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Advanced ground-based gravitational-wave detectors are capable of measuring tidal influences
in binary neutron-star systems. In this work, we report on the statistical uncertainties in mea-
suring tidal deformability with a full Bayesian parameter estimation implementation. We show
how simultaneous measurements of chirp mass and tidal deformability can be used to constrain
the neutron-star equation of state. We also study the effects of waveform modeling bias and indi-
vidual instances of detector noise on these measurements. We notably find that systematic error
between post-Newtonian waveform families can significantly bias the estimation of tidal parame-
ters, thus motivating the continued development of waveform models that are more reliable at high
frequencies.

I. BACKGROUND AND MOTIVATION

Advanced interferometric gravitational-wave (GW) de-
tectors currently under construction are expected to be-
gin operating in the next few years. Advanced LIGO [1]
is expected to achieve its design sensitivity c. 2019 [2],
at which time the detection rate of binary neutron-star
(BNS) events in a single detector is expected to be ∼40
yr−1, though this value is quite uncertain and ranges
from 0.4–400 yr−1 [3].

When a compact binary coalescence (CBC) signal is
detected [4, 5], the corresponding interferometer data
stream segment is sent through a parameter estimation
pipeline to determine the source parameters of the sys-
tem. Some of these source parameters include the bi-
nary component masses and spins, the sky location, dis-
tance, and orientation of the system. Bayesian infer-
ence is used to explore the probability distribution of the
CBC’s source parameters by comparing model waveform
templates, whose form depends on these source param-
eters, to the data stream segment containing the GW.
For this work, we use lalinference_mcmc, which is in-
cluded in the LALInference LSC Algorithm Library [6],
as our parameter estimation pipeline. It is a Markov
Chain Monte Carlo (MCMC) sampler designed to effi-
ciently explore the full waveform parameter space in or-
der to make reliable and meaningful statements about
CBC source parameters [7–9].

This paper’s focus is on measuring the effect of tidal
influence on BNS GW signals with advanced detectors.
Neutron stars (NSs) in merging CBC systems will be
tidally deformed by the gravitational gradient of their
companion across their finite diameter. This effect is
insignificant at large separations but becomes increas-
ingly significant as the NSs near each other [10]. The
internal structure of a NS, which is characterized by its
equation of state (EOS), determines how much each star

will deform. The amount that a NS deforms will affect
the orbital decay rate, which is encoded in the observed
gravitational waveform. Therefore, if a gravitational sig-
nal from a BNS system is detected, then such a detection
could provide insight into the NS EOS [10–13].

In order to make meaningful statements regarding the
recoverability of tidal parameters from BNS signals, it is
important to understand the effects of error on param-
eter estimation. One such obstacle to measuring tidal
influence is accurate waveform modeling. The error re-
sulting from inaccurate waveform models is a kind of sys-
tematic error. Some of the most commonly used CBC
waveforms rely on a post-Newtonian (PN) expansion in
orbital speed. As the CBC inspirals, the orbital speed
of the binary components increases leading to a higher
frequency signal. These waveform families are thus un-
reliable at high frequencies where orbital speeds become
large [14] and tidal effects emerge. Another difficulty in
measuring tidal influence results from fluctuations in de-
tector noise. This type of error is called statistical error.
Tidal influences only noticeably affect the final high fre-
quency orbits of the binary where the detector noise (in
strain units) is comparatively large. Extracting such a
small influence occurring in the high frequency band is
an investigation at the very brink of our detectors’ sen-
sitivity. Even small fluctuations in detector noise might
be able to dramatically affect the recovery of tidal de-
formability. Understanding the magnitude of these two
sources of error is the core motivator of this work.

Several studies have used the Fisher Information Ma-
trix (FM), which is only valid in the large signal-to-noise
ratio (SNR) limit, to estimate the measurability of tidal
effects on the CBC gravitational waveform [10–12, 15–
18]. Flanagan and Hinderer [10] were among the first to
show that advanced detectors can constrain the tidal in-
fluence of NSs on the early inspiral portion of the CBC
waveform. They notably use PN waveforms truncated at



2

400 Hz to remove the unreliable high-frequency portion
of the PN model. Hinderer et al. [11] later investigated
how well constraints on the tidal deformability from the
early inspiral can discriminate between several theoreti-
cal NS EOSs. Also using PN waveforms, they find that
advanced detectors will likely only be able to probe stiff
EOSs.

Further FM studies moved away from the use of PN
waveforms in favor of waveforms that are more reliable
at high frequencies. Read et al. [12, 15] probed the late
inspiral portion of the BNS waveform with numerical rel-
ativity (NR) simulations, which are accurate during the
late inspiral and merger epochs. They find that the addi-
tional high frequency information results in greater mea-
surement accuracy of the tidal deformability. Damour,
Nagar, and Villain [17] also probed beyond the early
inspiral with tidally corrected effective-one-body (EOB)
waveforms, which they claim to be accurate up to merger.
They show that advanced detectors should in fact be able
to constrain the NS EOS for reasonably loud signals.

While the above mentioned studies are informative, the
FM is not always trustworthy in estimating the measur-
ability of source parameters [19–22]. Though it is known
that FM estimates are only accurate for loud signals, re-
cent investigations have highlighted additional shortcom-
ings of FM estimates when compared to real GW param-
eter estimation pipelines [20]. It is now clear that there
is no substitute for full Bayesian results when making
definitive statements regarding parameter estimation.

Del Pozzo et al. [23] recently performed Bayesian simu-
lations of BNS systems with a tidally corrected PN wave-
form. They find that advanced detectors will be able to
measure tidal effects on GW signals and constrain the NS
EOS by combining information from many BNS sources.
While this result is very important, their analysis as-
sumes that true BNS signals have the exact same form
as their model. Although the authors acknowledge this
limitation, it is necessary to study how much their result
depends on this assumption.

Recently, there have been several FM investigations
that have studied the effects of systematic error on the
measurability of tidal parameters [15, 16, 24, 25]. In par-
ticular, Yagi and Yunes in [24] and Favata in [25] both
find that current PN waveforms, which are known only
up to 3.5PN order [14], cannot be used to make accu-
rate measurements of tidal effects. This is an extremely
important result that motivates a full Bayesian inves-
tigation into the effect of systematic error from tidally
corrected PN waveforms on parameter estimation.

