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ALIGO’s seismic isolation system aims to attenuate seismic noise that affects the sensitivity for
gravitational wave detections. This system needs to be tested and to have each of the installed
systems characterized in such a way that problems can be quickly found. By tracking coincident
non-Gaussian transients (glitches) through the subsystem’s chambers, various statistical analysis
including coincident glitch rates and average signal to noise ratios can be compared to determine
which chambers are glitching most and which are not successfully attenuating noise. Problematic
areas can also be found by finding which chambers are creating glitches most often and how these
glitches propagate through the system. This information can be then used to localize problems for
aLIGO’s commissioners at the detectors in order to aid in their mitigation.

Introduction

Advanced LIGO’s (aLIGO) new seismic isolation
(SEI) subsystem is one of many systems aiding
in the detection of gravitational waves (GW).
Specifically, this system detects various types
of seismic disturbances using sensors placed in
and out of each vacuum chamber. As shown
in Fig. 2, each chamber contains various pieces
of aLIGO’s interferometer. The core optics of
the interferometer are located in the basic sym-
metric chamber (BSC) while the auxiliary optics
are located within the horizontal access modules
(HAM) [1].

In short, both chambers use isolation
stages to attenuate various forms and the lo-
cations of seismic disturbances. These isola-
tion stages consist of, in a simplified sense,
STS-2 seismometers to sense ground motion, a
hydraulic external pre-isolatior (HEPI/HPI) to
measure motion of the test mass and suspension
supports, an internal seismic isolators (ISIs) to
determine and isolate motion within the cham-
ber of various components such as optics, and,
finally, a suspension (SUS) stage of isolation to
measure motion and actuate to reduce the mo-
tion of the suspended optics. There is another
type of HAM chamber: the signal recycling cav-
ity length (SRCL) HAM. The primary difference

between these chambers are the number of sen-
sors available in each isolation stage, and that
BSC and SRCL HAM ISIs have 2 stages of isola-
tion instead of the one for regular HAM ISIs [2].
While this list covers the sensors placed through-
out the SEI subsystem, there are also actuators
in each stage listed which reduce the motion for
each subsequent isolation stage.

The SEI system has changed considerably
since initial LIGO (iLIGO). Initially, there was
no active, only passive seismic isolation on
LIGO’s mirrors, which meant that no actuation
to counteract the seismic ground motion could
be done. A HEPI was added during the S5
data run in order to deal with nearby logging
at the Livingston interferometer and has since
been upgraded for aLIGO. By upgrading the
overall design of the SEI system with better
and more sensors, aLIGO can yield much more
precise measurements than its predecessor.
This results in a significant decrease in the
displacement noise that aLIGO observes, and,
as can be seen in Fig. 1, this difference of noise
is especially pronounced at frequencies on the
order of 1-100 Hz [1]. At these frequencies,
noise is reduced by up to 7 orders of magni-
tude and at higher frequencies (100 to 1000
Hz), the noise is still reduced by two or three
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orders of magnitude due to improvements in
the shot and thermal noise of the detectors.
All these improvement lead to the expectation
that aLIGO will be able to make around 40
GW detections from binary neutron star merg-
ers per year with a range of 0.4-400. [2].

Figure 1: Predicted aLIGO displacement noise lev-
els with and without signal recycling compared to
observed iLIGO noise levels [2].

With the new aLIGO SEI subsystems online,
it is necessary to determine whether and how
each optical chamber’s isolation stages glitch.
Glitches are transient noise (non-Gaussian)
events within a system. Optimizing detec-
tion systems requires mitigating or eliminating
glitchy behavior. Consistent glitchiness within
systems need to be characterized by their source
and nature in order to be mitigated. This project
will focus on characterizing these glitches. Elim-
inating these glitches is necessary because the
seismic ground motion is coupled with the gravi-
tational wave data channel directly if it is in band
or by upconversion [3]. This detector character-
ization will be done by recording each system’s
behavior with an event trigger generator (ETG).
In particular, Omicron is an ETG which has a
high trigger generation efficiency at lower fre-
quencies in comparison to other ETG’s [4]. This
is ideal since the majority of seismic events occur
at low frequencies (1-100Hz). The trigger data

will be used to track disturbances through each
optical chamber’s isolation stages.
By tracking the disturbances from ground stage
channels to the optic stage channels, it will be
possible to determine the percent of glitches mit-
igated at each stage. This will also determine the
amount of glitches that transfer from the ground
to the optics and possibly correlate glitchiness
with frequency for each channel [4]. This project
will aim to determine whether and how the new
SEI system glitches. In particular, I will look for
glitches which transfer from the ground isolation
stage to the optical suspension stage or are pro-
duced by actuator motion.

