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Abstract

A new generation of interferometric gravitational wave detectors, currently under
construction, will closely approach the fundamental quantum limits of measurement,
serving as a prominent example of quantum mechanics at the macroscale. Simultane-
ously, numerous experiments involving micro-mechanical oscillators are beginning to
explore the quantum regime, with the help of optical cooling techniques.

We discuss the approach to the quantum regime in a gram-scale opto-mechanical
experiment, and in large-scale gravitational wave detectors. The gram-scale experiment
is designed so that radiation pressure forces completely dominate the dynamics of the
mechanical mirror suspensions. We review a series of optical trapping and cooling
techniques that we have demonstrated using this apparatus. A variant of these
techniques is applied to a gravitational wave interferometer — yielding an effective
temperature of 1.4 microkelvin and a phonon occupation number of 234 in a kilogram-
scale oscillator. Then we analyze the displacement noise spectrum in the gram-scale
system, which is currently limited by thermally driven fluctuations of the mirror
suspensions. We identify methods for improving the suspension, in order to reveal
the quantum fluctuations attributable to back-action of a displacement measurement.
Finally, we propose a scheme for exploiting the opto-mechanical coupling in this
system to generate optical entanglement.

Thesis Supervisor: Nergis Mavalvala
Title: Professor of Physics
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Chapter 1

Introduction

The program of experiments we discuss in this thesis has sprouted at the interface

of general relativity and quantum mechanics, arguably the two greatest theoretical

developments of 20th century physics.

An important progenitor and skeptic of both of these fields was Albert Einstein, who

predicted in 1916, as a consequence of general relativity, the existence of propagating

ripples in spacetime known as gravitational waves — and nearly withdrew his prediction

in 1936, feeding a controversy that would linger on for decades more [71]. In quantum

physics, Einstein provoked the field’s other pioneers with his doubts about whether

the new theory offered a complete description of the macroscopic world. For example,

in a 1935 exchange with Erwin Schrödinger he grappled with a thought-experiment

concerning a keg of unstable gunpowder, whose quantum state would evolve into a

bizarre superposition of exploded and unexploded (a conundrum that Schrödinger

intensified in his famous “Schrödinger’s cat” paradox) [50].

Today, we are beginning to see both gravitational and quantum physics come into

their own as experimental sciences. For one thing, we are building interferometric

devices sensitive enough to deserve to be called gravitational wave detectors. We are

also engineering quantum systems macroscopic, complex, and entangled enough to

challenge our intuitions, in the manner of Schrödinger’s cat. We are even finding that

the interferometric gravitational wave detectors we are building must be thought of

as quantum systems — quite macroscopic ones! — that are capable of exhibiting a

15



variety of quantum effects, such as back-action and entanglement.

1.1 The hunt for gravitational waves

Gravitational waves alternately stretch and squeeze the space through which they

propagate. Their effect is analogous to a mechanical strain, resulting in a change in

length ∆L that is proportional to the baseline L whose length is being monitored.

(For a review, see reference [33].) The strongest gravitational wave sources that we can

conceive of are astrophysical in nature, involving cataclysmic events such as stellar

death explosions [106], collisions of black holes and neutron stars [2], and possibly the

Big Bang itself [14]. Even for these sources, the predicted signals are exceedingly faint,

with peak strains on the order of 10−21.

Beginning in 1960, Joseph Weber brought gravitational waves into the realm of

experiment [138], undaunted by the theoretical controversies still associated with the

subject at that time. In a pioneering effort to make a direct detection, he deployed

massive metallic bars, whose resonances would be excited by the fluctuating strain of

a burst of gravitational waves. However, Weber’s subsequent claims of detection [139]

plunged the field into another vigorous dispute, as other experimental groups using his

methods did not detect any such events [135, 83], while theorists struggled to explain

how bursts of such staggering intensity could come about [57, 95].

As yet, no direct detection of gravitational waves has been confirmed, although

compelling indirect evidence for their existence was provided by observations of orbital

decay in the Hulse-Taylor binary pulsar system [134]. Today’s most sensitive and

wideband detectors use laser interferometry to monitor displacements across kilometer-

scale baselines. The conceptual basis for this approach was suggested by Felix Pirani

in 1956 [115], and a prototype was built in 1971 by Robert Forward (a former student

of Weber) [97]. In 1972, Rainer Weiss made a comprehensive study of interferometric

gravitational wave detection [140]. With remarkable foresight, his analysis charted

essentially all of the noise sources that limit the performance of interferometers today.

Subsequently a global network of interferometers has developed, consisting of

16



the Laser Interferometer Gravitational-wave Observatory (LIGO), which operates

detectors in the U.S. states of Washington and Louisiana [4], as well as the GEO600

detector in Germany [65] and the Virgo detector in Italy [10]. Activities within this

network have been coordinated so as to improve the chance of multiple detections of

the same event, in order to verify the detection and to localize the source of the waves.

In the Initial LIGO phase of operations, between 2002 and 2007, the LIGO

detectors completed five “science runs” in which several years of observations were

accumulated, at progressively higher levels of sensitivity. The sensitivity eventually

attained the limits anticipated in the interferometer design. A sixth science run

concluded in 2010, in an incrementally upgraded configuration known as Enhanced

LIGO.

At present a more radical upgrade called Advanced LIGO is under construction.

The new interferometers will have a target sensitivity substantially exceeding that of

any previous detector, and they are widely expected to usher in the era of gravitational

wave astronomy.

1.2 Macroscopic quantum mechanics

In Advanced LIGO, quantum fluctuations have emerged as the fundamental limit to

measurement across a broad band of frequencies. It is a striking fact that the scale

of displacement these interferometers must measure to detect gravitational waves of

astrophysical origin (about 10−19 m) is also the scale at which the quantum mechanics

of the interferometer becomes important. This is, however, no coincidence, since the

quantum limit is what will always remain to challenge us in a carefully engineered

instrument, where every other species of noise has been wrung out of the data.

Gravitational wave interferometers are among the largest of the many categories of

mechanical systems now poised to explore the quantum regime. Macroscopic quantum

mechanics has emerged as an active and global experimental research program in

its own right. As the subject of thought experiments, it can be traced back at least

to Einstein and Schrödinger’s exchange. Subsequently, theoretical investigations

17



were motivated by the quantum measurement limits in gravitational wave detection,

including pioneering work by Braginsky and Manukin [24], and Caves [35, 34]. A further

impetus was provided by the impressive experimental progress seen in laser cooling and

control of ions and atoms. Numerous proposals were advanced for observing quantum

behavior such as unitary evolution, superposition, entanglement, and decoherence in

opto-mechanical systems [85, 20, 136]

Within the past decade, a remarkably wide assortment of micro-mechanical experi-

ments have marched toward the ground state of motion, an initial milestone marking

the quantum regime. (The status of the field was recently reviewed in reference [17].)

The feature uniting most of these systems is that cooling techniques that exploit

strong optical forces have proven to be an essential resource.

1.3 Ponderomotive interferometer

Quantum back-action, also called radiation pressure noise, is likely to be the first

signature of quantum mechanics accessible in gravitational wave interferometers and

related systems. With this in mind, we have worked on modeling, constructing, and

debugging a ponderomotive interferometer, designed to allow radiation pressure to

play as prominent a role as possible. The motivation for this experiment arose from

the challenges faced by future gravitational wave detectors, in which radiation pressure

and quantum noise were expected to become important. However, we soon became

aware of, and were inspired by the parallels between our efforts, and those of the

community of researchers pushing micro-mechanical devices toward the quantum

ground state.

The ponderomotive interferometer is designed around gram-scale suspended mirrors

and meter-scale optical path lengths — straddling the kilogram-kilometer scale of

gravitational wave interferometers, and the sub-microgram, sub-millimeter scale typical

of micro-mechanics. Distinct from the micro-mechanical community, it features very

compliant mirror suspensions: its mirrors respond to an applied force almost as free

masses would do. As a result, in our experiment the radiation pressure forces can

18



completely overwhelm the mechanical restoring and damping forces exerted by the

suspension. We have exploited this feature to demonstrate powerful new methods

for optical trapping and cooling of macroscopic mirrors. We also expect to observe

quantum back-action in this system, as well as quantum correlations of the optical

field induced by the opto-mechanical coupling.

The rest of this thesis is organized as follows. Chapter 2 offers a review of quantum

opto-mechanics, culminating with the Standard Quantum Limit and ponderomotive

squeezing of the quantum noise of light. In chapter 3, we present the design and

the current experimental status of the ponderomotive interferometer. Chapter 4

tells the story of a sequence of experiments demonstrating trapping and cooling of

gram-scale and kilogram-scale mirrors. We also discuss the prospects for attaining the

quantum ground state via these techniques. Chapter 5 analyzes thermal fluctuations

of the gram-scale mirror suspension, which have so far prevented us from observing

quantum back-action in the ponderomotive interferometer. An approach is suggested

for mitigating the suspension thermal noise. In chapter 6 we propose a method for

entangling optical fields in the ponderomotive interferometer. Finally, we discuss the

outlook for future experimental work in chapter 7.
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Chapter 2

Theoretical foundations

In this chapter, we provide the conceptual background needed to understand the

design of the ponderomotive interferometer, and to motivate the goals we have for its

performance. In section 2.1, we review topics from optical interferometry. Then we

introduce the opto-mechanical coupling of light and the mirrors of an interferometer

in section 2.2. Finally, in section 2.3, we progress to a fully quantum treatment of the

opto-mechanical system.

