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Abstract—Reaching the intended sensitivity and astrophysical
reach of the Laser Interferometer Gravitational-Wave Obser-
vatory (LIGO) will require significant effort in characterizing
environmental and detector subsystem noise. Identifying the
creation and propagation of non-Gaussian ‘glitches’ will aid
on-site commissioners in fixing instrumentation problems and
achieving nominal equipment performance. We focus on the
installed seismic isolation (SEI) and suspension (SUS) subsys-
tems and leverage existing event trigger generators (ETGs) to
develop statistical analyses of glitch behavior. We create novel
visualization tools for investigative work and detail the nature of
glitches originating from the inner stages of the SEI and SUS
subsystems.

I. BACKGROUND

HAVING completed its sixth science run, LIGO is being
rebuilt—and rechristened as Advanced LIGO—in order

to significantly increase its sensitivity and extend its astrophys-
ical reach [5]. Noise introduced by the environment and detec-
tor subsystems will require investigation and characterization.
Non-fundamental noise sources may be localized in time or
frequency and must be culled from the output gravitational
wave (GW) strain signal to avoid reductions in sensitivity
[2]. The search for continuous GWs and any stochastic GW
background will be detrimentally impacted by spectral line
noise, while transient GW events may be masked by short-
duration ‘glitches’ [4].

Instrument characterization will help identify noise artifacts
whose origin can be physically located and corrected, or
barring that, be flagged for data quality and veto generation
[3]. Artifacts are often noticed as non-Gaussian fluctuations
in data coming from auxiliary channels that record the status
of individual components as well as the surrounding physical
environment [1]. Correlating non-Gaussianity statistics across
multiple channels can help debug noise sources and quickly
bring instrumentation performance to nominal levels.

Much infrastructure for identifying glitches already exists
and is being brought online as Advanced LIGO opens more
auxiliary channels. This project utilizes the existing Omicron
event trigger generator (ETG), which detects bursts of non-
Gaussianity in the time and frequency domains by match-
filtering against sine-Gaussians. However, there is significant
work to be done in summarizing the Omicron outputs for
efficient use by commissioners.

In particular, commissioners have installed several seis-
mic isolation (SEI) and suspension (SUS) subsystems, which
require meaningful performance analysis. Each subsystem

Fig. 1. Seismic isolation (SEI) system configuration with enclosed optics at
Livingston (L1) and Hanford (H1) observatories.

consists of a series of stages—some active, some passive—
that work to reduce the influence of ground motion on the
enclosed optical equipment. Ideally, noise is only introduced at
the ground stages, but mechanical malfunctions and improper
installations may inject noise at any stage. Hence, we expect
the statistical profile of non-Gaussianity to vary among the
several installed systems, despite identical designs.

We can diagnose discrepancies using the many auxiliary
channels that record movement in every degree of freedom at
each stage in the SEI/SUS subsystems. As we begin to monitor
more SEI subsystems, we can compare ‘glitch statistics’ across
same-design subsystems to identify faulty equipment. At the
time of this report, we collect data from the ETMY and HAM3
isolators at Hanford, and the HAM2-5, ITMX, ITMY, BSX,
and BSY isolators at Livingston (see Figure 1).

II. OBJECTIVES

We aim to characterize the behavior of Advanced LIGO’s
SEI/SUS subsystems by means of ‘glitch’ correlations and
other statistical studies of non-Gaussianity. From this, we hope
to gather sufficient insight to direct on-site commissioners
towards malfunctioning equipment and other sources of noise.
The more we localize poor performance in time, frequency, and
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space (i.e. affected channels), the more likely commissioners
can physically identify the offending instrumentation.

III. RESULTS

We approached this investigative task roughly as follows.
Drawing on commissioning status and information from Jes-
sica McIver, we select a small subset of working SEI/SUS
auxiliary channels to analyze. These 89 channels are divided
into nine mechanically-connected groups corresponding to
the SEI/SUS subsystems shown in Figure 1. We then feed
channel data through the Omicron ETG, obtaining a time series
of localized glitches. From this, we can look for statistical
outliers—such as glitches with very high signal to noise
ratios—and time correlations between connected channels.

A. Event Trigger Tiles

Omicron emits trigger ‘tiles’, which are bounded by time
and frequency ranges (see the left subfigure of Figure 2). They
also possess properties describing the corresponding glitch,
such as the signal-to-noise ratio (SNR), amplitude, q-value, and
peak frequency. Due to the nature of match-filtering, however,
a single glitch typically produces many trigger tiles that overlap
in time and/or frequency. To obtain accurate statistics at the
event level, we must cluster all tiles corresponding to a single
event into a single tile. Roughly speaking, all tiles that overlap
(or nearly overlap) in time-frequency space are merged in an
iterative algorithm described in Section V. Properties like peak
frequency are merged by taking the SNR2-weighted-average of
the peak frequencies of the overlapping tiles. This results in an
approximately 100:1 reduction in the number of trigger tiles
(see Figure 2, right).

