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1 Introduction 

1.1 Purpose and Scope 
This is the HLTS version of T1200418 (theory and measured violin mode Q’s of the HSTS, 
originally the MC2 suspension at LLO). 

1.2 References 
LLO alog entries TBD 

G. Cagnoli et al., Phys. Lett. A 255 (1999), p230 

T0900415: Upper Limit to Suspension Thermal Noise from LIGO 1 and Implications for Wire 
Suspensions in Advanced LIGO 

T070101: Dissipation Dilution 
T080096: Wire Attachment Points and Flexure Corrections 

D070447-v2: HLTS Overall Assembly 
Cumming et al., Design and development of the advanced LIGO monolithic fused silica 
suspension, Class. Quantum Grav. 29 (2012) 035003. 
 

1.3 Version history 
11/7/13: -v1 with just theory. 

9/10/14: -v2 with renumbering of equations and fix to Eq. 1.10 ( r  should have been d ). 

2 Measurement 
As of 11/7/13, Keiko Kokeyama has measured the fundamental violin modes of the four bottom 
wires of the HLTS suspension PR3 in LLO alog 9418, plus one n=2 harmonic, with a similar 
technique to that used on the MC2 (LLO alog entry 5097).  
This data is not yet quite good enough or complete enough to do much with, but in -v1 of this 
document we present the relevant theory and a preliminary comparison. 

3 Theory 

3.1 Mode frequencies 
In much the same way as for T1200418, the frequency and Q were calculated using the 
Mathematica model of the suspension, specifically case {"mark.barton", 
"20120120hltsPR3damp"} of the TripleLite2 model. This is based on 20120120hlts, 
which is equivalent to the Matlab parameter set 
^/trunk/Common/MatlabTools/TripleModel_Production/hltsopt_metal.m revision 2034 and 
has given a good fit with measured TFs. It also includes modifications, used below, for optionally 
assigning a separate damping function on each of the four final wires, so as to allow net pendulum 
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mode thermal noise to be calculated from fitted parameters on the respective wires. However since 
neither the Mathematica nor Matlab models includes violin modes explicitly, calculating these was 
a matter of using numerical values from the parameter sets in general formulae as described below. 
Per Eq. 2.67 of Fletcher and Rossing, to second order in small quantities, the frequency of a violin 
mode is 

 fn = nf1
0 1+ b + b2 + n

2π 2

8
b2

⎛
⎝⎜

⎞
⎠⎟  

 (1.1) 

(Their β  has been renamed b  to avoid confusion with the thermodynamic material property β  
used below.)  

Here n = 1,2,3...  is the mode number, and 

 f1
0 = 1

2L
T
ρL

 , (1.2) 

is the frequency of a wire without bending stiffness but the same length L , tension T and mass per 
length ρL . 

The dimensionless quantity b  (formerlyβ ) is  

 b = 2K
L

YA
T  

 (1.3) 

where K  is the radius of gyration of the wire, Y  is the Young’s Modulus, and A   is the cross-
sectional area, but it is closely related to the usual flexure length, defined (T080096) as 

 a = YI
T

= bL
2

  (1.4) 

Here, I  is the second moment of area of the wire in the bending direction, equal to πr4 / 4  in any 
direction for a wire of circular cross-section. (The moments of area of the bottom wires in the 
longitudinal and transverse directions are called M31 and M32 in the model code.) 

It is convenient and instructive to put the above formula in terms of a : 

 fn =
n

2L 1− 2a
L

− n
2π 2a2

2L2
⎛
⎝⎜

⎞
⎠⎟

T
ρL

 (1.5) 

This makes it obvious that to first order in a L = b 2  (≈ 0.00248 for the HSTS) the effect is simply 
to shorten the wire by one flexure length a  at each end for all harmonics. This is consistent with 
the fact that a wire of non-zero bending stiffness does not bend sharply at the clamp point but along 
a curve that for most purposes gives the effect of a pivot a  away from the attachment point. In 
addition, there is also a tiny shortening n

2π 2a2
2L  second order in both a L  and mode number n . 

The plain b2  term disappears because it turns out to be an artifact of doing the expansion in the 
numerator rather than the denominator, i.e., 
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 1/ (1− b) = 1+ b + b2 +O b3( )   (1.6) 

In a practical suspension with multiple wires which may not be exactly vertical, the tension is given 
by 

 T = mg
nW cosθ

  

where m is the net mass supported by a set of wires, g is local gravity (taken to be 9.81 m/s2),  is 
the number of wires sharing the load, and  is the angle of the wires to the vertical. The cross-
sectional area and moment of area are 
  

 A = πr2   (1.7) 

and 

 I = πr2

4
  (1.8) 

where r is the radius. 