2.1 Interferometry

Interference is a well known effect in optics, observed when two phase-coherent optical

fields overlap. It serves as powerful evidence of the wave nature of light. Interferometry

is a precision measurement technique that involves superimposing optical fields to

generate a pattern of interference fringes, and then measuring some aspect of that

pattern. Often the goal is to learn about phenomena that influence the phase of the

optical fields in the interferometer. For example, as we noted in chapter 1, a passing

gravitational wave may cause the length of an optical path to vary, hence modulating

the phase.

Since an optical field oscillates on an ultra-fast timescale (10−14 seconds or less), its

phase is sensitive to extremely subtle effects. But for the same reason, it is also quite
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Figure 2-1: Schematic layout of a Michelson interferometer, illustrating the optical fields
and path lengths.

difficult to register the phase directly.∗ However, the brightness of an interference

fringe is a phase-sensitive observable that is simple to quantify using a photodetector

(and may well be visible to the eye).

In the following sections we introduce the building blocks for the ponderomotive

interferometer: the Michelson interferometer, and the optical cavity.

2.1.1 Michelson interferometer

The key feature of the Michelson interferometer is that it allows us to make measure-

ments that are unaffected (to first order, at least) by fluctuations of the amplitude

and phase of the light source. Albert Michelson in 1881 [94] managed to observe inter-

ference fringes in his apparatus lit by flickering, incoherent white light from a burning

flame — demonstrating the power of a clever experimental design in overcoming

technological limitations.

The optical layout of the Michelson interferometer is shown in figure 2-1. Suppose

the optical field applied to the input port (also called the symmetric port) of the

beamsplitter is Ein. Then after propagating the field in each arm out to the end

mirror, and back to recombine at the beamsplitter, the field at the output port (or

∗Although it has recently become possible to record the waveform of an optical field directly [62],
interferometric techniques remain far more developed and easier to apply.
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antisymmetric port) can be written as follows:

ẼAS = (ẼintBSe
iΩlx/crXe

iΩlx/crBS)− (ẼinrBSe
iΩly/crY e

iΩly/ctBS) (2.1)

Here we are working in the frequency domain,† so that Ẽ denotes the Fourier component

of the field varying at frequency Ω. The variables rj and tj denote the amplitude

reflectivity and transmissivity of the optical element j.

We will assume a perfectly balanced (50:50) beamsplitter and neglect losses, so

that rBS = tBS = 1/
√

2, and rX = rY = 1. Then the output field simplifies to

ẼAS =
1

2
(e2iΩlx/c − e2iΩly/c)Ẽin (2.2)

Note that if the arm lengths are made identical, then ẼAS → 0 for all Ω, and so the

fringe at the antisymmetric port is dark — no matter what the characteristics of

the light source are. For a nearly monochromatic source such as a laser, operating

at a frequency Ω = ω0 (wavelength λ = 2πc/ω0), the fringe becomes dark whenever

lx − ly is equal to an integer number of half-wavelengths. In the rest of this section,

we will assume such a source is being used. This allows us to drop the frequency

domain notation, since we consider only a single frequency component. Then the

power emerging from the antisymmetric port is given by

PAS = |EAS|2

= Pin sin2 φ
(2.3)

where φ = (lx − ly)ω0/c.

The fringe at the antisymmetric port can be used as a readout for small displace-

ments of the differential arm length lx− ly. Perhaps the simplest strategy for this is to

adjust the arm lengths, introducing an offset in φ, in order to move the antisymmetric

†We adopt the following conventions for frequency domain calculations in this thesis. The complex
exponential propagation factor is e−iΩ(t−x/c), so that d

dt → −iΩ. The Fourier transform is defined by

x̃ =
∫
dt xeiΩt, and the inverse transform is defined by x =

∫
dΩ
2π x̃e

−iΩt. The power spectral density,
denoted Sx(Ω), is one-sided and its units are spectral power per 1 Hz bandwidth.
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port away from the dark fringe slightly. Then PAS becomes linearly dependent on

small fluctuations δφ, with the slope given by

dPAS
dφ

= 2Pin sinφ cosφ (2.4)

The offset in φ should be kept small, for two reasons. First, away from the

dark fringe, PAS becomes increasingly sensitive to any technical imperfections (excess

amplitude and phase fluctuations) of the laser. Second, even if the laser is ideal, the

fundamental shot noise associated with photodetection of laser light grows as more

power is detected. Its power spectral density is‡

S
(S)
P (Ω) = 2~ω0P (2.5)

By combining equations (2.3)–(2.5), we can obtain the power spectral density of a

measurement of δφ, as limited by shot noise:

S
(S)
δφ (Ω) =

(
dPAS
dφ

)−2

S
(S)
PAS

(Ω)

=
~ω0

2Pin

1

cos2 φ

(2.6)

This result confirms that the measurement sensitivity is optimized near the dark

fringe.

We note that in practice, achieving the shot noise limit using this simple readout

strategy can be a challenge — especially in interferometers that are more elaborate

than the simple Michelson arrangement [89, 52]. In our experiment, it is convenient

to use a slightly more complex Michelson readout scheme, the discussion of which is

deferred to chapter 3.

‡The presence of Planck’s constant in equation (2.5) is an indication that shot noise is rooted in
the quantum fluctuations of the light. We will treat the effect more systematically in section 2.3
below, where the quantum description of the optical field is introduced.
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Ein
Eout

E

Figure 2-2: Schematic layout of a Fabry-Perot optical cavity. The polarizing beamsplitter
(PBS) and quarter wave plate (λ/4) separate the reflected field Eout from the input field Ein.
In this configuration a phase-sensitive detector (such as a homodyne detector) must be used
to monitor the cavity displacement. We use a different readout strategy in the experiment,
which is discussed in chapter 3.

2.1.2 Optical cavity

An optical cavity (or Fabry-Perot interferometer) is composed of two mirrors that face

each other, as depicted in figure 2-2. Light can undergo repeated reflections back and

forth, making numerous round trips inside the cavity, which prolongs and intensifies

the interaction between the optical field and the mirrors.

Interference occurs at the input mirror, which is weakly transmissive with amplitude

reflectivity rI slightly less than 1. (The end mirror we idealize as a perfect reflector.)

When the cavity is illuminated with a field Ein, a small portion of the incoming light

leaks through the input mirror, into the cavity. Neglecting losses, we can write this

field as tIEin, where tI =
√

1− r2
I is the input mirror’s amplitude transmissivity. If

the light source has been on for some time, there will also be light reflecting from the

inside surface of the input mirror, which has already made one or more round trips

within the cavity. We need to sum up these components in order to find the total

cavity field E:

Ẽ = tIẼin + tIẼinrIe
2iΩL/c + tIẼin(rIe

2iΩL/c)2 + . . .

=
tI

1− rIeiφ(Ω)
Ẽin

(2.7)

where φ(Ω) = 2ΩL/c is the round trip phase.

Note that perfect constructive interference occurs whenever the cavity length L is

equal to an integer number of half-wavelengths, so that φ ≡ 0 mod 2π. Near these
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working points, the cavity exhibits a resonant response. To better characterize this

response, we will consider a small offset δφ � 1 in the vicinity of a resonance at

frequency Ω = ωc, and then approximate the cavity field as a rational function (using

the Padé approximant). We find that

Ẽ ≈ 2

tI

1

1− i2 δφ
t2I

Ẽin (2.8)

Here we have also assumed tI � 1, and kept only the leading order terms in tI and

δφ.

For a monochromatic light source, the optical power inside the cavity near resonance

can be written as follows:

P = |E|2

≈ 4

t2I

1

1 + (2 δφ
t2I

)2
Pin

=
4

t2I

1

1 + δ2
Pin

(2.9)

Defining δ = 2 δφ/t2I , we can see that equation (2.9) for the intracavity power is a

Lorentzian in δ. The parameter δ we refer to as the cavity’s dimensionless detuning, or

simply the detuning. In these units the cavity linewidth§ is normalized to 1. However,

it is also very common to speak of the detuning in units of frequency, where it is

defined as ∆ = ω0 − ωc = γcδ, and γc =
t2Ic

4L
is the linewidth in (angular) frequency

units. There are two further cavity parameters that it is useful to be aware of: the

free spectral range FSR =
c

2L
is the spacing between cavity resonances in (ordinary)

frequency units; and the finesse F = FSR π/γc is the ratio of the FSR to a resonance’s

full width.