Methods

Running Omicron and Channel Selection

In order to characterize the SEI systems, trigger
data for each isolation stage and relevant degree
of freedom (DOF) are necessary. A data channel
corresponds to the digital output of specific sen-
sors placed around and within the subsystems.
The channels chosen for this study needed to
be representative of the motion of the isolation
stages for each chamber and can be broken down
by individual DOFs. By Jessica McIver’s recom-
mendation, approximately 87 channels were cho-
sen. The subsystems and chambers correspond-
ing to the recommended channels can be seen in
Fig. 2 as they are introduced throughout the
rest of this section.

Breaking the selected channels down by
their isolation stage and DOF, the first set of
channels consist of 3 STS-2 seismometer chan-
nels (one for each DOF) to measure ground
motion. The second set of channels are the
HEPI/HPI channels. Each platform consists of
8 DOFs and each chamber has a HEPI plat-
form [2]. Third, there are the ISI channels. As
noted earlier, there are three types of ISI sys-
tems: the standard HAM ISIs, which are in the
HAM 2,3 and 6 chambers; the SRCL HAM ISI’s
located in HAM 4 and 5; and the BSC ISIs lo-
cated in the BSC chambers. A standard HAM
ISI consists of one isolation stage with 6 DOFs
(6 channels). A SRCL HAM ISI consists of two
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isolation stages each also with 6 DOFs (12 chan-
nels). Finally, a BSC ISI consists of two isolation
stages. The first stage is measured by two sen-
sors and the second one is measured with one
sensor. Each sensor has 6 DOFs which totals to
18 channels. Finally, there is one platform sum-
mary channel for each degree of freedom of which
there are six [2]. This totals out to 23 channels
for HAM chambers, 29 for SRCL HAM chambers
and 35 for BSC chambers.
While all of these channels can be relevant, the
data coming out of chambers which are avail-
able for Dual-Recycled Michelson Interferometer
(DRMI) testing were the most important. These
are the Beam Splitter (BS), Input Test Mass X

(ITMX), Input Test Mass Y (ITMY), and HAM
(2 and 3) chambers seen in Fig. 2.

Characterizing Detector Behavior

With the relevant channels selected, their trig-
ger data is analyzed in order to answer particu-
lar questions. I wanted to find whether glitches
and noise can be tracked from the ground detec-
tors to the optics. I also checked how the glitch
rate changes for each stage of isolation. Finally,
I determined whether the amplitudes of the ob-
served glitches change between isolation stages.
All of these questions were used to characterize
the noise observed by the aLIGO SEI subsystem
in order to find their origin.
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Figure 2: aLIGO optical chamber layout showing the stages of isolation for various chambers including
HEPI, ISI and payload subsystems [2].
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In order to compare amplitudes of ob-
served glitches and their affect on glitch rates,
signal to noise ratio (SNR) information was gath-
ered from omicron’s trigger data and compared
using our developed plotting tools [5]. This will
allow for a visual representation of glitchy be-
havior as a function of SNR. It will also allow
for comparison of corresponding glitches in other
subsystems to see how the SNR changes through-
out the stages of seismic isolation.

Data Check

In order to meet the primary goal of this project,
which is determining whether glitches are trans-
ferred through the SEI system and whether any
particular section is creating glitches, it was nec-
essary to determine whether the channel pairs
are operating as expected. Channel pairs are
being analyzed rather than individual channels,
because in order to check whether glitches are
transferring through the SEI system, coincident
events must be searched for in channel pairs.
The first step in the process of verifying if chan-
nels are functioning correctly was determining
the distribution of time differences between po-
tential coincidences. This was done to identify
a coincidence window between the two channels.
Ideally, the time difference of many coincident
events between two correlated channels should
form a Gaussian around zero. If this is the case,
then an appropriate coincidence window can be
determined from the standard deviation of the
resulting distribution.

By plotting a histogram of the time differ-
ence between coincident events where a coinci-
dence window is set to a high value (5 seconds),

a Gaussian fit could be created to the data. The
mean and standard deviation were calculated as
a check that the events are clustered near zero.
The skew and kurtosis are then calculated to be
sure that the distribution is at least Gaussian-
like. An example of this is shown in fig. 3.
Once the data were determined to be Gaussian-
like and clustered around an approximately zero
value, the coincidence window is taken to be six
times the standard deviation of the data. De-
spite that this is a wider fit than would be rec-
ommended by a perfectly fit Gaussian, the acci-
dental coincidence rate at wide time differences is
extremely low. Therefore, precisely determining
a coincidence window is not imperative because
a large difference in the coincidence window only
corresponds to a few extra coincident events. For
example, in fig. 3, a coincidence window increase
of a half second only increases the number of co-
incidences by 6 (out of an original 169). Similar
background rates are observed for channel pairs
that meet the criteria listed above.