In this work, we use a full Bayesian framework to
demonstrate the ability of advanced detectors to con-
strain the NS EOS by measuring the effects of tidal influ-
ence on BNS signals. We estimate the anticipated mea-
surement uncertainty associated with using the advanced
LIGO/Virgo network [1, 26] to recover tidal influence in
BNS systems. We find that systematic error inherent in
the current PN inspiral waveform families significantly
biases the recovery of tidal parameters. Additionally, we

find that individual instances of detector noise can on
occasion considerably reduce the measurability of tidal
parameters. We consider only BNS systems.

This work is organized as follows. In Sec. II we review
how tidal influences affect the CBC waveform. In Sec. III
we briefly outline the parameter estimation pipeline used
in this analysis and present measurement uncertainty es-
timates for the recovery of tidal influences in BNS sys-
tems. In Sec. IV we explain how simultaneous mass-
like and radius-like measurements, specifically the mea-
surement of chirp mass and tidal deformability, can help
constrain the NS EOS. In Sec. V we describe the two
main sources of error in parameter estimation and how
much each source of error affects the recovery of tidal
parameters. We finish with a summary of our main re-
sults in Sec. VI. We also refer the interested reader to
Appendix A where we derive how the tidal corrections
appear in several PN waveform families.

II. TIDAL CORRECTIONS TO CBC PN
WAVEFORM FAMILIES

In this section, we review the effects of tidal influences
on the CBC waveform. For a more complete discussion,
refer to Appendix A, which outlines how tidal effects ap-
pear in the following PN waveform families: TaylorT1,
TaylorT2, TaylorT3, TaylorT4, and TaylorF2. For more
details regarding each of these waveform families, see [14]
and references therein.

A. Constructing tidally corrected PN waveforms

To model the CBC waveform, it is customary to ap-
proximate each massive body as having infinitesimal size.
As the two bodies orbit, GWs carry energy away from the
system causing their separation to decrease and their or-
bital frequency to increase. The energy and luminosity
of this point-particle system (Epp and Lpp respectively)
are currently known to 3.5 post-Newtonian (PN) order1
[14].

If the two compact objects are NSs, each will start to
deform under the tidal field of the other as their sep-
aration decreases. The deformation of each body will
have an effect on the rate at which the bodies coalesce.
BNS systems therefore depart from the point-particle ap-
proximation at high frequencies and require an additional
correction to the energy and luminosity of the system rel-
ative to the point-particle terms.

Since a NS in a binary system will deform under the
tidal influence of its companion, its quadrupole moment
Qij must be related to the tidal field Eij caused by its

1 The energy has recently been calculated to 4PN order [27].
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companion. For a single NS, to leading order in the quasi-
stationary approximation and ignoring resonance,

Qij = −λEij , (1)

where λ = (2/3)k2R
5/G parameterizes the amount that

a NS deforms [10]. The i and j are spatial tensor indices,
k2 is the second Love number, and R is the NS’s radius.
Since λ parameterizes the severity of a NS’s deformation
under a given tidal field, it must depend on the NS EOS.
NSs with large radii will more easily be deformed by the
external tidal field, because there will be a more extreme
gravitational gradient over their radius. For a fixed mass,
NSs with large radii are also referred to as having a stiff
EOS, and, for the same mass, NSs with small radii have
a soft EOS. Therefore, NSs that have large values of λ

will have large radii, a stiff EOS, and become severely
deformed in BNS systems; on the other hand, NSs that
have small values of λ will have small radii, a soft EOS,
and will be less severely deformed in these systems.

Tidal effects are most important at small separations
and therefore at high frequencies in BNS systems. Tidal
corrections to the energy δEtidal and tidal corrections to
the luminosity δLtidal add linearly to the point-particle
energy Epp and luminosity Lpp. Though the leading or-
der tidal correction is a Newtonian effect, it is often re-
ferred to as a 5PN correction, because it appears at 5PN
order relative to the leading order point-particle term. In
this work, we keep the leading order (5PN) and next-to-
leading order (6PN) corrections to the energy and lumi-
nosity [28]:
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The total mass isM = m1+m2, wherem1 andm2 are the
component masses, η = m1m2/M

2 is the symmetric mass
ratio, x = (πGMfgw/c

3)2/3 is the PN expansion parame-
ter, fgw = 2forb is the GW frequency, forb is the binary’s
orbital frequency, and χ1 = m1/M and χ2 = m2/M are
the two mass fractions. Note that the PN order is la-
belled by the exponent on x inside the square brackets,
which is why these terms are referred to as 5PN and 6PN
corrections. Since the 5PN and 6PN tidal correction co-
efficients multiply x5 and x6 respectively, these effects
will be insignificant at low frequencies and increasingly
more significant at higher frequencies (x ∼ f

2/3
orb ), as an-

ticipated. Appendix A derives each tidally corrected PN
waveform family from Eqs. (2) and (3).

The point-particle energy and luminosity are only
known to 3.5PN order [14]. However, we add tidal cor-
rections to the energy and luminosity that appear at 5PN
and 6PN orders without knowing the higher order point-
particle terms. The justification for including the tidal
corrections has typically been that they are always as-
sociated with the large coefficient GλA[c2/(GmA)]5 ∼
[c2RA/(GmA)]5 ∼ 105 [10]. Therefore, although they
appear at high PN orders, the effect of the tidal terms
on the binary’s orbit are comparable to the effects of the

3PN and 3.5PN point-particle terms. However, this claim
was contradicted in [24] because the tidal corrections are
actually associated with the coefficient [c2R/(GM)]5 ∼
103 � [c2RA/(GmA)]5, which is apparent from the form
of Eqs. (2) and (3). We show in Sec. V A that not know-
ing the higher order PN point-particle terms leads to sig-
nificant systematic error when recovering tidal param-
eters. Yagi and Yunes in [24] and Favata in [25] also
discuss the importance of these unknown point-particle
terms.