Since we are neglecting losses, and the end mirror is totally reflective, all the

optical power that is incident on the input mirror must ultimately be reflected back

toward the light source. The reflected field Eout has two components: the prompt

§The linewidth as it is defined here refers to the half width at half maximum (HWHM) of the
resonance.
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reflection of the field Ein from the input mirror, and the leakage of the cavity field E.

We write it as

Ẽout = rIẼin − tIe2iΩL/cẼ

≈ −Ẽine
2iδ

(2.10)

Notice that near the resonance, the phase of the reflected field Eout is linear in the

detuning δ, with a slope of 2. Thus it is also linear in the cavity round trip phase

δφ, with a slope of 4/t2I = 2F/π. In other words, the phase of Eout behaves as

though the input light had made the round trip between the mirrors 2F/π times, each

time incrementing its phase by δφ. In a high finesse cavity, this gain factor may be

enormous — which makes such cavities very useful for optical sensing applications.

However, the tradeoff is that the phase of Eout has a linear response only in

a narrow range around the resonance. If the cavity is allowed to drift away from

resonance, the prompt reflection soon dominates over the cavity signal, and so the

sensitivity to the round trip phase becomes almost nil.

2.2 Opto-mechanics

Since the theory of electromagnetic radiation was set forth by James Clerk Maxwell,

it has been understood that light carries momentum, which it can impart to matter

that it comes into contact with. This radiation pressure, though omnipresent, is so

feeble that we seldom notice it in everyday life. However, if you have ever observed

a comet’s tail projecting away from the sun, you have witnessed radiation pressure

in action. The effect also plays an important role in understanding how the interior

structure of a star supports itself against gravity, how matter in the early universe

behaved shortly after the big bang, and a variety of other phenomena in the domain

of astrophysics.

In 1873, Maxwell [91] had already anticipated that a laboratory demonstration of

radiation pressure should be possible, writing that “the concentrated rays of the electric

lamp . . . falling on a thin metallic disk, delicately suspended in a vacuum, might
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perhaps produce an observable mechanical effect.” A number of early experiments

were made in pursuit of this goal, all of them plagued to some degree by residual

gas effects.¶ The first widely accepted experimental results were obtained in 1900 by

Lebedev [81], and independently by Nichols and Hull in 1901 [102]. This body of work

is now recognized as the genesis of the field of opto-mechanics.

Subsequently, in the 1960s, Braginsky inaugurated the study of dynamic effects of

radiation pressure in a cavity, both theoretically [22], and in an experiment using a

microwave resonator [23]. The effects that were identified by Braginsky and co-workers

arise from a kind of feedback that can develop in the dynamics of the mirrors and the

cavity field. The conditions under which this feedback occurs are the following:

• One (or more) of the cavity mirrors is movable.

• The radiation pressure force is strong enough to have an appreciable influence

on the movable mirror.

• The cavity is detuned to either side of a resonance.

In these circumstances, the radiation pressure force,

FRP =
2P

c
(2.11)

causes a displacement of the movable mirror. This displacement alters the detuning

of the cavity, thereby imposing a change in the intra-cavity power P according to

equation (2.9). As the intra-cavity power changes, so does the radiation pressure

force in equation (2.11) — thus closing the feedback loop. The feedback may be

either positive or negative depending on the sign of the detuning. Figure 2-3 offers a

graphical interpretation of this phenomenon, which is sometimes called “dynamical

back-action”.

¶A well known example is the Crookes radiometer, consisting of a black-and-white “light mill”
structure in a partially evacuated bulb. Residual gas effects are far in excess of radiation pressure in
this device.

28



−0.4 −0.2 0.0 0.2 0.4
0

50

100

150

displacement (nm)

R
P
fo
rc
e
(μ
N
)

Red-detuned
Anti-restoring
Damping

Blue-detuned
Restoring

Anti-damping

Figure 2-3: Classification of the radiation pressure forces that arise in a detuned optical
cavity. The force becomes linearly dependent on the mirror displacement, giving rise to a
spring-like force on one side of the resonance and an anti-spring on the other. The ellipses
represent the fact that the intra-cavity power lags the mirror motion, resulting in a type
of hysteresis that can either extract work from the mirror (damping it) or do work on it
(anti-damping), depending again on the sign of the detuning.
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2.2.1 Optical spring

In a detuned cavity, the dynamic radiation pressure force has a component that is

linearly proportional to the fluctuating displacement of the movable mirror. Typically

such fluctuations are kept small, and so this linear component dominates over the

nonlinear terms. A force that is linear in displacement is analogous to the restoring

force of a mechanical spring. Accordingly, this aspect of the radiation pressure force

has come to be known as the optical spring [29, 27, 128, 96, 38].

The optical spring can be described by a spring constant Ko, which is given by

Ko = −dFRP
dL

= −2

c

dP

dδ

dδ

dL

=
8Pinω0

γ2
cL

2

δ

2

(
1

1 + δ2

)2

(2.12)

provided that the cavity is illuminated by a laser with power Pin and frequency ω0.

Note that the sign of the detuning δ controls the sign of the spring constant. While a

positive detuning (in our convention) corresponds to a spring-like restoring force, a

negative detuning results in an anti -restoring force. An anti-restoring force, rather

than opposing the movable mirror’s departure from equilibrium, actually accelerates

it (which tends to destabilize the cavity).

If the movable mirror has mass m, then we can assign a resonant frequency

Ω2
o = Ko/m to the optical spring. Interpreting the pre-factor of equation (2.12) in

terms of a characteristic frequency Ωq, we can write

Ω2
q =

8Pinω0

mγ2
cL

2
(2.13)

Ko = mΩ2
q

δ

2

(
1

1 + δ2

)2

(2.14)

For the moment, Ωq merely represents a convenient bundle of parameters. However, it

will take on a deeper significance in section 2.3 below, when we discuss the quantum

limit of monitoring the mirror displacement.
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A particularly interesting situation occurs when the optical spring overwhelms the

spring constant of the movable mirror’s suspension, Km = mΩ2
m. Then the mirror no

longer resonates at Ωm, but at a new frequency Ω2
eff = (Km +Ko)/m, thus providing

a mechanical mode whose dynamics can be controlled by optical means. Several

advantages and applications of this regime will be discussed later on, in chapters 4

and 6.

Finally, notice that we have tacitly assumed in this calculation that the cavity

field responds instantaneously to the movable mirror. This assumption is also known

as the quasistatic (or adiabatic) limit. It is a valid approximation when considering

mirror motion at frequencies that are negligible compared to the cavity linewidth γc.

However, when we correctly account for the dynamics of the cavity field, we will

discover that the optical spring “constant” becomes frequency dependent. In fact,

at high frequencies the restoring (or anti-restoring) force must weaken, because the

cavity field cannot build up and decay fast enough to keep up with arbitrarily fast

motion of the movable mirror. The full optical spring constant Ko(Ω) will be derived

in section 2.3 below. Here we simply quote the result:

Ko(Ω) = mΩ2
q

δ

2

(
1

1 + δ2

)(
1

(1− iΩ/γc)2 + δ2

)
(2.15)

It is evident that equations (2.14) and (2.15) agree in the limit where Ω� γc.

It is also apparent that as Ω increases, Ko rotates in the complex plane, acquiring

an imaginary component. The implications of this imaginary part of the spring

constant will be considered next.

2.2.2 Optical damping

We can relax the quasistatic limit somewhat by expanding Ko(Ω) in Ω. Then the

zeroth order term recovers the quasistatic spring constant of equation (2.14), while

the linear term is purely imaginary:

Ko(Ω) = mΩ2
q

δ

2

(
1

1 + δ2

)2(
1 + iΩ

2

γc

1

1 + δ2
+ . . .

)
(2.16)

31



In the frequency domain, the iΩ term takes the time derivative of the displacement, so

this added term represents a force that is proportional to the velocity, rather than the

position. In other words, it describes viscous damping, with a damping rate‖ given by

Γo = −Im{Ko}
mΩ

= −
Ω2
q

γc
δ

(
1

1 + δ2

)3 (2.17)

Ordinary viscous damping takes place when the detuning is negative, but a positive

detuning gives rise to anti -damping. An anti-damping force causes small oscillations

of the movable mirror to grow exponentially in amplitude. (Like an anti-restoring

force, it is a destabilizing effect.)

Finally, just as it is possible for the optical restoring force to overwhelm its

mechanical counterpart, the optical damping force may also dominate, so that the

new effective damping rate for the mirror becomes Γeff = Γm + Γo. We will revisit the

topic of optical damping forces in chapter 4.

2.2.3 Parametric instability

Under the opto-mechanical coupling we have been discussing, the cavity mode can be

thought of as a parametric oscillator, whose resonant frequency ωc(L) is a function

of the displacement of the movable mirror. Optical anti-damping of the mirror, if

strong enough to make the total effective damping Γeff negative, will destabilize the

system, resulting in a parametric instability. Although the phenomenon is generic,

we most often use the term “parametric instability” to refer to a specific type of

opto-mechanical interaction, involving one or more of the internal vibrational modes

of a cavity mirror [26, 70, 25, 144, 38].