B. Coincident Glitches

Some background level of glitches can be expected under
nominal conditions, with ground movement introducing bursts
of noise that mechanically propagate through the SEI and
SUS subsystems. However, faulty hardware may also induce
glitch propagation not at the ground level, but rather at
some intermediate SEI/SUS stage. Mechanical propagation
will manifest itself as several glitches that are coincident in
time across multiple channels. Using an algorithm similar
to trigger clustering, we identify and group all events that
begin within ∆t = 0.1s of each other (see Section V). A
set of coincident glitches is akin to a chain, where the head
corresponds to the first-occurring event. Analysis of chain
patterns and statistics should point to faulty SEI/SUS stages
and modes of propagation.

This analysis is complicated by the low-frequency nature
of seismic isolators—we are fundamentally limited by the
period of our match-filtered sine-Gaussians when determining
the time range of a glitch. In the seismic band (1-10 Hz), this
period-dependent imprecision is much greater than the speed of
mechanical propagation. Thus, we cannot determine the order
of a seismic glitch chain. We are forced to assume that glitches
will proceed in the mechanical ordering of isolation stages.

C. Analysis and Visualization

We devoted much of this project to developing tools
for analyzing triggers and coincident glitches; we pro-
duced many interactive visualizations designed to empha-
size patterns and ease the process of manual investiga-
tion. These interfaces are web-based and available on the
ldas-jobs.ligo.caltech.edu server, with accompa-
nying RESTful APIs to data sources.

We displayed raw and clustered Omicron outputs using
a scrolling set of tiles color-coded by SNR (Figure 2). An
unpursued offshoot of this project lead to the development of
real-time scrolling capabilities (latencies limited to the ability
of the ETG, roughly 4 s). By navigating through several glitch
events, a user can readily identify the frequency profile of a
class of glitches in a particular channel.

The interface central to our project depicts coincident chains
of glitches in a particular SEI/SUS subsystem (Figure 3).
With chains, we are primarily concerned with the following
attributes:
• Affected channels: shown as color-coded bars linked by

lines corresponding to individual chains
• Peak SNR: shown by the thickness of the links
• Attenuation: whether or not the SNR is decreasing as the

glitch propagates, shown as green lines for decreasing
SNR, red for increasing

• Peak frequency: selectable on the percentage plot on the
right

• Time: shown as a vertical offset on each color-coded bar
• Propagation mode: shown as the left-to-right ordering

of bars (keeping in mind the aforementioned timing
assumption)

A user can filter the displayed links by either drawing a
region in SNR-frequency space on the right-hand percentage
plot or by hovering the mouse over a bar or individual link.
When hovering over a channel bar, only glitches that propagate
through that channel at that position in the chain are shown. For
example, hovering over the third bar down on the left shows
only glitches that originate at the third stage. Hovering over an
individual link shows additional statistics, and, when clicked,
opens a visualization of the raw glitch data. We designed the
raw glitch visualization to emphasize the timing and amplitude
profile of cascading glitches (Figure 4). A vertical ruler that
follows the mouse shows the calibrated amplitude in consistent
units for a particular time. For each channel in the subsystem,
there are two amplitude plots: one that has been bandpassed
for the frequencies identified by Omicron and another that is
left unprocessed.

Finally, we developed a visual query system to find coinci-
dent glitches based on selected attribute ranges (Figure 5). For
each glitch chain, we plot the starting time, duration, maxi-
mum SNR, SNR attenuation ratio, peak frequency, frequency
bandwidth, chain length, starting channel, duration, and mean
delay, followed by a table detailing the frequency and SNR
components of each channel in the chain. Such plots both
show the distribution of attribute values and allow the user to
visually select a value range to filter by—the table and other
plots are dynamically updated to only show the filtered chains.
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Fig. 2. The raw output of the Omicron ETG, shown on the left, includes many triggers that overlap in frequency and/or time. We assume that triggers that
overlap in time or frequency (or are very close, i.e. ∆t < 0.05 s or ∆f < 0.5 Hz) correspond to the same event. Hence, we cluster overlapping triggers to
produce the conglomerate triggers shown on the right.