Another step taken to show that channel
pairs are operating as expected is showing that
the distribution of triggers throughout a time in-
terval is not random. This is important for first
checking that the SNR threshold is high enough,
but also to show that the events are being caused
by external, non-random events. By plotting a
histogram of time differences between neighbor-
ing coincidences, dt, it can be shown that the
timing of the glitches do not follow a random, or
Poisson, distribution, but instead are correlated
with one another. An example of a this can be
seen in fig. 4.
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Figure 3: Histogram of time differences between coincident events of one HEPI channel, H1:HPI-
HAM3 STSINF A X IN1 DQ, and one ISI channel, H1:ISI-HAM3 BLND GS13X IN1 DQ, throughout a
metric day in 1000 second intervals. The data were taken over GPS times 1056200000 (June 25th) to
1056300000 (June 26th).

If the glitches were randomly distributed in
fig. 4, the bins corresponding to different time
differences would all have nearly the same num-
ber of occurrences. However, since there is a
clear probabilistic favor toward near zero values,
the events are likely correlated with one another.

The observed downward sloping from zero is an
ideal case for our data since we would hope that
most groups of events are clustered near each
other. This pattern suggests that non-random
events are causing highly correlated triggering.

Figure 4: Histogram of time differences between consecutive coincidences of one HEPI channel, H1:HPI-
HAM3 STSINF A X IN1 DQ, and one ISI channel, H1:ISI-HAM3 BLND GS13X IN1 DQ, over the course
of a metric day starting at 1056200000 (June 25th) to 1056300000 (June 26th).
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By plotting a histogram of the number
of coincident events in small sections of time
(1000s), one can determine a window where a
non-random trigger inducing event is occurring
by looking for regions of time with higher trig-

gering rates. This gives insight as when to search
for events in my study to see how they interact
with the SEI system. An example of this can be
seen in fig. 5.

Figure 5: Histogram of coincident triggers per 1000s between one HEPI channel, H1:HPI-
HAM3 STSINF A X IN1 DQ, and one ISI channel, H1:ISI-HAM3 BLND GS13X IN1 DQ, throughout a
metric day in 1000 second intervals. The data were taken over GPS times 1056200000 (June 25th) to
1056300000 (June 26th).

Visualization Tools

Initially, this tool kit was written for only one
pair of channels. Now, all of these preliminary
mechanisms have been generalized so that they
can be run on a list of channels, not simply one
pair.

Once the tool kit was generalized to run
on a list of channels, it was possible to test var-
ious statistics across entire subsystems and dis-
play them in an interactive way. These statistics
included histograms of glitch rates throughout a
time interval, glitch duration, max SNR, SNR ra-
tios, coincidence chain length, coincidence start-
ing channel, weighted peak frequency, and oth-
ers. The visualization of this data serves two
primary purposes: allowing for the easy visual-
ization and locating of problem areas, and the
ability to quickly discern interesting time seg-
ments to analyze. Because of these purposes, it
became helpful to link each displayed coincidence

glitch to a vertical alignment of each channels
time band-passed time series around the time of
the glitch. Links to this interactive display can
be found in the visualization links section.

As noted earlier, Chase and I developed a
vertical alignment of raw band-passed data time
series plots for each channel around a particu-
lar coincident event. This was helpful to see
the glitches’ propagation through each isolation
stage. An examples of this plot is shown in fig.
6. This plot is an example of a glitch that propa-
gates through the entire SEI subsystem of BSC6
at Hanford. This glitch can be seen on the left-
ward side as a dark trend. Finding events like
these is a pivotal component of this project. This
plotting method is imperfect however. Because
the frequency band of many glitches spans the
majority of the channel’s available frequencies,
the band-pass filter is ineffective at discerning
glitches clearly. Due to extensive problems with
this method, we have decided to switch this tool
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to using spectrograms rather than the time se- ries.

Figure 6: Band-passed time series of channels displayed vertically with the ground motion corresponding
to the top time series and moving down corresponds to moving up the SEI chain. Red colors are positive
motion and blue is negative. This plot displays darker shades as displacements that have moved beyond the
vertical screen display of the graph.