These modes are engineered to be quite stiff, in order to keep the mirror surface

rigid. As a result, the resonances may be found at frequencies well above the cavity

‖The damping rate as we define it turns out to be equal to the full width at half maximum
(FWHM) of the resonance. However, recall that the linewidth was defined as the HWHM. We live
with this minor discrepancy because it simplifies the presentation, absorbing many factors of 2. In
our notation damping rates are written uppercase (Γ) and linewidths are lowercase (γ).
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linewidth. Typically, the optical restoring force has a negligible effect on the dynamics

of such a mode.

Nonetheless, if the mode’s mechanical quality factor Qm = Ωm/Γm is high (implying

a small damping rate Γm), then the dynamics may be tipped into instability by even

a modest optical anti-damping force. Note that it is desirable to make cavity mirrors

out of very low-loss materials in order to minimize thermal fluctuations of the mirror

surface, which results in a high quality factor for the internal modes. (See chapter 5

for more discussion on thermal noise.) The consequence is that parametric instabilities

are easily triggered, and they may limit the power handling ability of the cavity or

the range of detunings where it can be operated.

The “relaxed” quasistatic approximation we introduced in the previous section is

not adequate to describe the situation where the mode frequency of interest is outside

the cavity linewidth. Instead we have to go back to the full expression for the complex

spring constant given in equation (2.15). Then we find that for frequencies Ω & γc,

the optical damping rate has a frequency dependence:

Γo(Ω) = −Im{Ko(Ω)}
mΩ

= −
Ω2
q

γc
δ

(
1

1 + δ2

)(
1

(1 + δ2 + (Ω/γc)2)2 + 4(Ω/γc)2

) (2.18)

At frequencies Ω� γc, γcδ, it can be seen that Γo(Ω) is aggressively filtered by the

cavity, and scales as γcΩ
−4. Therefore, an effective way to minimize parametric

instabilities is to arrange that the cavity linewidth is small relative to the mirror

internal mode frequencies.

We note, however, that in very long cavities (like those found in gravitational

wave interferometers) the picture is more complicated, because the internal mode

frequencies may be comparable to the cavity FSR. Consequently, mechanical modes

can scatter light into other optical modes of the cavity. This hazard was pointed out

by Braginsky and co-workers [26]. Fortunately it does not arise for the tabletop-scale

interferometer that is the focus of this thesis, where the FSR is 150 MHz or more.
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2.3 Quantum opto-mechanics

In this section, we present a review of the quantum mechanical model of an optical

cavity with a movable mirror. We follow the quantum Langevin approach set forth in

references [53, 60] and many other recent papers. Starting from the Hamiltonian, we

will derive the equations of motion and solve them, verifying that they reproduce the

previously discussed classical dynamics of the optical spring. We will also uncover the

fundamental limit of displacement sensitivity in this system: the quantum noise.

2.3.1 Radiation pressure Hamiltonian

The paradigmatic example of an opto-mechanical system is a Fabry-Perot cavity in

which one (weakly transmitting) mirror is fixed, and the other (perfectly reflecting)

mirror can move along the cavity axis, being suspended as a harmonic oscillator. The

light in the cavity couples to the position of the movable mirror through radiation

pressure. The Hamiltonian of this system is written as follows:

Hs = ~ωca†a+
p2

2m
+

1

2
mΩ2

mx
2 +Hint (2.19)

The first term represents the energy of the quantized electromagnetic field in the

cavity mode, with resonant frequency ωc and annihilation operator a†, a. The next

two terms describe the energy of the quantized movable mirror, with mass m, resonant

frequency Ωm, momentum operator p and position x. The non-vanishing commutation

relations are [x, p] = i~ and [a, a†] = 1.

The radiation pressure interaction is governed by the Hint term:

Hint = −~ωca†a
x

L
(2.20)

A very simple, albeit informal justification for this term can be given, following

reference [108]. First we recall that for a fixed position of the movable mirror, the

Hamiltonian is H0 = ~ωca†a, and ωc is related to the cavity length according to

ωc = nπc/L, where n is a positive integer. If the mirror is now moved slightly
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(L→ L+ x), the Hamiltonian becomes

H ′0 = ~ωc
L

L+ x
a†a

≈ ~ωca†a
(

1− x

L

)
= H0 +Hint

(2.21)

It should be noted that the Hamiltonian Hs considers only a single cavity mode,

and we have so far ignored couplings to the fields outside the cavity. We were obliged

to assume that the mirror’s displacement is small (x� L), in order to approximate

Hint as linear in equation (2.21). We also assumed that the mirror’s motion is slow

(Ωm � FSR), so that no photons are scattered into other cavity modes. (A more

rigorous and general treatment relaxing these assumptions was offered by Law [80].)

In order to include the illumination of the cavity by a laser source, we can add a

driving term [60]

Hd = i~Ein(a†e−iω0t − aeiω0t) (2.22)

which describes a coherent driving field at frequency ω0 (which may be detuned from

ωc). The coupling rate is |Ein| =
√

2Pinγc/(~ω0).

The environment and its couplings add still more terms to the Hamiltonian [53]:

Hse = ~
∑
n

ωna
†
nan+~

∑
n

gn
(
a†na+ a†an

)
+
∑
n

(
p2
n

2mn

+
1

2
mnΩ2

n(xn − x)2

)
(2.23)

including couplings for the cavity field (second term) and mirror (third term). Both

degrees of freedom are coupled to baths of harmonic oscillators. The couplings look

different because we assume the cavity field evolves rapidly compared to its relaxation

time (ωc � γc): thus we ignore all ana and a†na
† terms, which carry an e±2iωct

dependence in the rotating frame. The mirror has a more general linear coupling

appropriate for the case of quantum Brownian motion.

Collecting all of these terms, we write the total Hamiltonian as

H = Hs +Hd +Hse (2.24)
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2.3.2 Quantum Langevin equations

The “quantum Langevin equations” are merely the Heisenberg equations of motion

for the system operators a, x, and p, under the Hamiltonian we have just described.

Writing them in the interaction picture with respect to ~ω0a
†a, we obtain

ẋ =
p

m

ṗ = −mΩ2
mx− Γm

p

m
+

~ωc
L
a†a+ FT

ȧ = −(γc − iω0 + iωc)a+ iωc
x

L
a+ Ein +

√
2γcain

(2.25)

Here FT and ain are the noise operators that we get by taking the continuum limit of

the environmental couplings to the mirror and cavity field, respectively [53].

This is a set of coupled, nonlinear differential equations for the system operators.

An approximate solution can be found for the case of an intense, steady driving field.

Under these conditions the system settles into a steady state where the cavity field

has a coherent amplitude ā and the mirror has a mean displacement x̄. After taking

expectation values of the above equations (with time derivatives set to zero), they

reduce to the following:

x̄ =
~ωc|ā|2

mΩ2
mL

ā =
1

γc

Ein

1− iδ

(2.26)

a set of coupled, nonlinear algebraic equations whose solution determines the steady

state. In this step we have introduced the cavity field detuning, which includes a

correction for the mirror’s mean displacement:

δ =
ω0

γc
−
(

1− x̄

L

) ωc
γc

(2.27)

Note that since we are free to choose the phase of the input field in Ein, we can adjust

it so that ā is real, which will streamline our calculations:

ā =
1

γc

|Ein|√
1 + δ2

(2.28)
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The next step is to simplify the quantum Langevin equations by linearizing around

the steady state. From each operator O we subtract off the classical steady state mean

Ō, leaving only the quantum fluctuation operator. (For brevity, we will just relabel

O− Ō as O.) The fluctuations are assumed small, and their cross-couplings neglected.

The resulting equations are:

ẋ =
p

m

ṗ = −mΩ2
mx− Γm

p

m
+

~ωc
L
ā
(
a† + a

)
+ FT

ȧ = −(1− iδ)γca+ iωcā
x

L
+
√

2γcain

(2.29)

The linearized equations are straightforward to solve in the frequency domain:

−iΩx̃ =
p̃

m

−iΩp̃ = −mΩ2
mx̃− Γm

p̃

m
+

~ωc
L
ā
(
ã† + ã

)
+ F̃T

−iΩã = −(1− iδ)γcã+ iωcā
x̃

L
+
√

2γcãin

(2.30)

In the solution, it is convenient to express the optical fields in terms of the

quadrature operators X = (a† + a)/
√

2 and Y = i(a† − a)/
√

2, often called the

amplitude quadrature and phase quadrature, respectively. The quadrature operators

are Hermitian, describing physical quantities that can be measured using a homodyne

detector.

Solving first for the mirror dynamics, we find:

x̃ = χ(Ω)(F̃T + F̃RP )

χ(Ω) =
1

Km(Ω) +Ko(Ω)−mΩ2

(2.31)

where χ(Ω) is the susceptibility (transfer function of force to displacement), with the

mechanical spring constant Km(Ω) = mΩ2
m − iΩΓm, and the optical spring constant

Ko(Ω) given by equation (2.15). We have approximated ω0/ωc ≈ 1 in this step.