Fig. 3. Glitch coincidences in the ETMY SEI/SUS subsystem at the Hanford observatory. Each connected line represents a glitch coincident on the channels it
connects. Each column represents a time difference of less than 0.1s. The leftmost column represents the origin of each coincidence. When a user places their
mouse over a channel bar or a line, the coincidences are highlighted. In this case, the user has selected all coincidences that begin in the fourth stage of the
ETMY subsystem. Users are also capable of filtering by trigger signal-to-noise ratios (SNR) and peak frequencies by dragging over the percentage plot on the
right.
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Fig. 4. A visualization of a single coincident glitch as it propagates through the ITMX subsystem at the Hanford observatory. Each row corresponds to a single
channel of raw data that has been bandpassed to include only the glitching frequencies identified by Omicron. In order to have high vertical resolution, the
amplitude data is shown as a horizon plot, where color is indicative of sign (i.e. blue for positive values, red, negative) and magnitude (darker colors correspond
to multiples of the vertical scale). The vertical black line follows the user’s mouse and shows the bandpassed-amplitude at that moment in time. Just to the right
of the black line is a strong visual indicator of a glitch event coincident across four channels. Not shown are several non-bandpassed plots available to the user
below.

For example, a user can easily query all glitches that occur in
the morning, have large SNR, do not attenuate SNR properly,
and originate in an intermediate isolation stage.

IV. FUTURE WORK

Armed with a large toolkit and dataset of glitches and
coincidences, we can begin to investigate possible causes
and equipment malfunctions. We will coordinate with Jessica
McIver and on-site commissioners in order to find good state
times at each of the observatories and start to identify the
physical manifestations of prominent glitch classes.

V. METHODS

Delivering interactive visualizations to users required cre-
ating an extensive computational framework. This consists
primarily of a Python webserver coupled with an HDF5
database and a series of Javascript visualizations made with
the D3.JS library. HDF5 databases allow us to store large
quantities of triggers and glitches with high compression ratios
and very fast querying operations, while the D3.JS library
enables multidimensional visualization, interaction, and easy

SVG manipulation. The global control flow can be described
as follows:

1) Analysis
a) Run Omicron for good state times on each chan-

nel in the SEI/SUS subsystems. This outputs a
set of XML files containing trigger data.

b) Parse the Omicron data and cluster triggers into
events. These events are stored in an HDF5
database.

c) Identify glitch coincidences, which are also
stored in an HDF5 database.

d) For each coincidence, download the raw channel
data from LDS and store it alongside a band-
passed version in an HDF5 database.

2) Server
a) Start a CGI server in Python using the Bottle.py

library.
b) Based on incoming HTTP requests, query the ap-

propriate HDF5 database and return the requested
data in the JSON format.

3) Client
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Fig. 5. A visual query system for finding coincident glitches with certain properties. For example, a user may select a range of SNR ratios (in this case,
ratios greater than unity have been selected) and the glitches listed in the table to the bottom right will be filtered accordingly. The other query charts will be
dynamically updated to reflect the distribution of selected glitches. The full interface contains many more query plots: peak frequency, duration, peak SNR, etc.
The large segment of time with no glitches shown above is a result of bad state times.

a) Request data from the server using HTTP re-
quests and parse the returned JSON strings.

b) Use the D3.JS library to create interactive visu-
alizations.

The entire codebase for this project can be found as a Git
repository at https://github.com/chase-kernan/lsc-seis-gcm.

There are two important algorithms developed in the course
of this project, which are outlined below.

A. Trigger Clustering
clusters← []
heap← []
for all trigger in triggers ordered by start time do
{Remove any clusters in the heap that occur before this
and all following triggers}
for all cluster in heap do

if end time(cluster) < start time(trigger) then
add cluster to clusters
remove cluster from heap

end if
end for

{Try to find a cluster that this trigger overlaps with}
found match← false
new cluster ← trigger

for all cluster in heap do
if overlaps(new cluster, cluster) then
found match← true
remove cluster from heap
new cluster ← merge cluster with new cluster

end if
end for

if not found match then
new cluster ← initialize(new cluster)

end if

add new cluster to heap
end for
concatenate heap to clusters

B. Finding glitch coincidences
triggers {is a map from channels to trigger arrays}
rows← {}
ends← {}
times← {}
for all c in channels do

rows[c]← 0
ends[c]← length(triggers[c])
times[c]← start time(triggers[c][0])

https://github.com/chase-kernan/lsc-seis-gcm
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end for
while times is not empty do

sort times by value and then by channel order
start channel, start time← first(times)
linked← [start channel]

window end = start time + 0.1 {seconds}
for all match channel,match time in rest(times) do

if match time <= window end then
add match channel to linked
window end← match time + window

else
break

end if

if length(linked) > 1 then
linked triggers← []
for all c in linked do

add triggers[c][rows[c]] to linked triggers
end for
save linked triggers as a glitch coincidence

end if

for all c in linked do
row ← rows[c] + 1
rows[c]← row
if row < ends[c] then
times[c]← start time(triggers[c][row])

else
remove c from times

end if
end for

end for
end while
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