B. Reparameterization of tidal parameters

It becomes convenient to reparameterize the tidal pa-
rameters (λ1, λ2) in terms of purely dimensionless pa-
rameters, which we call (Λ̃, δΛ̃) [25]. Inspired by the λ̃
from [10], Λ̃ = 32Gλ̃[c2/(GM)]5 is essentially the entire
5PN tidal correction in all of the PN waveform families,
while the 6PN tidal correction is a linear combination of
Λ̃ and δΛ̃. For example, the tidal corrections to the Tay-
lorF2 phase later derived in Eq. (A26) of Appendix A
can equivalently be expressed as follows:
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3
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where
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The dimensionless parameters Λ1 = Gλ1[c2/(Gm1)]5
and Λ2 = Gλ2[c2/(Gm2)]5, and we have assumed that
m1 > m2. Though we choose to express Λ̃ and δΛ̃ in
terms of dimensionless parameters as in Eqs. (5) and (6),
they can be equivalently expressed more compactly in
terms of dimensionful parameters, as can be inferred from
Eq. (A26). The parameters (Λ̃, δΛ̃) were chosen such that
they have the following convenient properties:

Λ̃(η = 1/4,Λ1 = Λ2 = Λ) = Λ (7)

δΛ̃(η = 1/4,Λ1 = Λ2 = Λ) = 0. (8)

Setting η = 1/4 implies that m1 = m2. Since all
NSs have the same EOS, NSs with the same mass will
also have the same value for Λ. We have over-specified
Eqs. (7) and (8) for clarity. We refer to Λ̃ as the tidal
deformability of a BNS system throughout this work. For
more details regarding this reparameterization, see [25].2

III. MEASURABILITY OF TIDAL INFLUENCE

In this work, we use lalinference_mcmc to run full
Bayesian simulations for our parameter estimation in-
vestigation into the measurability of tidal deformability.
lalinference_mcmc uses an MCMC sampling algorithm
to calculate the posterior probability density function
(PDF) of a detected CBC signal. The algorithm is de-
signed to efficiently explore a multi-dimensional param-
eter space in such a way that the density of parameter
samples is a good approximation to the underlying pos-
terior distribution. In this section, we briefly outline the
algorithm used by lalinference_mcmc. For a more com-
prehensive overview, we refer the reader to Refs. [7–9].

A. MCMC overview

A true GW signal will be buried in detector noise.
Given a GW detection, the data stream segment d(t)
will have the following form in the time-domain:

d(t) = h(t) + n(t). (9)

2 Note that, relative to [25], we have pulled out a factor of
√

1− 4η
from our definition of δΛ̃ to allow for nonzero values of δΛ̃ when
η = 1/4. This distinction enables the MCMC algorithm to fully
explore the δΛ̃ parameter space even for equal mass systems.

The detector noise is denoted n(t) while the pure GW sig-
nal is denoted h(t). Since no GWs have yet been detected
by ground-based interferometers, our studies require sim-
ulated signals. It is therefore customary to inject a mod-
eled signal with chosen parameters into synthetic noise.

To determine the physical properties of a CBC system,
we seek to map out the functional form of the posterior
probability distribution (posterior for short) of its param-
eters. Bayes’ theorem relates the posterior p(~θ|d,m) for
a set of parameters ~θ given a model m and data stream
segment d(t) to the prior probability distribution (prior
for short) and the likelihood p(d|~θ,m):

p(~θ|d,m) =
p(~θ|m)p(d|~θ,m)

p(d|m)
(10)

∝ p(~θ|m)L(d|~θ,m). (11)

The notation p(a|b) means the probability density of a
given b. The posterior is the probability that the GW
source modeled by m that produced the data stream seg-
ment d(t) has the physical properties ~θ. The prior p(~θ|m)
is the a priori probability that the system modeled by m
has the physical properties ~θ. The prior reflects every-
thing that we know about the physical properties of any
CBC system before attempting to determine the parame-
ters of a specific source. The evidence p(d|m) is the prob-
ability of observing the data stream segment d(t) with the
model m. The evidence is a normalization factor that
can be used to compare how well different models would
produce the data. The likelihood L(d|~θ,m) = p(d|~θ,m)
is the probability of observing the data stream segment
d(t) assuming the system that produced it is modeled
by m and has the physical properties ~θ. The likelihood
is a measure of how well the model m with parameters
~θ matches the data stream segment d(t). Assuming the
noise is stationary and Gaussian, the functional form of
the likelihood when using a single detector is [29, 30]

Ldet(d|~θ,m) ∝ exp

−2
∫ ∞

0

∣∣∣d̃det(f)− m̃(f, ~θ)
∣∣∣2

Sdet(f)
df

 .
(12)

Sdet(f) is the one-sided noise power spectral density
(PSD), d̃det(f) is the Fourier transform of the detector
data stream segment, and m̃(f, ~θ) is a frequency-domain
model for the waveform. When using a network of GW
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detectors, the posterior probability becomes

p(~θ|d,m) ∝ p(~θ|m)
∏
det

Ldet(d|~θ,m). (13)

The MCMC algorithm used draws samples from the
underlying posterior distribution p(~θ|d,m). The samples
can be binned to produce a histogram of the full multi-
dimensional posterior distribution. Posterior PDFs of
fewer dimensions can be produced by marginalizing the
full posterior over parameters that are not of interest.
For example, a 1D PDF for the tidal deformability Λ̃ can
be found by integrating the posterior over all the other
parameters:

p(Λ̃|d,m) =
∫
~θother

p(~θ|d,m)d~θother, (14)

where ~θother are all the parameters in the set ~θ except
Λ̃. However, since the MCMC samples follow the poste-
rior distribution, this integral is easily solved by simply
binning only the parameters of interest (in this case Λ̃).

Various aspects of this algorithm have been fine-tuned
to optimize speed and robustness and will be outlined in
an upcoming methods paper. This section is meant to
merely provide an adequate overview of the parameter
estimation pipeline used in this work. We refer the in-
terested reader to the following sources for more details
[7–9].

B. Models, Parameters, and Priors

Eq. (11) is used to calculate the posterior p(~θ|d,m),
which is the quantity of interest, from the prior p(~θ|m)
and likelihood L(d|~θ,m). It depends on a model m, the
model source parameters ~θ, and the prior distribution of
each parameter. The waveform models used in this work
are the following tidally corrected PN waveform families,
which we outline in Appendix A: TaylorT1, TaylorT2,
TaylorT3, TaylorT4, and TaylorF2. To focus on purely
EOS effects, we consider non-spinning BNS systems with
no amplitude corrections. (Parameter estimation can be
just as easily performed with spinning waveforms, though
slightly larger uncertainties in Λ̃ may arise for NSs with
significant spins.) These assumptions lead to the follow-
ing 11-dimensional parameter space:

~θ = {Mc, q, Λ̃, δΛ̃, D, ι, α, δ, φref , tref , ψ}. (15)