Next we investigate the F̃RP term in equation (2.31). This term describes a
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fluctuating force that is driven by the quantum noise of the optical field — in other

words, a quantum radiation pressure force:

F̃RP =

√
~mΩ2

q

1 + δ2

(1− iΩ/γc)X̃in − δỸin

(1− iΩ/γc)2 + δ2
(2.32)

The power spectral density of this force, S
(RP )
F (Ω), can be determined using our

knowledge of the correlation functions of the input field ain, which are

〈0|ain(t)a†in(t′)|0〉 = δDirac(t− t′)

〈0|a†in(t)ain(t′)|0〉 = 〈0|ain(t)ain(t′)|0〉 = 〈0|a†in(t)a†in(t′)|0〉 = 0
(2.33)

for the vacuum state |0〉. Here the Dirac delta correlation function tells us that the

spectrum of the input noise is “white” (that is, uniform for all frequencies). Note that

the power spectral density of an operator O is related to the correlation function via

the Fourier transform, as follows:

πδDirac(Ω− Ω′)SO(Ω) =
1

2
〈Õ(Ω)Õ†(Ω′) + Õ†(Ω′)Õ(Ω)〉 (2.34)

Putting all of the pieces together, we find that the power spectral density of the

quantum radiation pressure force is given by:

S
(RP )
F (Ω) =

~mΩ2
q

1 + δ2

(
1 + δ2 + (Ω/γc)

2

(1 + (δ − Ω/γc)2)(1 + (δ + Ω/γc)2)

)
(2.35)

This formula is worth highlighting, even though it is a little unwieldy. It expresses

the strength of the quantum back-action in an optical cavity at any frequency and

detuning (within the limits of our approximations). If we make the “relaxed” quasistatic

approximation, keeping terms up to first order in Ω/γc, then we find that within the

cavity linewidth, the spectrum is approximately white:

S
(RP )
F (Ω) ≈ ~mΩ2

q

(
1

1 + δ2

)2

(2.36)
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Radiation pressure is central to the work described in this thesis, and the expression

we have just obtained for the quantum fluctuations of this force is a result that we

will refer to again and again. However, radiation pressure is only half of the story of

quantum noise in this system. The other half, shot noise, will be considered next.

2.3.3 Cavity output field

Shot noise comes into play when we try to gather information about the state of the

cavity, by measuring the output optical field. To compute the output field, we need to

use the cavity input-output relation [54]:

aout =
√

2γca− ain (2.37)

Applying this relation, we can find the output quadrature operators X̃out and Ỹout.

More generally, we can rotate the quadrature basis by θ, to obtain the operator for

any intermediate quadrature phase: Ỹθ = cos(θ)Ỹout − sin(θ)X̃out. We find that the

mirror displacement signal x̃ shows up in the output with the following structure:

Ỹθ = C(θ,Ω)(x̃+ x̃S(θ)) (2.38)

Here C(θ,Ω) is the transfer function of displacement to Ỹθ, while x̃S(θ) is a noise term

of optical origin, called the shot noise of Ỹθ, calibrated in displacement units.

The exact formulas for C(θ,Ω) and x̃S(θ) are rather cumbersome, so we do not

reproduce them here. However, using them we can obtain the power spectral density

of a shot noise limited displacement measurement, written in the “relaxed” quasistatic

limit:

S(S)
x (θ,Ω) ≈ ~

mΩ2
q

(
(1 + δ2)3

(cos θ + δ sin θ)2

)
(2.39)

This result tells us two things. First, the shot noise is approximately white within the

cavity linewidth; and second, to optimize the ratio of the displacement signal to the
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shot noise, we should measure in a specific quadrature phase given by:

θopt =
δ

|δ|
arccos

1√
1 + δ2

(2.40)

After the optimization, the displacement sensitivity as limited by shot noise becomes

S(S)
x (θopt,Ω) ≈ ~

mΩ2
q

(1 + δ2)2 (2.41)

2.3.4 Standard Quantum Limit and beyond

Together, shot noise and radiation pressure noise determine the quantum-limited

sensitivity of an opto-mechanical sensor, such as a gravitational wave interferometer.∗∗

How the two quantum noises combine depends on how they are correlated.

For the situation we have been discussing, where the input noise consists of vacuum

fluctuations, and we measure Ỹθopt , it can be shown that the shot noise and the

radiation pressure noise are uncorrelated. So we simply add up the power spectral

densities given in equations (2.36) and (2.41):

Sx(Ω) = |χ(Ω)|2S(RP )
F (Ω) + S(S)

x (θopt,Ω)

≈ ~mΩ2
q |χ(Ω)|2

(
1

1 + δ2

)2

+
~

mΩ2
q

(1 + δ2)2

= ~|χ(Ω)|
(
|K(Ω)|+ 1

|K(Ω)|

) (2.42)

where K(Ω) = mΩ2
qχ(Ω)/(1+δ2)2 is the factor that determines the relative contribution

of radiation pressure and shot noise. Apparently the noise is minimized when |K(Ω)| =

1, so that both contribute equally. The limiting sensitivity of this carefully optimized

∗∗One might ask whether quantum fluctuations intrinsic to the mirror (as opposed to those of the
light) play any role in limiting the sensitivity. The answer, for the interferometer configurations we
will discuss in this thesis, is no — they do not [28]. Even the room-temperature thermal fluctuations
of the mirror, which are much larger than the zero-point fluctuations, may be dominated by the
light’s radiation pressure if a low loss mirror suspension is used. Note that in our formalism, the
quantum and thermal fluctuations of the mirror suspension are both contained in FT . For details of
the quantum Langevin treatment of these noises, see reference [53] and chapter 6.
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measurement is known as the Standard Quantum Limit (SQL):

S(SQL)
x (Ω) = 2~|χ(Ω)| (2.43)

Note that in general, it is only possible to arrange that |K(Ω)| = 1 at a single

frequency Ω. For example, if the cavity is at zero detuning and the mechanical spring

constant is negligible, then we find that |K(Ω)| = (Ωq/Ω)2. So we can interpret Ωq as

the frequency at which the quantum limited sensitivity reaches the SQL in this case.

At frequencies lower than Ωq, the radiation pressure dominates the shot noise, while

at higher frequencies the reverse is true.

However, the Standard Quantum Limit is not the end of the story. The limit is only

valid when the optical noise is driven by vacuum fluctuations and the measurement

quadrature is Ỹθopt . If we relax either of those assumptions, then we find that radiation

pressure and shot noise can become correlated, and the SQL can in fact be surpassed.

Along these lines a variety of practical proposals exist for beating the SQL (see

for example reference [76]). We will concentrate on a related scheme for engineering

quantum correlations in the output optical fields, which is of special relevance for the

interferometer that is the topic of this thesis.

When the quantum noise is correlated between the two quadratures Xout and

Yout, we can choose a measurement quadrature Yθ such that the noise cancels at least

partially, permitting the measured spectral density to drop below the normal shot noise

level, SYθ(Ω) = 1 (in shot noise units). Such a field is called “squeezed”. Squeezed

light can be used to improve the sensitivity of quantum noise limited measurements

and circumvent the SQL. Note that the uncertainty relation requires that in the

quadrature orthogonal to the measurement, there must be an excess of quantum noise

(which is known as “anti-squeezing”).

The opportunity to correlate the output quadratures opto-mechanically stems

from the fact that, according to equation (2.38), the output quadrature Yθopt has two

components, x̃ and x̃S(θopt), both of which are driven by different quadratures of the

input quantum noise.
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For convenience, we will consider a cavity at zero detuning, and neglect damping

and thermal noise. This causes the input-output relationship to take a particularly

simple form. According to equations (2.31) and (2.32), the mirror motion x̃ is driven

by radiation pressure fluctuations alone — and the radiation pressure fluctuations are

due only to the X̃in quadrature of the input noise. Meanwhile the shot noise term x̃S

in the optimal quadrature Ỹθopt = Ỹout arises solely from the input quadrature Ỹin.

To sum up these input-output relations, we can write

 X̃out

Ỹout

 =
1 + iΩ/γc
1− iΩ/γc

 1 0

K(Ω) 1

 X̃in

Ỹin

 (2.44)

Note that if radiation pressure dominates (|K(Ω)| � 1), then Ỹout becomes strongly

correlated with X̃out. And if we rotate the measurement quadrature X̃out slightly so as

to minimize the noise, then we find the optimal rotation angle θ(Ω) ≈ −1/K(Ω) and

SXθ(Ω)
(Ω) ≈ 1

|K(Ω)|2
(2.45)

which confirms that the output field is indeed squeezed.

For the scenario we have just discussed, the squeezing may be inconvenient to

observe and use in practice, because the low-noise quadrature may have a distinct

frequency dependence. For example, if the mirror is idealized as a free mass so that

χ(Ω) = −(mΩ2)−2, then the quadrature rotates as (Ω/Ωq)
2.

