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Gravitational waves and supernovae

• information about astrophysical mechanisms, such as core collapse supernovae, is transported
across the universe via gravitational waves;

• gravitational waves are notoriously di�cult to detect, but with improvements to the network of
ground-based detectors (LIGO and Virgo), the chances of detecting them have never been better;

• we use waveform catalogues from recent numerical simulations in general relativity and Bayesian
methods to extract information about a progenitor and the resultant neutron star or black hole.

Principal component regression

The waveform catalogue from [1] is decomposed into principal components (PCs) using singular value
decomposition. The �rst k PCs are explanatory variables under the linear model framework.

The data analysed is a time series vector y of length N and decomposes into signal and noise
components. Let ỹ be the Fourier transformed data vector of length N and let X̃T be the N × k design
matrix, whose columns are the Fourier transformed PC vectors, and T is a cyclical time shift. Following
from [2], the frequency domain linear model is

ỹ = X̃Tβ + ε̃, (1)

where β are the PC regression coe�cients and ε̃ is the Fourier transformed coloured Gaussian noise
vector whose variance terms are proportional to the one-sided power spectral density S1(f) (estimated
a priori using the advanced LIGO noise curve).

Bayesian signal reconstruction

We build on the Bayesian signal reconstruction model presented in [2]. For a given time shift T , the
conditional posterior distribution for the PC coe�cients β|T is

P(β|T, ỹ) = N(µ,Σ), (2)

where

Σ = (X̃
′

TD−1X̃T )−1, µ = ΣX̃
′

TD−1ỹ, (3)

and D is the covariance matrix for the noise component.

To estimate β and T , we construct a Markov chain whose stationary distribution is the poste-
rior distribution of interest using Metropolis-Hastings MCMC simulation [3]. The algorithm is:

1. propose T from a symmetric (Student-t) distribution;

2. approximate the conditional posterior distribution of β|T using equation 2;

3. accept proposal with the usual Metropolis-Hastings acceptance probability.

We assume �at (non-informative) priors on β and T , and likelihood

p(ỹ|β, T ) ∝ exp

−2
N∑
j=1

∆t

N

(
ỹj −

(
X̃Tβ

)
j

)2

S1 (fj)

 , (4)

where ∆t is distance between two consecutive time points and fj , j ∈ {1, 2, . . . , N}, are the Fourier
frequencies.

The gravitational wave signal is then reconstructed using the posterior means of the PC regres-
sion coe�cients and time shift parameter from the MCMC simulation.
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Figure 1: A typical rotating stellar core collapse and bounce gravitational wave test signal reconstructed using
k = 20 PCs, a signal-to-noise ratio (SNR) of 20, and advanced LIGO noise curve. The black line is the injected
signal, the dashed blue line is the posterior reconstruction, and the shaded region is the 90% credible interval.

The reconstruction in �gure 1 is reasonable at collapse and bounce (peaks of the time series) and for
most of the ring-down oscillations at the end. The extended model in [2] incorporated a random e�ect
which we found to improve the reconstruction in some cases but not in others. Rather than arbitrarily
choosing k = 20 PCs, we plan to implement a reversible jump MCMC algorithm to select the best model
dimensionality. This should improve reconstruction in the ring-down period.

Inference of astrophysical parameters

For core collapse supernovae, we are interested in inferring precollapse central angular velocity Ωc,i,
progenitor mass Mprog, di�erential rotation A, and nuclear equation of state (EOS). [4] applied matched
�ltering and Bayes factors to infer angular momentum to within ±20% for rapidly spinning cores. We
use an alternative approach to infer Ωc,i and Mprog:

1. perform MCMC reconstruction on each of the M = 128 waveforms from [1] and construct the
M × (k + 1) design matrix whose rows are the posterior means of the PC coe�cients;

2. �t a Bayesian linear regression model and predict Ωc,i and Mprog for test signals.
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(a) Precollapse central angular velocity Ωc,i
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(b) Progenitor mass Mprog

Figure 2: 95% credible intervals for three test signals not in the original [1] catalogue. The red dot is the known
physical parameter and the blue dot is the predicted value. We used k = 10 PCs and SNR = 20.

[1] demonstrated that Ωc,i has a very pronounced in�uence on the gravitational waveform. Unsurpris-
ingly, the prediction for this parameter in �gure 2 looks reasonable. The true Mprog is also within
con�dence. However, the large credible intervals for Mprog likely re�ects a poor statistical model.

For �xed angular velocity, [1] found di�erential rotation A to have weak in�uence on the gravi-
tational wave signal, and our inferences have been unsuccessful so far. However, initial exploratory
analysis has uncovered clustering in PC-space.
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Figure 3: Clustering of di�erential rotation A in three dimensional PC-space. PC coe�cients were estimated
using step 1 above, with k = 10 PCs and SNR = 20.

Figure 3 shows a tendency for waveforms with almost uniform di�erential rotation (A = 5× 109 cm) to
have smaller PC1 coe�cients than more rapidly rotating models.

Waveforms in catalogue [1] have either Lattimer and Swesty (LS) or Shen EOS. To detect EOS,
we apply a similar model comparison method to [5]. We use the deviance information criterion (DIC),
a generalisation of the AIC for hierarchical models. DIC is a convenient method for MCMC samples
and is preferable to Bayes factors as it is easily computed and relevant in the absence of informative
priors. Bayes factors cannot be used under our �at prior speci�cation. For all i ∈ {1, 2, . . . , 128}:

1. remove waveform i, split the catalogue by EOS, and run PCA on each sub-catalogue;

2. �t the Bayesian PC regression model twice for waveform i (separately for LS PCs and Shen PCs);

3. calculate DIC for the two sets of PCs to determine the best �t and determine if the EOS is correctly
identi�ed (an absolute di�erence in DIC of ≤ 5 is unidenti�ed).
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Figure 4: Identi�cation of nuclear equation of state as a function of DIC, using k = 10 PCs and SNR = 20.

50% of the 128 waveforms were correctly identi�ed, 21% incorrectly identi�ed, and 29% unidenti�ed.

Future directions

• a reversible jump MCMC algorithm for signal reconstruction and model selection;

• a Bayesian copula to model dependence between angular velocity and di�erential rotation;

• extend the analysis to other gravitational waveform catalogues;

• improve the a priori spectral density estimation.
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