These parameters are: the chirp mass Mc = η3/5M , the
mass ratio q = m2/m1 where m1 > m2, the distance to
the binary D, the angle between the line of sight and
the orbital axis ι, the right ascension and declination
of the binary α and δ, the GW’s polarization angle ψ,
and the arbitrary reference phase and time φref and tref .
Since Λ1 and Λ2 are highly correlated, we choose to pa-
rameterize in terms of Λ̃ and δΛ̃. It is known that Λ̃

is comparatively more measurable than Λ1 and Λ2 indi-
vidually [10, 11]. We use a uniform prior distribution in
component masses between 1 M� < m1,2 < 30 M�, a
uniform prior distribution in volume to D < 200 Mpc,
an isotropic prior distribution in sky location (α, δ) and
emission direction (φref , ι), a uniform prior distribution
in polarization angle ψ, and a uniform prior distribution
in tref over the data stream segment. We use a uniform
prior distribution in Λ̃ between 0 < Λ̃ < 3000 and a uni-
form prior distribution in δΛ̃ between −500 < δΛ̃ < 500.
These ranges were chosen to include effects from the ma-
jority of possible NS EOSs.3

Since we are concerned only with measuring EOS ef-
fects on BNS signals, we fixed all the injected signals
to have the exact same sky position (α = 0.648522 and
δ = 0.5747465), orientation (ι = 0.7240786), and po-
larization (ψ = 2.228162) for comparison purposes. We
vary the strength of injected signals by adjusting D. We
also use a 3-detector advanced LIGO/Virgo network. We
use the PSD of the two advanced LIGO detectors under
the zero-detuned high power configuration [31] and the
parameterized advanced Virgo PSD based on Eq. 6 of
[32]. Injection and template waveforms all have a low
frequency cutoff at flow = 30 Hz and end when the sys-
tem reaches fhigh = fISCO = c3/(63/2πGM), where fISCO

is the GW frequency when the binary reaches the inner-
most stable circular orbit (ISCO). Tests using different
high frequency cutoffs did not affect our results in any
noticeable way.

C. Measurability of Tidal Deformability

In order to simulate the parameter estimation of a GW
signal, one typically injects a model waveform into a data
stream segment consisting of simulated detector noise.
The strength of the injected signal relative to the detector
noise is characterized by the SNR. The SNR ρdet of an
injection into a single GW detector is

ρdet =

√
4
∫ ∞

0

|m̃(f, ~θ)|2
Sdet(f)

df, (16)

where m̃(f, ~θ) is the injected waveform model in
the frequency domain and Sdet(f)δ(f − f ′)/2 =
〈ñdet

∗(f ′)ñdet(f)〉, where ñdet(f) is the Fourier transform
of the detector’s noise. For a collection of detectors, the

3 Note that Λ̃ may exceed 3000 for low mass NSs with a stiff EOS.
However, this upper bound does not affect the results in this
paper, because the posterior is found to be fully contained within
the region of prior support for all cases considered.
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network SNR ρnet is defined to be

ρnet =
√∑

det

ρ2
det. (17)

We report on the optimal measurability of tidal influ-
ences in BNS systems assuming a 3-detector LIGO/Virgo
network. We follow a similar procedure to the one used
in [33], which details the statistical uncertainties in the
mass parameters and sky location parameters of BNS
systems that are expected to be achieved with advanced
detectors. While one typically injects a signal into syn-
thetic noise, we sometimes choose not to add synthetic
noise to our injected signal, which essentially means that
we set n(t) = 0 in Eq. (9). However, we still calculate the
likelihood and the network SNR by dividing by the detec-
tor PSD, which is the variance of the noise. In this way,
we incorporate the overall effect of noise without dealing
with the statistical fluctuations of individual noise real-
izations. We refer to this procedure as “injecting into
zero-noise” [33].

We inject into zero-noise for two reasons. The first
reason is to report measurement uncertainties for typical
systems. However, individual results depend on individ-
ual realizations of the noise at the time of detection. It
is shown in [34] that the average posterior PDF, or the
posterior distribution averaged over noise realizations, is
recovered by setting the noise to zero. We can therefore
get reliable estimates for the mean measurement uncer-
tainty of tidal parameters recovered from a signal injected
into many different noise realizations by simply injecting
that signal into zero-noise [20, 33–35]. This saves us from
having to perform many MCMC simulations with differ-
ent noise realizations. While this approach only considers
the overall effect of noise, we discuss the effect of individ-
ual noise realizations in Sec. V B. The second reason for
injecting into zero-noise, which we use in Sec. V A, is to
isolate the effects of systematic error in our analysis. By
injecting into zero-noise, we are able to disentangle mod-
eling bias from noise realization effects without having to
perform many MCMC simulations, which are computa-
tionally expensive [36].

In Fig. 1, we present the 1D and 2D posterior PDFs
for Λ̃ and δΛ̃ of a typical BNS system. The true sig-
nal was injected with ρnet = 32.4, which is considered
very large (perhaps a one-per-year event by 2019 [2]).
We use tidally corrected TaylorF2 waveforms for the in-
jected waveform as well as for the recovery template
waveforms. The injection has the following properties:
m1 = m2 = 1.35 M�, Λ̃ = 590.944, and δΛ̃ = 0, which
is consistent with the MPA1 EOS model4 [37]. We find

4 We actually use the parameterized EOS presented in [37] that
matches the theoretical MPA1 EOS, as well as many other the-
oretical EOSs, to a few percent. This approximation is used
throughout this work for our convenience. Since the EOS is only

that the injected value of Λ̃ is well recovered.5 However,
advanced detectors are not able to discern δΛ̃ contribu-
tions to the waveform even at a network SNR of 32.4.
This is expected because δΛ̃ only shows up in the 6PN
tidal correction, which is O(10%) as big as the 5PN term,
and additionally contributes little to the 6PN correction
since δΛ̃/Λ̃ ∼ 0–0.01 [25].

In Table I we outline the measurement uncertainties
for the tidal deformability parameter Λ̃ for several equal
mass and unequal mass BNS systems. We compute the
1σ and 2σ measurement uncertainty interval by deter-
mining the smallest interval in Λ̃ that contains 68% and
95% of the total marginalized posterior probability. We
then report the lower and upper bound on this confidence
interval. The 1σ confidence interval for a 1.35 M�:1.35
M� BNS system consistent with the MPA1 EOS model
is (382.0,636.7) for ρnet = 30. We find that the measura-
bility of the other parameters are not noticeably affected
by including tidal parameters in our analysis.