It is tempting to think of putting the movable mirror on a stiff mechanical suspen-

sion, which would allow χ(Ω) and K(Ω) to remain nearly constant below the resonant

frequency Ωm. However, such a suspension almost inevitably couples an excessive

amount of thermal noise onto the mirror, overwhelming the radiation pressure and

obliterating the squeezing.

This consideration led to a proposal to observe opto-mechanical squeezing with

the help of an optical spring, to stiffen the mirror’s response without adding thermal

noise [40] — which, in turn, motivated the construction of the experiment we will

describe in the next chapter.
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Chapter 3

The apparatus

This chapter is concerned with the ponderomotive interferometer’s design and its

as-built configuration (as of 2012). The goal of the design is to make the mirror

displacement due to radiation pressure fluctuations a dominant effect, overwhelming

all other noise sources. Observation of squeezing and entanglement of light should be

possible once this goal has been achieved, as discussed in chapters 2 and 6.

There were three earlier generations of this experiment in which the classical

dynamics of radiation pressure were studied using a simpler optical configuration (a

single cavity). Key features of the earlier setups are discussed in chapter 4, along

with the results we obtained, and they are described in detail in Thomas Corbitt’s

thesis [41].

3.1 Opto-mechanical system

A schematic of the interferometer’s opto-mechanical layout is shown in figure 3-1. The

main factors that affect the radiation pressure noise level are the laser powering the

interferometer, the finesse of the optical cavities, the mass of the cavity mirrors, and

the resonant frequencies of their suspensions. We discuss each of these factors below.
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Parameter Symbol Value Unit

Laser wavelength λ 1064 nm
Laser power Pin 4 W

Laser intensity noise 10−8 1/
√

Hz

Laser frequency noise 10−4 Hz/
√

Hz
Modulation frequency 25 MHz

Input mirror mass 250 gram
Input mirror resonant frequency 1 Hz

Input mirror transmission t2I 800 ppm
Input mirror radius of curvature RI 0.55 m

End mirror reduced mass m 0.5 gram
End mirror resonant frequency Ωm/2π 10 Hz

End mirror transmission t2E 10 ppm
End mirror radius of curvature RE 0.55 m

Loss per bounce 10 ppm
Michelson asymmetry 8.4 cm

Contrast defect εc 1 %
Cavity length L 1 m
Cavity finesse F 8000

Cavity linewidth (HWHM) γc/2π 10 kHz
Circulating power P 10 kW
Beam spot radius w 1 mm

End mirror coating thickness d 10 µm
Parallel coating loss angle φ‖ 400 ppm

Perpendicular coating loss angle φ⊥ 400 ppm
Substrate Young’s modulus Es 7.3× 1010 N/m2

Coating Young’s modulus Ec 1.1× 1011 N/m2

Temperature T 300 K

Table 3.1: Summary of parameters, their symbols, and their nominal values.
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Figure 3-1: Schematic layout of the ponderomotive interferometer.

3.1.1 Laser source

To power the interferometer, we use the Pre-Stabilized Laser (PSL) source that was

developed for Initial LIGO. This system is extensively documented elsewhere (see

for instance [125, 5, 6]); here we briefly review the important features. Other than a

custom intensity stabilization servo [121], our setup makes no significant departures

from the LIGO PSL design.

The vital element is a Nd:YAG laser (Lightwave 126MOPA) that outputs continuous

wave 1064 nm light. This laser contains a master oscillator that supplies about 500 mW

of optical power, followed by a power amplifier that boosts the output to as much as

10 W. The master oscillator (Lightwave 126) provides a slow (temperature) and a fast

(piezoelectric) frequency actuator, which we use in concert with a phase modulator

(New Focus 4004) to stabilize the laser’s frequency. The power amplifier stage (a

sequence of diode-pumped Nd:YAG rods) includes the gain actuator [8] that we use

to stabilize the laser’s intensity.

The laser light is then mode-matched to a small, critically coupled cavity called the

“Pre-Mode Cleaner” cavity (PMC) [141]. The PMC is designed to separate the TEM00
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spatial mode, which is transmitted through the cavity when resonant, from higher

order spatial modes, which do not resonate alongside the TEM00 and are reflected.

Due to the cavity’s 5 MHz linewidth, it also rejects frequency and intensity noise

at the 25 MHz sideband frequency used by the interferometer’s length sensing and

control (which is discussed in section 3.2).

A small fraction of the PMC transmission beam is picked off and detected, in order

to obtain an error signal for the servo that stabilizes the laser’s intensity. This servo

achieves a relative intensity noise of about 10−8/
√

Hz [120].

Then another pickoff is used to stabilize the laser’s frequency to the resonance

of a monolithic reference cavity that is suspended inside a vacuum chamber. There

is an adjustable frequency offset between the laser and the reference cavity, which

is implemented using a voltage controlled oscillator (Synergy Microwave CRO-P-

AO3) that drives an acousto-optic modulator (Isomet 1205C-843). This arrangement

provides a fast frequency actuator that is crucial for controlling the interferometer

(see section 3.2.2). However, the VCO’s phase noise limits the frequency stability of

the PSL to about 10−2 Hz/
√

Hz.

Finally, the 25 MHz sidebands are applied by a phase modulator (New Focus 4004),

before the beam is mode-matched and steered into the interferometer.

3.1.2 Optical configuration

The ponderomotive interferometer’s configuration unites the features of two simpler

optical designs. First, each input mirror–end mirror pair forms an optical cavity (or

Fabry-Perot interferometer). Second, the beamsplitter and the input mirrors together

form a Michelson interferometer. The combined configuration is referred to as a

Fabry-Perot Michelson interferometer (FPMI).

The purpose of the Michelson interferometer is to reject the noise of the laser.

Even after the stabilization we apply to the laser source, its technical noise remains

far in excess of the shot noise level. But the laser light together with the excess noise

it bears is made to destructively interfere at the Michelson’s antisymmetric port.
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The available cancellation is limited by the so-called contrast defect, defined as

εc = PAS/Pin, where PAS is the power exiting the antisymmetric port on a dark fringe,

and Pin is the power incident on the beamsplitter (excluding, in both cases, any power

in the 25 MHz sidebands).

The typical value of εc that we obtain is better than 1%. This defect is highly

sensitive to the positioning of the mode-matching lenses in each arm. With the lens

positions optimized, much of the remaining defect is attributable to the nonuniform

spatial distribution of losses on the cavity mirrors.

The cavities are designed to be over-coupled: that is, the input mirror transmission

greatly exceeds both the end mirror transmission, and the absorption and scattering

losses. As a result, most of the optical power that enters the cavity ultimately exits

back through the input mirror. To the Michelson interferometer, each cavity essentially

looks like a somewhat lossy mirror — with the important exception that the cavity

treats the 25 MHz sidebands differently from the carrier field. (The sidebands are

discussed further in section 3.2.)

Optical cavities are used in order to magnify the effect of radiation pressure. On

resonance, the optical power incident on the cavity’s mirrors is multiplied by a factor

of 2F/π over the input power. (This factor is about 5000 for our cavities.) The

quantum radiation pressure fluctuations are multiplied by the same factor.

Recall from equation (2.36) that the back-action power spectrum is proportional

to the square of the “quantum frequency” Ωq. This fact implies that the spectrum

scales with the cavity finesse more favorably than it scales with the input power

(quadratic vs. linear). Physically, this difference arises because improving the cavity

finesse permits each photon to coherently interact with the mirrors a greater number

of times. It is analogous to shrinking the laser wavelength and thus increasing the

momentum imparted by each photon, while leaving the number of photons unchanged.

On the other hand, cranking up the input power increases the number of independent

photons, whose radiation pressure noise adds incoherently.

Thus, from an input laser power of 4 W, the mirrors experience radiation pressure

noise as large as a 100 MW laser would impart, if unassisted by cavities.
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The technical limit for our two-mirror cavities, as set by typical intra-cavity losses

of 10 ppm per bounce, is a finesse of about 300000. In order to remain in the over-

coupled regime that lets us efficiently extract the squeezing or entanglement generated

in the cavity, we must keep the finesse well below this limit. The designed cavity

finesse of 8000 was in fact chosen rather conservatively, and could be increased in a

future iteration of this experiment.

The geometry of each cavity, specified by its length L and the radii of curvature

of its mirrors RI and RE, must satisfy several constraints. For example, the spatial

mode should be stable, which requires the so-called g-factor, defined as g = gIgE =

(1− L/RI)(1− L/RE), to fall within the range 0 ≤ g ≤ 1. The value of g is tuned to

avoid degeneracy between the TEM00 mode and higher order modes.

Whenever large radiation pressure forces are developed in a suspended mirror

cavity, the Sidles-Sigg angular instability [129] is another consideration that constrains

the cavity geometry. In short, radiation pressure can exert not just a longitudinal

force on each cavity mirror, but also a torque. The magnitude and sign of the torque

depends on the beam spot position on the mirror, which in turn depends on the

alignment of the cavity. When a mirror becomes misaligned, this torque may tend

either to correct the alignment, or to deflect the mirror further. As the circulating

power increases, the radiation pressure torques also grow. Sidles and Sigg showed that

these torques eventually overwhelm the restoring torque of the mirror suspension, and

act to destabilize the system.

