LIGO LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

LIGO Laboratory / LIGO Scientific Collaboration

LIGO-E1300886-v1

Surface figure measurement of ITM06

G. Billingsley

Distribution of this document: LIGO Scientific Collaboration

This is an internal working note of the LIGO Laboratory.

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125

Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

P.O. Box 159
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824

Fax (617) 253-7014 E-mail: info@ligo.mit.edu

P.O. Box 940
Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

http://www.ligo.caltech.edu/

1 Introduction

The purpose of this note is to memorialize the results of figure measurement of ITM06.

2 Method

The surface one measurement is the average of eight measurements taken every 45 degrees, the optic under test is rotated. See T1100370-v2 for more detail.

2.1 Uncertainty

The final uncertainty in the measurement of ITM06 is estimated to be of order 0.51 nm rms over 300mm and 0.21 nm rms over 160 mm. This uncertainty is the combination of environmental and Reference File errors. See Section 4.1 of T1100370-v2.

3 Results

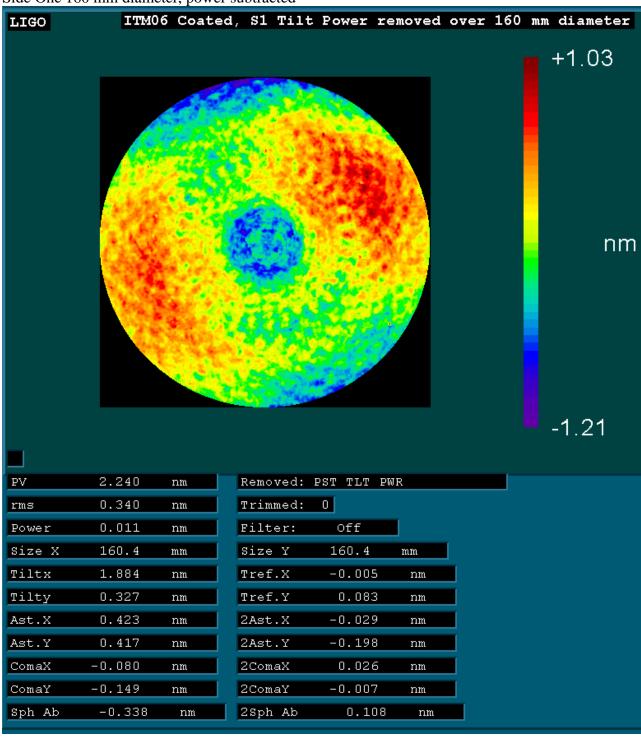
The ITM is measured every 45 degrees in 8 orientations. The final map is the average of all 8 datasets rotated to one orientation (arrow up.) The Reference file is subtracted from each data set before averaging. A key to the coefficients listed on data images is found in figure 1; for instance coef 4 corresponds to term# 4 in the list of Zernike polynomials.

Zernike Polynomials Table

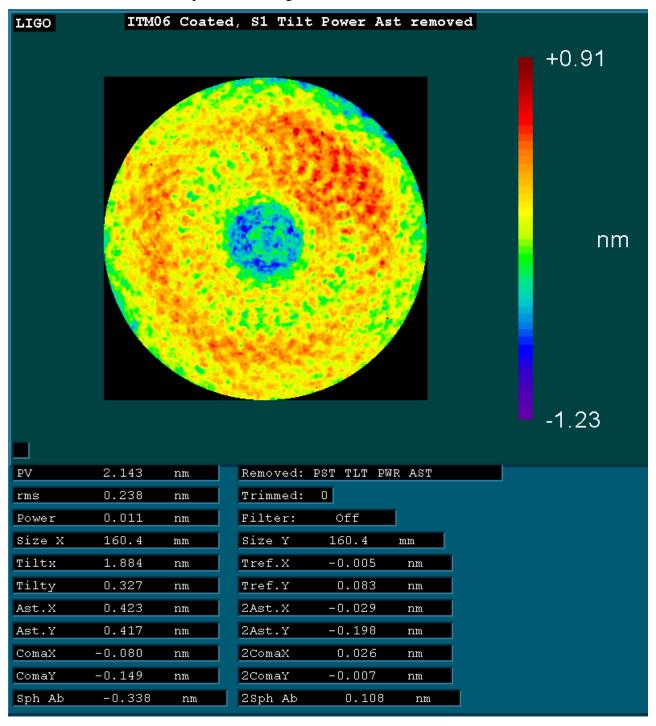
In this table, ϕ = polar coordinate angle, and ρ = radius (normalized to 1 at the edge of the aperture). The numbers in columns m and n are the indices for Zernike polynomials