We can also compare our MCMC results to a few FM
results. The FM study by Favata [25] uses tidally cor-
rected PN waveforms with a high frequency cutoff of 1000
Hz. Favata finds the 1σ measurement uncertainty of the
tidal deformability parameter to be roughly 27% for a
1.40 M�:1.40 M� BNS system with Λ̃ ≈ 600 at an SNR of
30. Damour, Nagar, and Villain [17] use tidally corrected
EOB waveforms that end at contact. In their FM study,
they find a slightly better measurement uncertainty of
roughly 21% for a 1.40 M�:1.40 M� BNS system with
Λ̃ ≈ 600 at an SNR of 30.6 This improvement is likely
due to the extra high frequency information included in
the EOB waveforms. Read et al. [15] use NR waveforms
in their FM study, though they rely on a somewhat crude
finite difference approximation. For a 1.35 M�:1.35 M�
BNS system with Λ̃ ≈ 600 at an SNR of 30, they find a
measurement uncertainty of roughly 16% with full hybrid
waveforms, though they do not consider correlations with
other parameters.7 Again, the slight increase in measur-
ability is likely due to the additional high frequency in-
formation included in their waveforms. In our MCMC
study, we find the measurement uncertainty of the tidal
deformability parameter to be roughly 21% for a 1.35
M�:1.35 M� BNS system with Λ̃ ≈ 600 at an SNR of 30

used to estimate injected Λ̃ values, our results will not be affected
by this approximation.

5 The peak of the 1D PDF for Λ̃ is consistently found to be dis-
placed from the injected value for equal mass and near equal
mass systems. This is a result of marginalizing over the other
ten parameters [33], in particular the mass ratio q, whose prior
distribution caps off at q = m2/m1 = 1.

6 Since [17] does not include the measurement uncertainty of a
BNS system with Λ̃ ≈ 600, this measurement uncertainty was
estimated via interpolation.

7 The finite difference approximation is between the EOS H and
HB: σΛ̃ = (Λ̃H − Λ̃HB)/||hH − hHB|| = 85, which results in a

measurement uncertainty of σΛ̃/Λ̃H = 0.16 when scaled to an
SNR of 30.
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FIG. 1: Marginalized 1D (left and middle) and 2D (right) posterior probability density functions for Λ̃ and δΛ̃ of a 1.35 M�:1.35 M� BNS

system with ρnet = 32.4. The shaded regions in the 1D PDFs enclose 2σ (95%) confidence regions. The color bar in the 2D PDF labels

the (unnormalized) probability density. The injected values for Λ̃ and δΛ̃ are consistent with the MPA1 EOS model [37] and are marked

with straight dashed lines. These plots are PDFs smoothed with a Gaussian kernel density estimator. For these results, we injected into

zero-noise (see Sec. III C).

TABLE I: The 1σ (68%) and 2σ (95%) confidence intervals (min,max) for Λ̃. The BNS systems considered are labeled by their injected

masses and tidal deformability Λ̃. Both equal mass and unequal mass systems ranging from mmin = 1.20 M� to mmax = 2.10 M� are

considered. The injected values for Λ̃ are consistent with the MPA1 EOS model [37]. We report confidence intervals for systems with a

network SNR of both 20 and 30. For these results, we injected into zero-noise (see Section III C).

ρnet = 20 ρnet = 30
m1 (M�) m2 (M�) Λ̃ 1σ 2σ 1σ 2σ

1.20 1.20 1135.630 ( 553.8 , 1258.1 ) ( 134.6 , 1700.1 ) ( 838.7 , 1193.8 ) ( 516.6 , 1359.4 )
1.35 1.35 590.944 ( 251.3 , 690.2 ) ( 60.7 , 963.0 ) ( 382.0 , 636.7 ) ( 182.3 , 750.8 )
1.50 1.50 318.786 ( 113.2 , 398.9 ) ( 22.9 , 576.8 ) ( 162.1 , 357.4 ) ( 63.9 , 447.7 )
1.65 1.65 175.963 ( 54.5 , 250.2 ) ( 9.6 , 377.2 ) ( 63.5 , 213.9 ) ( 14.0 , 290.8 )
1.80 1.80 98.191 ( 29.2 , 176.8 ) ( 4.9 , 274.9 ) ( 28.9 , 136.1 ) ( 5.0 , 196.8 )
1.95 1.95 54.670 ( 20.1 , 132.5 ) ( 3.5 , 214.4 ) ( 16.6 , 96.1 ) ( 2.6 , 148.2 )
2.10 2.10 29.844 ( 14.8 , 104.8 ) ( 2.1 , 174.4 ) ( 11.7 , 74.0 ) ( 1.9 , 118.6 )
1.35 1.20 820.610 ( 433.7 , 1017.6 ) ( 102.7 , 1381.7 ) ( 612.9 , 941.3 ) ( 340.7 , 1094.6 )
1.35 1.50 435.585 ( 200.0 , 574.9 ) ( 44.4 , 814.5 ) ( 282.5 , 518.0 ) ( 125.5 , 626.1 )
1.35 1.65 328.177 ( 196.1 , 570.5 ) ( 45.5 , 834.6 ) ( 221.3 , 495.9 ) ( 85.5 , 619.1 )
1.35 1.80 252.398 ( 155.1 , 593.1 ) ( 33.0 , 907.0 ) ( 155.9 , 433.5 ) ( 45.5 , 598.6 )
1.35 1.95 197.899 ( 119.0 , 546.9 ) ( 21.5 , 922.6 ) ( 107.3 , 348.2 ) ( 24.7 , 489.1 )
1.35 2.10 157.974 ( 90.7 , 445.4 ) ( 15.8 , 819.9 ) ( 79.3 , 296.8 ) ( 16.2 , 424.9 )

in a single advanced LIGO detector. This is in general
agreement with existing FM calculations.

IV. CONSTRAINING NS EOS

The NS EOS describes the structure of all cold NSs in
equilibrium by relating NS state variables, such as pres-
sure and density. Simultaneous NS mass-radius measure-
ments, or equivalently mass-λ measurements, can highly
constrain the NS EOS [38–40]. While many accurate NS
mass measurements have been made, corresponding ra-
dius measurements are still needed [41].

