: PDH error signals generated by the above Finesse simulation. The error signal provides
a measure of the intensity reflected from the cavity, as a function of the carrier’s perturbation
from resonance. Its asymmetry derives from the phase between the carrier and the sidebands at
the demodulation frequency, and allows us to determine whether the carrier is above or below
resonance. The red trace shows the simulations where the second EOM does not generate SoS. In
the blue trace, these SoS are generated, and appear as kinks in the error signal when they resonate.

Laser + fsig EOM 1 PD Input Mirror End Mirror

Figure 6: A schematic representation of a set-up used to generate a transfer function for frequency
noise reflected from a cavity. Note that this is drawn in such a way as to match what Finesse
sees. To generate signal sidebands at Ω1, fsig is applied directly to the laser. The EOM then
creates modulation sidebands at ±Ω2 around the carrier and also around the signal sidebands
(giving SoS). In this case, we have Ω1 � Ω2. The photodetection is extended by an additional
mixer to demodulate at the signal frequency. The transfer function is obtained as we sweep over
this frequency, simultaneously at the laser and the second mixer [3].

The aim is to measure the effect of laser frequency or laser phase noise on a PDH error signal. The fsig command
is used to apply a sinusoidal phase modulation with parameters m1 and Ω1. In this case, the incoming field
is approximated by equation (3), and the reflected field by equation (8). In this example we have two local
oscillators, and so

S′out =
1

2
Sout cos

[
(ωy + ωx)t+ (ϕy + ϕx)

]
+

1

2
Sout cos

[
(ωy − ωx)t+ (ϕy − ϕx)

]
, (12)

We set ϕx = 0 but do not specify ϕy. In this case, the output is a complex number given by

S′out,complex =
cε0

2

(
N∑
n=0

N∑
m=0

bnb
∗
m +

N∑
p=0

N∑
q=0

bpb
∗
q

)
with

{
ωy + ωx = ωn − ωm
ωy − ωx = ωp − ωq.

(13)

Here, bi = Fiai and the frequencies are ωx = Ω2 and ωy = Ω1. From this, we obtain

S′out,complex =
cε0E

2
0m1m2

8

(
F1F

∗
4 + F3F

∗
2 − F0F

∗
8 − F5F

∗
0 + F4F

∗
2 + F1F

∗
3 − F6F

∗
0 − F0F

∗
7

)
, (14)
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where m1 = 1Hz/Ω1 and where F (ω) is given by equation (9). Our transfer function, and final result, is then

H(ω) = 20 log10

∣∣∣∣∣S′out,complex

1Wm−2

∣∣∣∣∣. (15)

The corresponding simulation code is provided below.

# FINESSE 1.1 Build 1.1-21- ga21fe41

l L1 1 0 n0 # Laser: 1W
fsig F1 L1 10 0 # Adding frequency noise to the laser
s S1 0 n0 n1 # Zero space
mod EOM 10M 0.01 1 pm 0 n1 n2 # EOM: Omega_2 = 2pi*10 MHz , m_2 = 0.01
s S2 0 n2 n3 # Zero space
m M1 0.99 0.01 0 n3 n4 # Mirror1: R = 0.99, T = 0.01, phi = 0
s S3 1200 n4 n5 # Space: 1200 m
m M2 0.9999 0.0001 0 n5 dump # Mirror2: R = 0.9999 , T = 0.0001 , phi = 0

pd2 PD 10M 0 10 n3 # Double demodulation

xaxis F1 f log 1 1000 4000 # Tuning the frequency noise
put PD f2 $x1 # Tuning omega_y correspondingly
yaxis db # Plotting the amplitude in dB

The sidebands created by the fsig command are signal sidebands. As of Finesse 1.1, EOMs now automatically
couple signal sidebands with modulation sidebands. So, in addition to creating modulation sidebands around the
carrier, new signal sidebands are created around the modulation sidebands. In this simulation, the interesting
comparison is not between SoS ‘on’ and SoS ‘off’. Rather, we note the simplicity of producing a transfer
function, as compared with versions of Finesse before 1.1. That fsig can now be applied directly on to a laser
not only makes for a more intuitive simulation, but also reduces its complexity. The Finesse output is given
by the blue trace in Figure 7, with the dashed red trace showing the theoretical prediction from equation (15).
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Figure 7: The transfer transfer function for the detection of frequency noise reflected from a cavity.
The dashed red trace shows the theoretical prediction from equation (15), and the blue trace shows
the output of Finesse, from the code given above. The main point of interest is not the overlay,
but rather the simplicity under which this result may be produced by Finesse 1.1.
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