3.2 Damping 
The Q  of the violin mode depends on the material damping factor φ  and the dissipation dilution 
factor D . The damping factor is modeled as a frequency-independent structural term 
φstruct = 2 ×10

−4  (Cagnoli et al. 1999; also T0900415) plus a thermoelastic term: 

  φ f( ) = φstruct +φthermo = φstruct +
2π fτΔ

1+ 2π fτ )2( )   (1.9) 

where (e.g., Cumming et al.) 

 τ = 0.0732Cd 2ρV /κ   (1.10) 

is a time constant for heat diffusion across the wire (C  is heat capacity κ  is heat conductivity and 
d = 2r  is diameter), and  

 Δ = YTW
ρVC

α − σβ
Y

⎛
⎝⎜

⎞
⎠⎟
2

  (1.11) 

is twice the thermoelastic damping at the peak frequency 1 2πτ  (TW  is temperature, α  is linear 

expansion, β = 1
Y
dY
dTW

, and σ = T / A  is stress). The magic number 0.0732 is a geometrical factor 

for wires of cylindrical shape, equal to 14ξ 2  where ξ  is the first zero of the derivative of the first 

Bessel function of the first kind: 

 dJ1 x( )
dx x=ξ = 1

2 J0 ξ( )− J2 ξ( )( ) = 0   (1.12) 

nW
θ
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Because the energy in a violin mode is stored in second-order stress changes of the elastic material, 
dissipation dilution is applicable (T070101) and the quality factor Q  is not just 1/φ  for the 
material, but D /φ  where 

 D = 2a
L
1+ n

2π 2a
2L

⎛
⎝⎜

⎞
⎠⎟

 (1.13) 

Again there is a higher order term proportional to n2 , which turns out to be significant. 

4 Model parameter values 
The following table gives symbol names and values for key parameters from the “production” 
HLTS model as of 1/20/2012 through the date of this report, which aims to be a good 
approximation to a generic HLTS suspension and has given good fits to measured transfer 
functions. The model can be found in the SUS SVN at 
 ^/trunk/Common/MathematicaModels/TripleLite2/mark.barton/20120120hlts 

 

Table 1: Key parameter values from Mathematica model “20120120hlts” 

Parameter 
(Theory) 

Parameter (Mathematica) Value (SI Units) Note 

m  m3 12.142 optic mass (generic HLTS value) 

L  l3 0.255 wire length 

Y  Y3==Ysteel 2.119*10^11 Young’s modulus 

r  r3 0.00013462 wire radius 

a  flex3 0.00268734 flexure length a  (generic HSTS 
value) 

I  M31 2.57946*10^-16 wire second moment of area I   

β  betasteel -2.5*10^-4 logarithmic rate of change of 
Young’s modulus with temperature 

α  alphasteel 12*10^-6 thermal expansion coefficient 

ρV  rhosteel 7800 density 

C  Csteel 486 heat capacity 

φstruct  phisteel 2*10^-4 structural component of phi 

τ  taufibre 0.00041358 thermoelastic time constant 

Δ   deltafibre 0.00258057 thermoelastic half maximum phi 

D  (n=1) D1 0.0109046 dissipation dilution (n=1) 

D  (n=2) D2 0.0117404 dissipation dilution (n=2) 
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D  (n=3) D3 0.0131334 dissipation dilution (n=3) 

D  (n=4) D3 0.0150836 dissipation dilution (n=4) 

 

It is interesting to note that the thermoelastic peak in the damping function is at a substantially 
lower frequency for HLTS due to the increased time for heat to flow across the thicker wires - see 
Figure 1. 
Figure 1: Comparison of HLTS and HSTS thermoelastic phi 

 
The predicted frequency and Q values are given in Table 2. 
Table 2: Predicted violin mode frequency and Q values 

f1 
(Hz) Q1 f2 

(Hz) Q2 f3 
(Hz) Q3 f4 

(Hz) Q4 

513.273 63747.6  1026.98  81281.3 1541.56 94421.3 2057.44 99492.5 

 

5 Results 
The raw data from LLO alog 9418 is given in Table 3.  

Table 3: Raw data  

f1 
(Hz) 

Fitted 
Q 

f2 
(Hz) 

Fitted 
Q 

513.219 82442     
513.547 89783 1026.92 108367 
516.562 82895     
517.594 107637     
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6 Conclusion 
Three of the measured Q’s are around 85000, which is quite close to the predicted Q of 63748. The 
fourth Q is somewhat larger. Looking at the plots in the alog, it is apparent that this ringdown had a 
visibly lower initial excitation and a consequently noisier tail to the ringdown, which is not to 
produce spuriously good Q’s. (Some of this same effect may be present in the three apparently 
good ringdowns - it would be desirable to have the error estimates from the linear regression.) The 
single n=2 Q value is also a little higher than predicted, but in rough proportion. 
Thus the preliminary conclusion is that the Q’s are very much in the right range and there is no 
rubbing or the like spoiling them. 