While Λ1 ∼ (R1/m1)5 and Λ2 ∼ (R2/m2)5 are poorly
measured by advanced GW detectors due to their strong
correlation, the tidal deformability parameter Λ̃, which
is a linear combination of (Λ1,Λ2), is better measured.
Ground-based interferometers are most adept at measur-

ing a system’s chirp mass Mc. In the same way that a
binary’s chirp mass is a mass-like parameter that con-
tains information about the mass of both components,
the fifth root of the tidal deformability parameter Λ̃1/5

can be thought of as a dimensionless radius-like param-
eter that contains information about the radius of both
components. While GW detectors may not be able to
simultaneously constrain the mass and radius of indi-
vidual NS’s, we show that they can simultaneously con-
strain the mass-like and radius-like parameters describing
the binary system as a whole. To further this analogy,
we choose to define a conveniently scaled dimensionful
radius-like parameter Rc = 2GMcΛ̃1/5/c2, which we call
the binary’s chirp radius. Therefore, making a Mc–Rc

measurement of a CBC system is analogous to making
a mass–radius measurement of a single NS star. Note
that the component masses and radii are entangled in
the former case and are only determined in combination.
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The question then becomes: “Does measuring the chirp
mass and the chirp radius as opposed to the individual
mass and individual radius contain enough information
to constrain the NS EOS?”

In Fig. 2, we take a mass-radius plot with multiple
theoretical EOS curves [37] (upper left) and transform
it into a Mc–Rc plot with the same EOS curves, now
smeared out due to the extra degrees of freedom from
not specifying individual masses and radii (upper right).
The three horizontal, black lines are the 1σ confidence
regions of three recovered injections. Because chirp mass
is so well measured, these confidence regions appear to
be lines due to the aspect ratio of this plot. The three
bottom plots in Fig. 2 are zoomed-in plots of each re-
covered injection. From left to right, the important pa-
rameters for each injection are: m1 = m2 = 1.50 M�
and Λ̃ = Λ1 = Λ2 = 318.786, m1 = m2 = 1.35 M�
and Λ̃ = Λ1 = Λ2 = 590.944, and m1 = m2 = 1.20 M�
and Λ̃ = Λ1 = Λ2 = 1135.63. The injections all corre-
spond to the EOS MPA1 [37] and have ρnet = 30. Fig. 2
demonstrates that simultaneous Mc–Rc measurements
can indeed constrain the NS EOS. However, because cer-
tain regions of parameter space can be described by over-
lapping EOS curves, BNS observations with varying val-
ues for chirp mass will likely need to be observed before
tight constraints on the NS EOS can be made with this
approach.

This inversion of Mc–Rc measurements to EOS con-
straints is similar to the inverse stellar structure problem
described in [38–40]. Other methods for constraining the
NS EOS with GW detectors are discussed in Sec. VI.

V. SOURCES OF ERROR

Sources of error in estimating the parameters of a CBC
system given its gravitational signal can be categorized as
statistical and/or systematic. Statistical error is due to
the presence of random detector noise. In Sec. III C, we
focused on the overall effect of detector noise. In this sec-
tion, our focus is on the effect of individual noise realiza-
tions. The kind of systematic error that we are studying
arises because our template waveforms only approximate
true signals. Statistical error is SNR-dependent, since it
depends on the relative strength of the signal to the de-
tector noise, while systematic error is SNR-independent.
In this section, we present the effects of both systematic
error and individual noise realizations on the ability of
advanced ground-based interferometers to measure tidal
deformability.

A. Systematic Error

The PN approximation to the energy and luminosity of
a CBC system is an expansion of the equations of motion
about small characteristic velocities, or small frequencies

(v ∼ f
1/3
gw ). Currently, the point-particle corrections to

the CBC energy and luminosity are known to 3.5PN or-
der [14]. While PN waveforms match a true GW signal
at small frequencies, they are unreliable at high frequen-
cies. Since tidal influences become significant at high
frequencies, it is expected that the systematic error from
having unreliable waveforms at high frequencies will bias
the recovery of tidal parameters. The question is: “By
how much?”

We expect that the deviation of PN waveform families
away from the true CBC waveform will be comparable to
the amount that they deviate away from each other. All
of the PN waveform families are accurate to the same PN
order but differ from one another at higher orders. We
use the fact that we cannot say which PN family is more
accurate as a simple way to parameterize our ignorance
of unknown higher order PN terms. We test systematic
bias by injecting one PN waveform family and recover-
ing with another. Because all PN waveform families are
considered viable, this gives at least a lower bound on
the systematic error due to modeling bias. In this way,
we can get an order of magnitude estimate of the sys-
tematic bias that results from using waveforms that are
unreliable at high frequencies to estimate tidal parame-
ters whose effects arise at high frequencies.

In Fig. 3, we present example 1D posterior PDFs for
Λ̃. We inject signals from each of the five PN waveform
families derived in Appendix A but only recover with
TaylorF2 templates. Since injected waveforms are only
generated once while template waveforms are generated
millions of times during an MCMC run, we only use Tay-
lorF2 templates, because they are generated much faster
than the other PN waveform families. The injected com-
ponent masses are labeled in each figure’s title, while the
injected value of Λ̃, which is consistent with the EOS
labeled in the legend, is marked by a dashed, vertical
line. Each injection has a network SNR of 32.4 and was
injected into zero-noise in order to isolate systematic er-
ror from statistical error. (Remember that the effects of
noise are not completely ignored by injecting into zero-
noise. The PSD is still used to calculate likelihood and
network SNR.) While we only present three mass combi-
nations and one EOS model in Fig. 3, we also find similar
results when considering several other equal and unequal
mass combinations and EOS models.

We find that systematic error can be significant in each
of the mass combinations and EOSs considered. In par-
ticular, the TaylorT4 waveform family has been found
to be remarkably similar to equal mass numerical rel-
ativity (NR) waveforms [42]. Therefore, for a typical
m1 = m2 = 1.35 M� BNS system with a moderate EOS,
say MPA1, systematic error will likely bias the maximum
likelihood recovery of Λ̃ by (Λ̃inj − Λ̃rec)/Λ̃inj ∼50%.

It is also interesting to note that the TaylorT3 in-
jected waveforms are all recovered with little to no tidal
contribution with TaylorF2 templates. Additionally,
the TaylorT3 injected waveforms were recovered with a
chirp mass bias of roughly twice its standard deviation,
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FIG. 2: NS mass-radius plot for a sample of NS EOS models found in the literature [37] (top left). The Mc–Rc plot (top right), where

Rc is defined in Sec. IV, depicts the same EOSs as the mass-radius plot now smeared out due to the extra degrees of freedom from not

specifying individual masses and radii. We consider NSs with masses that range from 1 M� to the maximum allowed mass for each EOS.