However, the power level at which the instability occurs depends on the cavity

geometry. In particular, it is advantageous to choose gI and gE both to be negative

(that is, RI < L and RE < L), in order to reduce the magnitude of the instability.

In addition, the cavity geometry determines the spatial extent of the cavity mode.

For a symmetric cavity (RI = RE), the radius∗ w of the beam spot on the mirrors is

given by w2 = λL/(π
√

1− g). The size of the beam spot is significant for two reasons:

• There is rumored to be a threshold optical power density of about 1 MW/cm2,

above which the mirror coatings may sustain damage. Accordingly, for our

∗A Gaussian beam’s radius extends to the 1/e point in the field amplitude.
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cavities with up to 10 kW of circulating power, the beam radius at the mirror

should be larger than about 0.5 mm.

• Larger beams pick up less of the thermal noise of the mirror coatings, because

they perform spatial averaging over a larger area of the mirror’s surface (see

section 3.4).

To make the beam spot size at the mirrors sufficiently large, we use a nearly concentric

geometry with gI ≈ gE ≈ 1.

Finally, increasing the cavity length not only helps to achieve a larger beam spot

size, it also narrows the cavity linewidth, which reduces the optical anti-damping

forces that give rise to parametric instabilities of the mirrors’ acoustic modes (see

chapter 2). The dimensions of our optical table limit the cavity length to L ∼ 1 m.

3.1.3 Mirrors and suspensions

The 1 gram end mirror of each optical cavity is responsible for converting the radiation

pressure force developed in the interferometer to an observable displacement. Thus

the design of this mirror and its suspension is of great importance.

The mass of the end mirror should be kept as low as possible, in order to optimize

the displacement per force. However:

• The surface area of the mirror has a lower bound, imposed by the need to limit

diffraction losses of the light in the cavity mode. †

• There is also a constraint on the mirror thickness. As the mirror is made thinner,

the resonant frequencies of its acoustic modes fall, causing them to be subjected

to stronger optical anti-damping forces which eventually give rise to parametric

instabilities (see chapter 2).

†A quick estimate of the diffraction losses can be made by approximating the beam profile as an
ideal Gaussian: then the fractional power lost due to clipping at radius r is given by e−2r2/w2

. Such
an estimate suggests that these losses are negligible in our experiment, as long as the beam remains
centered on the mirror within a few mm.
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Figure 3-3: The 1 gram end mirror and its suspension.
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Ultimately, the selection of a gram-scale mirror mass was driven by practical con-

siderations. Smaller would have been better, but this scale is close to the smallest

that can be accommodated using the handling techniques and suspension technologies

developed for gravitational wave interferometers.

The LIGO Small Optic Suspension (SOS) [69] is used for the top stage of the end

mirror suspension. It is also the sole stage used for suspending the input mirrors and

the beamsplitter (which have a mass of 250 grams). This suspension includes a set

of shadow sensors used to monitor the optic’s motion, a set of magnet-coil actuators

used to control the optic, and it serves to decouple the optic from motion of the table

at frequencies above its 1 Hz resonance.

The bottom stage of the end mirror suspension consists of a fused silica ring (of

the same dimensions as a 250 gram optic), and two specially tapered fused silica

fibers that support the 1 gram mirror (see figure 3-3). This suspension is designed to

minimize the amount of thermal noise that couples to the mirror.

In order to minimize the suspension’s thermal noise, it should be made as tenuous

as possible. Here a constraint arises due to the need to control the mirror’s pitch angle

using the coil-magnet actuators located on the ring. If the fibers were to be made

so floppy that the restoring force due to their elasticity became negligible, then the

mirror would always hang straight down under gravity, like a pendulum, no matter

how the ring was oriented.

The resonances of the seismic stack supporting the optics table impose an even

more stringent constraint. We prefer not to allow the suspension resonances to overlap

with those of the stack: such a coincidence would amplify the effect of ground motion.

Numerous stack resonances occur at frequencies ranging up to 7 Hz, which led us to

set the fundamental mode frequency of the end mirror suspension to 10 Hz.

The fiber’s tapering profile was tailored to maximize the mechanical quality factor

of the 10 Hz mode. The losses in the structure were expected to be dominated by

the ring/fiber joint and the fiber/mirror joint, because these joints were made of a

Vac-Seal (Tra-Con), a lossy epoxy adhesive. By including a stiff “rod” element at

the top of the fiber where it meets the ring, and a stiff “ear” at the bottom where it
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contacts the mirror, we can ensure that almost all of the energy of the 10 Hz mode

goes into bending the slender central section of the fiber, which is pristine, while the

portion in contact with the lossy adhesive scarcely moves.

This suspension design was successful in achieving a very high quality factor

of more than 106 for the 10 Hz mode (see chapter 5). The thermal noise of this

mode, considered by itself, is far better than is required to observe radiation pressure.

However, the off-resonant thermal noise of other modes of the structure, particularly

the modes involving the “ears”, remains a challenge. The ear mode issue is being

addressed by new mirror and suspension designs that increase the stiffness of the

ear-mirror bond. This topic is discussed further in chapter 5.

3.2 Length sensing and control

As the interferometer mirrors move in response to radiation pressure fluctuations,

ground motion, or other applied forces, the two arm cavity lengths change. A length

sensing and control (LSC) system is responsible for reading out the cavity and

Michelson displacements, and for applying feedback forces to the mirrors to hold them

in place. The procedure for taking the interferometer from the initial uncontrolled

state, to the operating state where all mirrors are under active control to “lock” it on

resonance, is discussed in section 3.2.3 below. For the moment, we will assume this

procedure has already been carried out successfully.

What is the fate of the 10 W of optical power that enters the interferometer when

locked? To reject excess light and noise at the antisymmetric port, the Michelson is

locked with the antisymmetric port dark and the symmetric port at a bright fringe:

roughly 90% of the power incident on the beamsplitter is ultimately reflected back

toward the laser from the symmetric port. Much of the rest exits via the antisymmetric

port. A small part of the remainder is transmitted out the end of either cavity, and

the rest is consumed by losses inside the interferometer.

A small fraction of the input power is in the sidebands. But after entering the

interferometer, the sideband content of the light is designed to vary greatly from place
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physical dynamics are tinted green, blocks representing analog electronics are tinted blue,
and blocks representing digital computations are tinted red. Abbreviations are defined in
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to place. This dispersion is what lets us obtain the signals needed to read out the

cavity and Michelson displacements.

3.2.1 Readout

To read out the cavities, we use the Pound-Drever-Hall (PDH) technique [46]. The

25 MHz modulation frequency is chosen such that the sidebands cannot enter the

cavity to resonate alongside the carrier. As we saw in chapter 2, the carrier emerges

from the cavity with a phase shift that depends sharply on the cavity length; however,

the phase of the sidebands remains unaffected. The phase shift between carrier and

sidebands converts some of the incident phase modulation into amplitude modulation,

which shows up on our photodetector.

For the Michelson, we use the Schnupp modulation technique [127, 133]. The

Michelson was designed with a macroscopic (8.4 cm) asymmetry in the position of the

two input mirrors, which results in a frequency response. That is, when the symmetric

port is at a bright fringe of the carrier, it is not at a bright fringe of the sidebands. A

displacement from the carrier’s bright fringe moves one sideband closer to its bright

fringe, while the other sideband is shifted farther away, which again converts the phase

modulation into a detectable amplitude modulation signal.

The light that returns from the symmetric port is separated from the inbound

beam using a Faraday isolator, and most of it is dumped, while a small amount is

sensed on a photodetector [13]. This detector’s output is demodulated at 25 MHz

to recover the amplitude-modulated signals. A numerical computation [48] of the

coupling of mirror motion to the demodulated photodetector output is shown in

figure 3-5. One quadrature (called REFL I) is used to read out the common mode of

cavity motion, Lx + Ly, which is referred to as CARM (short for common arm). The

other quadrature (REFL Q) can be used to read out the Michelson’s displacement,

lx − ly, referred to as MICH.

At the antisymmetric port, a small amount of light is picked off and sensed by

another photodetector, and the resulting signal demodulated to yield a signal (AS Q)

for the differential mode of cavity motion, Lx−Ly, referred to as DARM (see figure 3-6).

55



10
2

10
3

−100

0

100

ph
as

e 
[d

eg
]

frequency [Hz]

 

 

10
2

10
3

10
5

10
10

m
ag

ni
tu

de
 [W

/m
]

DARM to REFL_I
DARM to REFL_Q
CARM to REFL_I
CARM to REFL_Q
MICH to REFL_I
MICH to REFL_Q

Figure 3-5: Sensing matrix elements for the demodulated signals at the symmetric port.