n	m	Term #	Polynomial	Meaning
0	0	0	1	Piston or Bias
1	+1	1	ρ cos φ	Tilt X
	-1	2	ρ sin φ	Tilt Y
	0	3	$2\rho^2$ -1	Power
2	+2	4	ρ ² cos2 φ	Astigmatism X
	-2	5	$\rho^2 \sin 2 \phi$	Astigmatism Y
	+1	6	$(3\rho^2-2)\rho\cos\phi$	Coma X
	-1	7	$(3\rho^2-2)\rho \sin \phi$	Coma Y
	0	8	$6\rho^4$ - $6\rho^2$ + 1	Primary Spherical
3	+3	9	ρ ³ cos3 φ	Trefoil X
	-3	10	$\rho^3 \sin 3 \phi$	Trefoil Y
	+2	11	$(4\rho^2-3)\rho^2\cos 2\phi$	Secondary Astigmatism X
	-2	12	$(4\rho^2-3)\rho^2 \sin 2\phi$	Secondary Astigmatism Y
	+1	13	$(10\rho^4-12\rho^2+3)\rho\cos\phi$	Secondary Coma X
	-1	14	$(10\rho^4-12\rho^2+3)\rho \sin \phi$	Secondary Coma Y
	0	15	$20\rho^6 - 30\rho^4 + 12\rho^2 - 1$	Secondary Spherical

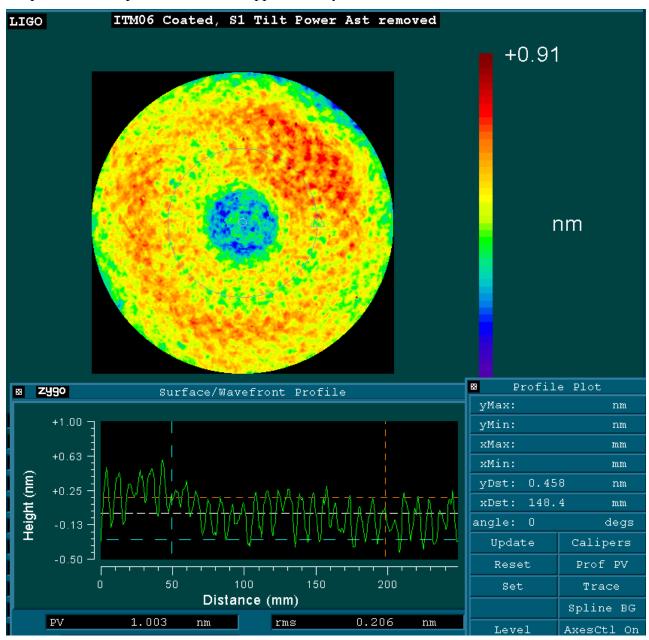
3.1 Radius of curvature: 1934.3 meters


The radius of curvature was measured against the known radius of the reference sphere (-2100m) and calculated as the sum of saggital heights of the part as measured, plus cavity distance, plus reference saggita. The saggita had a standard deviation of 0.20 nm when measured over 160 mm diameter. This corresponds to an uncertainty due to environment of 0.23 meters in radius.

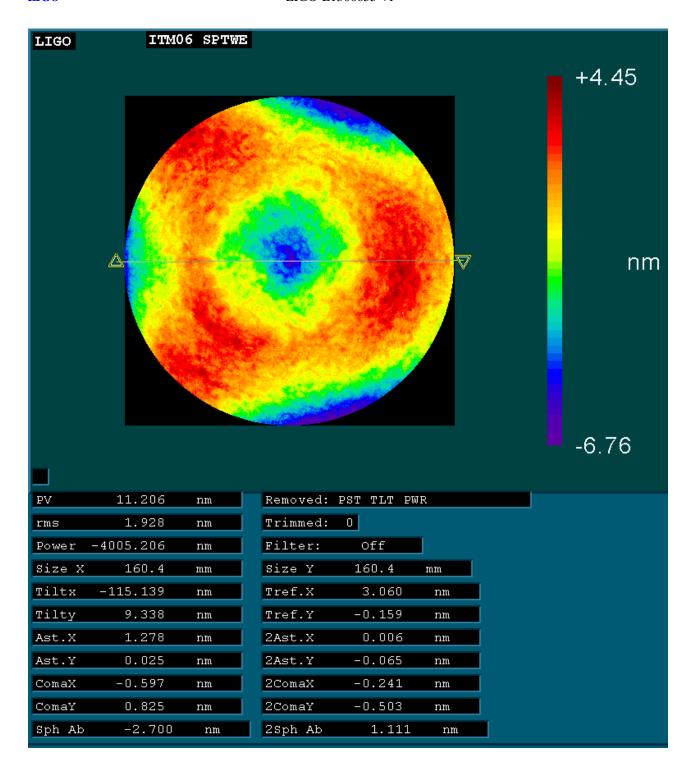
3.2 High Frequency data


Data have been taken at 0.047mm/pixel, these data are self referencing (averaged to get a local, current image of the reference. The reference is temperature dependent at high spatial frequency. These data are best viewed as a PSD. A sampling of raw files will be uploaded to the DCC. The raw files have central rings which come from the internal reflections of the interferometer, these rings should be avoided when analyzing the high spatial frequency data.

3.3 Low Frequency Data


Side One 160 mm diameter, power subtracted

Side One 160 mm diameter, power and astigmatism subtracted



Amplitude of the spiral at R=40 mm, approximately 0.5 nm.

3.3.1 Transmitted wavefront,

Over 160 mm diameter the power is measured with respect to a 2100 m curve and is calculated to be -1333 meters, with an environmental uncertainty of 1.3 meters.