The three horizontal, black lines are the 1σ (68%) confidence regions of three recovered injections. The three bottom plots are zoomed-in

to show these recovered injections more clearly. The injected values for Mc and Rc are consistent with the MPA1 EOS model and are

marked with straight, dashed lines. For these results, we injected into zero-noise (see Sec. III C).

whereas none of the other injected waveforms were re-
covered with noticeable bias in chirp mass. It was previ-
ously seen in [14] that the TaylorT3 approximant agrees
poorly with other PN approximants due to its peculiar
termination conditions, and we suspect this also explains
the biases seen here.

B. Noise Realizations

Statistical error is due to random fluctuations in de-
tector noise. In Sec. III C, all signals were injected into
zero-noise, which gives the posterior averaged over noise
realizations [34]. However, to get an understanding of
how much a particular instance of noise can affect pa-
rameter recovery, we inject the same signal into ten dif-
ferent synthetic noise realizations (Fig. 4). Here, both
the injected waveform model and the recovery waveform
model is TaylorF2, and each injection has ρnet = 32.4.

We find that the measurability of Λ̃ can vary dramati-
cally from one instance of noise to the next. A few out of
the ten PDFs plotted in Fig. 4 have significantly broad-

ened peaks, and some even inherit strange multimodal
behavior. Therefore, even though the true parameter
value still lies within the 90% confidence interval 90% of
the time (as expected [19]), statistical error occasionally
acts to significantly reduce the measurability of Λ̃. Unfor-
tunately some BNS detections may provide uninforma-
tive tidal deformability estimates due to random detec-
tor noise. Multiple detections might need to be combined
to overcome the effects of noise, which was successfully
shown in [23].

VI. CONCLUSION/DISCUSSION

In Sec. III C, we have shown with full Bayesian simu-
lations that tidal deformability in BNS systems is mea-
surable with the advanced LIGO/Virgo network (see Ta-
ble I). This is in general agreement with FM studies
[15, 17, 25] and compliments the Bayesian results shown
in [23]. For a canonical 1.35 M�:1.35 M� BNS system
with the moderate EOS MPA1 recovered using the ad-
vanced LIGO/Virgo network, we find that the 1σ mea-
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FIG. 3: Marginalized 1D posterior probability density functions for Λ̃ of three BNS systems (labelled by the masses in the title) each

with ρnet = 32.4. The injected Λ̃ values are consistent with the MPA1 EOS model [37] and are marked with straight, dashed lines. These

plots are PDFs smoothed with a Gaussian kernel density estimator. To generate a single plot, we inject BNS signals modeled by each

of the five PN waveform families derived in Appendix A. Though the waveform family for each signal is different, the injected waveform

parameters are identical. The five PDFs, which are labelled by the injected waveform family, are all recovered using TaylorF2 waveform

templates. The deviation of each peak away from the injected value is due to the systematic error in the PN waveform approximants. For

these results, we injected into zero-noise (see Sec. III C).
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FIG. 4: Marginalized 1D posterior probability density functions for Λ̃ of three BNS systems (labelled by the masses in the title) each with

ρnet = 32.4 (bottom). The injected Λ̃ values are consistent with the MPA1 EOS model [37] and are marked with straight, dashed lines.

These plots are PDFs smoothed with a Gaussian kernel density estimator. To generate a single plot, we inject the same BNS signal into

ten different noise realizations. The deviation of each peak away from the injected value is due to the statistical error from the presence

of random detector noise. Each PDF has an associated box-and-whisker representation (top), where the edges of each box mark the first

and third quartile, the band inside each box is the median, and the end of the whiskers span the 90% confidence interval.

surement uncertainty of Λ̃ (or the radius-like Λ̃1/5) will
likely be ∼40% (∼8%) for a source with ρnet = 20 and
∼20% (∼4%) for a source with ρnet = 30.

We showed in Sec. IV how simultaneous measurements
of Λ̃ and chirp mass can be used to constrain the NS
EOS. Other studies in constraining the NS EOS with fu-
ture GW observations include work by Del Pozzo et al.
[23], in which Bayesian simulations are used to incorpo-
rate information from tens of detections to discriminate
between stiff, moderate, and soft EOSs. While Del Pozzo
et al. showed that tens of BNS sources can constrain λ
for a 1.4 M� NS, which can then be used to constrain

the NS EOS, it might even be possible to constrain the
full form of the NS EOS over all masses.

In the work presented here, we have examined the abil-
ity of GW detectors to measure the tidal parameters Λ̃
and δΛ̃. The main quantity of interest, however, is the
universal EOS that is common to all NSs. One method
to measure the EOS is to construct a parameterized EOS
(e.g. [37, 43, 44]), then replace the tidal parameters in
the waveform with EOS parameters. This method al-
lows one to use physical and astrophysical information
to place tighter constraints on the priors for the EOS
parameters in contrast to the less physically motivated
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priors on Λ̃ and δΛ̃, and this work is in preparation [45].
Additional work is also in progress to combine informa-
tion from several BNS sources to more tightly constrain
EOS parameters [46].

Both systematic error and individual noise realizations
have been shown to significantly affect the measurement
of tidal deformability. Individual instances of detector
noise can severely broaden the peaks of the marginalized
Λ̃ posteriors, but can be overcome by combining infor-
mation from multiple sources, which averages out the
effects of noise. This would require many (∼20) BNS
detections [23], instead of just a few loud signals. Both
optimistic and realistic estimates for the BNS detection
rate predict that it will take less than a year after reach-
ing design sensitivity (∼2019) to constrain the NS EOS
with GW signals. However, according to pessimistic es-
timates, this may take considerably longer [3]. System-
atic error, which can significantly bias the recovered pa-
rameters, is overcome by improving current waveforms.
Higher order point-particle terms would be required in
order to trust PN waveform families at frequencies suffi-
ciently high to recover tidal deformability. However hy-
brid waveforms, which are PN waveforms at low frequen-
cies stitched to NR waveforms at high frequency, or phe-
nomenological waveforms, which are waveforms fitted to
NR, will likely be required to reliably capture high fre-
quency effects, such as tidal deformability [12, 15, 16, 47].
We hope that these results motivate the importance of
prioritizing waveform development that incorporates NS
matter effects.
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Appendix A: Tidally corrected PN waveform
derivations

We now adopt units where G = c = 1. The equations
that describe the CBC orbital phase evolution are the
following:

dφ

dt
=

v3

M
(A1)

dv

dt
=

dv

dE

dE

dt
=
−L
E′

, (A2)

where φ is the binary’s orbital phase, t is time, the prime
represents a derivative with respect to v, and the require-
ment for energy balance is dE/dt = −L. Integrating
Eqs. (A1) and (A2) give the alternate form:

t(v) = tref +
∫ vref

v

E′(u)
L(u)

du (A3)

φ(v) = φref +
∫ vref

v

u3

M

E′(u)
L(u)

du, (A4)

where tref = t(vref), φref = φ(vref), and vref is an arbi-
trary reference velocity, following [14]. Solutions for φ(t)
and v(t) fully determine a non-spinning CBC waveform
with polarizations that go like

h+(t) ∝ v2 cos 2φ (A5)
h×(t) ∝ v2 sin 2φ. (A6)

Because there are several ways to solve for the orbital
phase starting with the same energy and luminosity in-
puts, there are several different PN waveform families.
These PN families are equivalent up to unknown trunca-
tion terms at the next PN order. We briefly outline each
waveform family below and point out how tidal correc-
tions are incorporated in their derivation. See [14] for the
point-particle terms for each waveform family and details
regarding initial conditions.

