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I. ABSTRACT 

LIGO (Laser Interferometer 

Gravitational-Wave Observatory) is engaged 

in the search for gravitational waves. An 

expected class of sources are compact binary 

systems that lose energy through 

gravitational radiation during coalescence, 

just as predicted by Einstein’s theory of 

general relativity. In this project, we wished 

to identity these gravitational-wave 

signatures. I worked on data analysis for 

LIGO at the California Institute of 

Technology (Caltech), particularly on 

parameter estimation. We used a number of 

post-Newtonian based approximations to 

describe the coalescences; these are methods 

of approximating solutions to Einstein’s field 

equations—the equations of general 

relativity. For this project, we focused on a 

simulated black hole-black hole binary. We 

compared several approximants and 

extracted all necessary parameters. 

Determination of these parameters provided 

insight into the underlying physics, as well as 

how important choice of approximant on 

parameter recovery for spinning signals was 

within known limitations of each 

approximant. Using inference software 

developed within the LIGO-VIRGO 

collaboration, we also sought to evaluate its 

performances in this regard. 

II.  INTRODUCTION 

Compact binary systems lose energy 

through the emission of gravitational waves 

during coalescence, just as predicted by 

Einstein’s theory of general relativity. In this 

project, we wished to identity these 

gravitational-wave signatures. Compact 

binary coalescences are desirable targets 

from which to extract astrophysical 

parameters because LIGO can expect 

relatively high detection rates from these. 

There exist three types: neutron star - neutron 

star, black hole - neutron star, and black hole 

– black hole. The first of these has a 

comparatively low mass and can be tidally 

disturbed as well as emit light. However, 

there exists no astrophysical evidence for the 

last of these, mostly because they are harder 

to detect as they have none of the 

aforementioned properties. Parameter 

estimation allows us to assemble better 

models of massive star evolution and 

population. Determination of these 

parameters provides insight into the 

underlying physics of compact binary 

systems. There exist a total of nine 

parameters we look for in non-spinning 

binaries, eleven for binaries with aligned 

spins, and fifteen for binaries with misaligned 

spins. These parameters can also be split into 

two types: intrinsic and extrinsic. Intrinsic 

parameters govern the shape (i.e., phase and 

amplitude evolution) of the waveform. 

Extrinsic parameters govern the overall 

observed amplitude of the waveform. 

Examples of parameters include masses of 

the components, spins and angular momenta, 

and locations in the sky. Mass measurements 

could, in general, help us identify the 

maximum mass of neutron stars, minimum 
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mass of stellar black holes, neutron star 

equation of state, and thus presence or 

absence of the “mass-gap” [1] between the 

heaviest neutron stars and the lightest black 

holes seen in simulations of the core collapse 

of massive stars. Spin measurements could 

also, in general, provide insight into binary 

formation scenarios and supernovae 

processes. And the locations could tell us 

about the host galaxies and the environments 

in which these form. [2] These results, of 

course, will not be available until our 

detectors are in place—an estimated two 

years in the future. So for this project, we 

worked with simulated signals so that we 

could test and measure the extent of our 

recovery abilities in preparation for 2015. 

We used a number of approximation 

models to describe the coalescences. Of 

interest for this project were the 

approximants known as SpinTaylorT4 and 

SpinTaylorT2 [3], which we sought to 

compare and observe differences in 

injections and recoveries. One can compare 

parameter estimation approximants, 

measuring biases from one to the other and 

characterize the posterior for different classes 

of signals. This includes different SNRs 

(signal to noise ratio), masses, locations, etc. 
[4] The Optimal Network SNR is defined as:  

𝑆𝑁𝑅 = √∑∫
|𝑠det(𝑓, 𝜃)⃑⃑⃑⃑ |2

𝑆𝑑𝑒𝑡(𝑓)
𝑑𝑓

𝑓𝐻𝑖𝑔ℎ

𝑓𝐿𝑜𝑤𝑑𝑒𝑡

 

with each detector given as 𝑑𝑒𝑡 so that 𝑠𝑑𝑒𝑡 

is the signal in that detector and 𝑆𝑑𝑒𝑡(𝑓) is the 

noise power spectral density (PSD) function 

for that detector. This way, we can know 

beforehand what kind of information can be 

gained by what kind of signals, how, and at 

what costs. 

As no exact solution of Einstein’s field 

equations is known that describes 

gravitational waves, we employ these post-

Newtonian approximations. While known to 

work for slow speeds relative to the speed of 

light and weak gravitational fields, they have 

also proven remarkably effective in 

describing certain strong-field, fast motion 

systems, i.e. the inspiral phase of binary 

black hole coalescence. Thus, it is important 

for us to understand how and what kind of 

results we get from using them for when and 

if we detect gravitational waves, or risk 

inaccurate or imprecise physics. 

I worked with inference software 

developed within the LIGO-VIRGO 

collaboration and worked to evaluate its 

performance in terms of parameter 

estimation. The code is a C implementation 

of several parameter estimation algorithms, 

driven by the Markov-chain-Monte-Carlo 

(MCMC) methods [5]. 