Chase Kernan and I used my statistical
and coincidence code as a base for us to to vi-
sually show the propagation of all glitches over
any time period and other relevant statistical in-
formation in an interactive way. Fig. 7 shows an
example of this interactive software, and links to
the actual web pages are given in the Visualiza-
tion Links section. This visualization allows for
extremely fast data analysis of the many cham-
bers and channels that are currently being looked
at in the SEI and SUS subsystems. These web

pages currently show the propagation of coinci-
dent glitches horizontally across the virtual map
of each chamber. When one clicks on a particu-
lar glitch (line) it gives relevant information for
that particular coincidence including times, fre-
quencies and SNR. The coincidences can also be
selected by SNR thresholds by dragging a partic-
ular area of the SNR versus probability plot on
the right side. These functionalities have already
yielded a number of interesting results.
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Figure 7: Example of still visualization for the H1-ETMY chamber for glitch data during July 27th. The
vertical bars correspond to channels, and the horizontal axis is a maximum time separation of 50 ms. Each
line corresponds to a coincidence and the line can be followed as to how it propagates through the chamber.
By clicking on an individual coincidence (line) information about its times, frequencies and SNR will be
displayed. This plot has been filtered for SNR≥16.

Preliminary Evidence

The visualization tools developed have yielded a
number of observations that warranted further
investigation. First, the ISIWIT channel seems
to create a large amount of glitches that are not
coincident with any SEI channels. We have also
found that glitches are originating at locations
other than the ground and then propagating up
and down the SEI subsystem then into the SUS
system. This is important because we want to
determine which chambers and isolation stages
are doing this the most. Despite our character-
istics for coincidence being met for these events,
because our visualization of the raw data is not
fully functional, we have not been able to check
that the causality of these glitches have long
enough time delays to imply causality.

We also found 3 distinct patterns among
the data. Firstly, SNR is being mitigated but
not always. Averaging among the chambers
about 75% of glitches are being attenuated by
the SEI and SUS systems. The rest are actu-
ally increasing in SNR by the end of these sys-
tems. One example of this is shown in fig. 8,
where we see a case where the average SNR of

the ISIWIT suspension channels is double that
of the SEI channels. While the previous exam-
ples shows this is not always the case perfect,
in general the systems is functioning properly.

Figure 8: Histogram of SNR per channel as they
propagate through the stages of isolation in H1-
BSC6.

Another observation for only LLO is that
glitches rarely span the entire chain, which also
strongly supports that glitches are being attenu-
ated. In fact, the majority of glitches only prop-
agate one or two isolation stages beyond where
they originate.
One last observation is that the number of
glitches appears to decrease during the night
to half the rate of during the day on aver-
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age. An example of this for Hanford’s BSC-
6 chamber is shown in fig. 9. This pat-
tern is expected because many anthropological
noise sources are less apparent during the night.

Figure 9: Histogram of counts/hr. of coincidence
glitches over July 7th from 12am to 7pm in the Han-
ford BSC-6.

Future Work

First and foremost, we plan on reworking our
individual coincidence viewer (shown in fig. 6)
to utilize spectrograms rather than band passed
time series is order to avoid band passing is-
sues. Once that is completed, we plan on simul-
taneously reworking features of the visualization
software to make it more accessible such that it
can be simpler to someone who does not actively
work with the code to discern which chambers
are problematic.

While working on the visual component of
this goal, we hope to use the previous statistical
tools to characterize normal behavior for each
chamber and then strong deviations from these
norms can be considered problematic behavior.
These two parallel goals will hopefully amount
to a useful tool to commissioners for optimiz-
ing the aLIGO SEI and SUS subsystems for a
gravitational wave detection. We hope to have a
prototype of the spectrogram based coincidence

viewer in the coming weeks and the characteriza-
tion of SEI and SUS for the simpler coincidence
information viewer (similar to Coincidence Info
Plots accessible through the visualization links
section) in the next month.
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Visualization Links

Chamber Link *insert https://ldas-jobs.ligo.caltech.edu/ before each link.

Visualizer Coincidence Tracker

H1-BSC6 ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/group/0
H1-HAM3 ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/group/1
L1-ITMX ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/group/2
L1-ITMY ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/group/3
L1-BSX ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/group/4
L1-BSY ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/group/5

Visualizer Coincidence Info Plots (Same number at end of address for each chamber as above)

Repeat ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/cross/group/

Visualizer Coincidence Time Series Viewer

Repeat ∼chase.kernan/cgi-bin/lsc-seis-gcm/web main.py/coinc/group/*insert number*/time-series/
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