1. TaylorT1

The TaylorT1 approximant is achieved by numerically
solving Eqs. (A1) and (A2) for φ(t) and v(t). Tidal cor-
rections enter through the energy derivative E′ and the
luminosity L:

E(v) = Epp + δEtidal (A7)
E′(v) = E′pp + δE′tidal (A8)
L(v) = Lpp + δLtidal, (A9)

where δEtidal and δLtidal come from Eqs. (2) and (3)
respectively.

2. TaylorT2

The TaylorT2 approximant is achieved by solving
Eqs. (A3) and (A4). First, the ratio E′/L is expanded
about v = 0 to consistent PN order, then the result is
analytically integrated to find t(v) and φ(v). Tidal cor-
rections enter through the energy derivative E′ and the
luminosity L and appear at 5PN and 6PN order in t(v)
and φ(v):
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δφtidal(v) = − 1
32ηx5/2

[(
72
χ1
− 66

)
λ1

M5
x5 +

(
15895
56χ1

− 4595
56
− 5715

28
χ1 +

325
14

χ2
1

)
λ1

M5
x6 + (1←→ 2)

]
(A10)

δttidal(v) = − 5M
256ηx4

[(
288
χ1
− 264

)
λ1

M5
x5 +

(
3179
4χ1

− 919
4
− 1143

2
χ1 + 65χ2

1

)
λ1

M5
x6 + (1←→ 2)

]
. (A11)

Here, x = v2 = (πMfgw)2/3 is the PN expansion pa-
rameter. The tidal corrections add linearly to the point-
particle terms:

φ(v) = φpp(v) + δφtidal(v) (A12)
t(v) = tpp(v) + δttidal(v). (A13)

These parametric equations are then solved numerically
to obtain φ(t) and v(t).

3. TaylorT3

The TaylorT3 approximant starts by following the
TaylorT2 approach. After t(v) and φ(v) are found, the

following reparameterization is used:

θ(t) =
[
tref − t(v)

5M
η

]−1/8

. (A14)

Next, v(θ) is found to consistent PN order via reversion
of the power series. The characteristic velocity v(θ) can
then be used to find the 5PN and 6PN tidal corrections
to the phase φ(θ) = φ(v(θ)) as well as the 5PN and 6PN
tidal corrections to the GW frequency fgw = v3/(πM):

δφtidal(θ) = − 1
ηθ5

[(
9

128χ1
− 33

512

)
λ1

M5
θ10+ (A15)(

23325
229376χ1

− 12995
1376256

− 7285
57344

χ1 +
4885

114688
χ2

1

)
λ1

M5
θ12 + (1←→ 2)

]
(A16)

δfgw,tidal(θ) =
θ3

8πM

[(
27

256χ1
− 99

1024

)
λ1

M5
θ10+ (A17)(

18453
131072χ1

+
79

65536
− 14055

65536
χ1 +

171
2048

χ2
1

)
λ1

M5
θ12 + (1←→ 2)

]
. (A18)

The tidal corrections add linearly to the point-particle
terms:

φ(θ) = φpp(θ) + δφtidal(θ) (A19)
fgw(θ) = fgw,pp(θ) + δfgw,tidal(θ). (A20)

These equations are essentially the equations for φ(t) =
φ(θ(t)) and v(t) = [πMfgw(θ(t))]1/3.

4. TaylorT4

The TaylorT4 approximant is achieved by numerically
solving Eqs. (A1) and (A2) for φ(t) and v(t) after first
expanding the ratio E′/L about v = 0 to consistent PN
order. The 5PN and 6PN tidal corrections are:

δv̇tidal =
32
5
η

M
x9/2

[(
72
χ1
− 66

)
λ1

M5
x5 +

(
4421
56χ1

− 12263
56

+
1893

4
χ1 −

661
2
χ2

1

)
λ1

M5
x6 + (1←→ 2)

]
, (A21)

where the dot represents a derivative with respect to t.
The tidal corrections add linearly to the point-particle

terms:

v̇(v) = v̇pp(v) + δv̇tidal(v). (A22)
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5. TaylorF2

The CBC gravitational waveform can also be derived
in the frequency domain using the stationary phase ap-
proximation. The waveform takes the form

h̃(fgw) = A(fgw) exp [iψ(fgw)] , (A23)

where ψ(fgw) = 2πfgwt(v) − 2φ(v) − π/4. Substituting
Eqs. (A3) and (A4) for t and φ into ψ yields:

ψ(fgw) = 2πfgwtref − 2φref + 2
∫ vref

v

v3 − u3

M

E′(u)
L(u)

du.

(A24)

The tidal corrections are found by expanding the ratio
E′/L about v = 0 to consistent PN order and integrat-
ing the expression in Eq. (A24). By choosing to neglect
amplitude corrections, the waveform becomes:

h̃(f) = Af−7/6
gw exp [iψ(fgw)] , (A25)

where A ∝ M5/6
c /D. The chirp mass Mc = η3/5M ,

and D is the distance between the GW detector and the
binary. The 5PN and 6PN tidal corrections are:

δψtidal =
3

128ηx5/2

[
−
(

288
χ1
− 264

)
λ1

M5
x5 −

(
15895
28χ1

− 4595
28
− 5715

14
χ1 +

325
7
χ2

1

)
λ1

M5
x6 + (1←→ 2)

]
. (A26)

The tidal corrections add linearly to the point-particle
terms:

ψ(v) = ψpp(v) + δψtidal(v). (A27)

The TaylorF2 waveform is one of the most utilized
CBC waveforms because its fully analytic frequency-

domain form makes it the fastest PN waveform to gener-
ate.
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