The inference software is an application 

of Bayesian inference. An interpretation of 

statistics that expresses probabilities in terms 

of “degrees of belief.” Bayesian inference 

uses Bayes’ theorem [6] to calculate the 

posterior probability density of a parameter 

set 𝜃 ⃑⃑  ⃑, given dataset {𝑑} under a model 𝐻,  

𝑝(𝜃 |{𝑑}, 𝐻) =
𝑝(𝜃 |𝐻)𝑝({𝑑}|𝜃 ,𝐻)

𝑃({𝑑}|𝐻)
 

where 𝑝(𝜃 |𝐻) is the prior probability density 

function—describing knowledge about the 

parameters within a model 𝐻 before the data 

is analyzed, and 𝑝({𝑑}|𝜃 , 𝐻) is the likelihood 

function—denoting the probability under the 

model 𝐻 of obtaining the dataset {𝑑} for a 

given parameter set 𝜃 .  
[7] The MCMC methods are a class of 

algorithms for sampling from high 

dimensional parameter spaces based on 

constructing a Markov chain that sets the 

desired distribution as its equilibrium 

distribution. [8] A Markov chain is a 

conditionally independent collection of 

random variables. The Monte Carlo methods 

rely on repeated sampling to obtain PDFs. It 

is a random process, in which the next state 

depends only on the current state (this 

“memory loss” is known as the Markov 

property). When confined to parameter 

(1) 

(2) 
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space, the sample points are drawn from the 

desired and known distribution of the 

parameters. This results in a powerful 

stochastic sampling method, in which the 

quality of the sample improves as a function 

of the number of steps [9]. Used here, the 

MCMC methods estimate multidimensional 

probability distributions for our Bayesian 

posterior and the parameters. 

III.    METHODS 

 For this project, we focused on a 

simulated black hole-black hole binary. We 

compared several approximants and 

extracted all necessary parameters to 

determine how well each approximant 

recovered them and under what 

circumstances. We judged the results based 

on accuracy and precision. To be more 

succinct, with accuracy, I am referring to the 

degree of ‘closeness’ to the actual values. As 

with precision, I am referring to the error of a 

given measurement—the less of which is the 

more precise. [10] 

After familiarizing myself with the 

project, I proceeded to install a Scientific 

Linux partition on my PC that would be 

beneficial to future development tasks, as 

well as a plethora of LIGO-specific software. 

After acquiring access to our data clusters, I 

learned about Linux computing and LIGO-

specific computing on our clusters. 

I ran and post-processed a number of jobs 

on the clusters. In particular, there were three 

that I ran and processed so that I could edit a 

tutorial that demonstrates how to run them. 

Created by my mentor, Vivien Raymond, I 

had been asked to tailor it for the benefit of 

the more unfamiliar user. 

I worked with some python code that 

when run generates injection files (simulated 

data). I made several of these injections and 

ran quick jobs on each of them, recovering 

each with a SpinTaylorT4 and SpinTaylorT2 

approximant. These were processed to 

extract all parameters. On a few occasions, 

run outputs were found to be lacking, in 

which case greater processing power was 

allotted as needed. 

IV.   RESULTS 

Here is an example for a black hole - 

black hole binary including spins. One 

member of the binary was five solar masses 

and the other ten solar masses. This is enough 

mass for the detectors to be sensitive, but not 

enough as to involve the merger or ring-down 

phases of coalescence. This signal, labeled 

event0, was run four times to include the two 

combinations of approximants for both 

injections and recoveries. 

Figure 1 is a two-dimensional plot of the 

masses with “zero noise.” Zero-noise is an 

approximation where the noise level of the 

detector is set to zero, while keeping the 

expected PSD from equation (1). This 

approximation has the effect of producing the 

same results as if we ran over many different 

Figure 1 A two dimensional plot of the masses 

for all four combinations of injections and 

recoveries. The label “injT4recT2” stands for the 

SpinTaylorT4 approximant used to inject the 

simulated signal and the SpinTaylorT2 

approximant used as the recovery. 
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realizations of the noise and averaged the 

Probability Density Functions. It has also 

been rescaled for an SNR of about twenty. 
In general, all other parameters were 

presented in the same way, as Figures 2 and 

3 can illustrate. For each run, all other 

parameters were fixed to their randomly 

generated injection values. 

Please reference Appendix I for the 

tutorial I wrote and for an additional brief 

tutorial on how to run jobs on a pipeline. The 

tutorial explains how to run both hardware 

and injection events with examples. 

V.   CONCLUSIONS 

As Figures 1, 2, and 3 all illustrate in this 

particular example, when we injected and 

recovered with the same approximation, we 

recovered the correct parameter range. 

However, when we injected and recovered 

with different combinations of approximants, 

we did not recover the correct parameter 

range. This provides some considerations for 

LIGO in the future. 

As a follow up, we might consider 

providing a more complete simulation, 

identifying regions of parameter space where 

the difference in results is significant, 

compare more and different approximants, 

and include more parameters and events. 
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APPENDIX I 

This is the tutorial I wrote. “Big-Dog” was a blind hardware injection and S6PE-event0 was a 

blind software injection. 
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