56



10
2

10
3

−100

0

100

ph
as

e 
[d

eg
]

frequency [Hz]

 

 

10
2

10
3

10
0

10
5

m
ag

ni
tu

de
 [W

/m
]

DARM to AS_I
DARM to AS_Q
CARM to AS_I
CARM to AS_Q
MICH to AS_I
MICH to AS_Q

Figure 3-6: Sensing matrix elements for the demodulated signals at the antisymmetric
port.

57



This is the readout that is designed to be the best isolated from laser noise, and the

most sensitive to quantum radiation pressure fluctuations.

3.2.2 Feedback

The design of the feedback controls is motivated by the noise sources and opto-

mechanical dynamics that affect each degree of freedom:

• Ground motion rattles every suspended optic, and requires all servos to push

back on the optics (via the coil-magnet actuators) with a lot of gain at low

frequencies (below 10 Hz or so). We tailor the servos with digital filters at these

frequencies in order to accommodate features in the plant, such as suspension

and stack resonances.

• The cavities, when detuned, give rise to stiff (∼ 1 kHz), unstable optical springs.

The CARM and DARM cavity servos require bandwidths of 1 kHz or greater in

order to provide the active control needed to stabilize the system. The MICH

servo does not experience these dynamics and can get by with a low unity gain

frequency (UGF) of typically 100 Hz or so.

• Laser frequency noise is broadband and is sensed by the CARM readout. CARM

needs to actuate the laser frequency with high bandwidth in order to suppress

this noise. At low frequencies, seismically driven displacement noise dominates

over the frequency noise, and CARM should actuate the optics’ position to avoid

imprinting seismic noise onto the laser. CARM is therefore split between two

feedback paths: a slow path to the optics via the digital control system, and a

fast path to the laser, which is all-analog in order to minimize delay. The total

bandwidth is typically 20 kHz or greater, with the crossover frequency set at a

few hundred Hz.

The digital control system is a prototype of the system designed for Advanced

LIGO. It samples 64 inputs and synthesizes 32 outputs, with 16 bit resolution at

a 65536 Hz sample rate. Arbitrary computations can be performed on the signals,
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limited only by the 15 µs/sample execution time. The code is parallelized across four

cores of the system’s CPU (Intel Xeon W5590). Standard signal processing techniques

for whitening, anti-aliasing, and noise shaping are used to minimize the effect of noise

introduced in the analog-digital-analog conversion process.

Most of the length actuation is assigned to the input mirrors and the beam-

splitter. The end mirrors have little actuation range above the 10 Hz mode of the

bottom suspension stage, and so they receive only narrowband feedback to damp their

resonances.

In this readout and actuation scheme, a cross-coupling exists between the DARM

and MICH servos:

• When the DARM servo actuates the input mirrors to control Lx−Ly, it changes

lx − ly also. So DARM must actuate the beamsplitter as well, in order to cancel

its effect on MICH.

• The residual noise in MICH is also weakly sensed by the DARM readout at

the antisymmetric port (see figure 3-6). So when MICH is limited by sensing

noise (which is true across most of our measurement band), this noise can be

imprinted onto DARM as well. It is removed by digitally subtracting the MICH

component from the DARM signal.

Parametric instability causes a 27.5 kHz drumhead mode of the input mirrors to

ring up when the cavities are detuned. This mode is sensed by detecting the cavity

transmitted light, and suppressed by a narrowband digital damping loop that actuates

the mirror.

To control the unstable optical spring, our strategy is to apply a digital filter in

DARM that essentially undoes the spring’s effect on the open loop transfer function.

This filter boosts the loop gain at low frequencies — where the optical spring suppresses

the action of the servo — in order to avoid undesired unity gain crossings. Around the

optical spring frequency, the filter incorporates a notch that flattens out the resonance.

To keep the loop stable when the cavity detuning is reduced and the optical spring

frequency falls, the notch can be filled in by engaging a resonant gain filter, which
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simulates the optical spring resonance.

As the detuning or input power changes, the gains of the DARM, CARM, and

MICH readouts also change, and the loop gains must be adjusted to compensate. The

gain error is determined by injecting a small modulation into the loop, and measuring

its open loop transfer coefficient. The result is fed back to the digital gain control

by a slow (sub-1 Hz bandwidth) UGF servo, so as to maintain the loop gain of the

underlying length servo.

The UGF servo modulations may also be used to automatically remove undesired

DC offsets in the readouts. The offset in the CARM and DARM servos is found by

measuring the transfer coefficient of a laser frequency modulation (used to maintain

the UGF of CARM) to the cavities’ transmission monitors. A pair of offset servos

act to minimize these coefficients, in order to maintain the cavities at zero detuning.

Similarly, a MICH offset servo ensures the antisymmetric port is held precisely at a

dark fringe, by minimizing the transfer coefficient of the MICH UGF modulation to a

photodetector at the antisymmetric port.

3.2.3 Lock acquisition procedure

When uncontrolled, the suspended optics have an RMS displacement that is typically

a few microns (dominated by seismic noise), with a typical velocity of a few microns

per second.

If not dealt with, this amount of random motion would render the interferometer

useless. It spans several Michelson fringes, and it vastly exceeds the linear range of

the arm cavity length signals, which provide an intelligible readout only when the

cavity mirrors are localized within about 0.1 nm of the resonance.

To lock the interferometer, the uncontrolled motion must be counteracted during

the time when the mirrors happen to swing through the resonance, while the motion

can be sensed. A typical opportunity for locking lasts only a few tens of microseconds.

The large bandwidth of the laser frequency actuator can be used to good effect in

locking the first cavity. However, it has a much more limited utility in locking the

second cavity. A frequency deviation made to accommodate the second cavity will
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simultaneously pull the first cavity off resonance, which may unlock it.

The input mirror’s coil-magnet actuators are marginally adequate to the task of

locking the cavity. The maximum force they can apply is 25 mN [13], so they can do

at most 2.5 pJ of work on the mirror while it swings through the resonance. Thus

they could remove kinetic energy corresponding to a velocity of about 4.5 microns per

second for the 250 gram mirror.

However, to attenuate the noise of the coil driver electronics, we have had to use

only 10% of the maximum range, and so the tolerable velocity is reduced to about

1.5 microns per second. To satisfy this restriction requires aggressive local damping

and active seismic isolation (see sections 3.3.2 and 3.3.3).

We can also get a little help from radiation pressure. When the mirrors swing

through resonance in such a way that the cavity length is contracting, radiation

pressure acts as a restoring force. At the full input power Pin ≈ 4 W, the maximum

circulating power P is about 10 kW, corresponding to a force FRP = 2P/c ≈ 0.1 mN.

This force, while tiny, is applied directly to the 1 gram end mirror — where, compared

to the 250 gram input mirror’s actuators, it is 250 times more effective. It would

correspond to a velocity of more than 5 microns per second.

The actual radiation pressure force the end mirror experiences during locking is

smaller than this. For one thing, light cannot fully build up in the cavity in the

tens of microseconds it takes the mirrors to cross a fringe (the build-up happens

on a timescale set by the cavity HWHM linewidth γc/2π ≈ 10 kHz). In addition,

the applied force deflects the end mirror, changing its pointing and misaligning the

cavity. The misalignment can be corrected by an alignment servo (see section 3.3.1),

but not on the timescale needed for lock acquisition. Therefore, we have to lock the

cavities with low input power (circa 120 mW), so that the radiation pressure forces

are unimportant, and slowly raise the power later.

None of the demodulated readouts at the symmetric and antisymmetric ports

give usable signals unless both the Michelson and the cavities are near the designed

operating point. We do not use these readouts for lock acquisition, because it is

simpler to use other, less sensitive readouts that respond to only one degree of freedom.
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For the cavities, we use the cavity transmission monitors, which do not sense the

Michelson. For the Michelson, we inject and monitor an auxiliary input beam, which

is misaligned so that it cannot enter the cavities.

First we lock both cavities at one linewidth detuning: that is, the point where the

transmission reaches half of its value at zero detuning. A 900 Hz optical spring is

present at this detuning. Then we lock the Michelson, and reduce the detuning until

the transmission reaches the 90% level. At this point we hand off the DARM and

CARM servos to the PDH readouts, and turn on a filter to simulate the presence of

the optical spring. After the cavities have reached zero detuning, we hand off MICH,

and start to raise the input power.

The lock acquisition procedure is fully scripted and automatic. After a lock loss,

the interferometer reacquires lock and reaches zero detuning typically within 2–3

minutes.

3.2.4 Calibration

Length signals can be calibrated against the known wavelength of the laser. In

particular, half a wavelength is the displacement the mirrors undergo between two

adjacent Michelson dark fringes. This fact allows us to calibrate the Michelson readout,

by observing its response as the mirrors swing freely through several adjacent fringes.

Then we use this calibrated readout to measure the strength of the input mirrors’ force

actuators. Finally, by applying a known force to the input mirrors, we can calibrate

the arm cavity readouts as well.

In the initial stages of this experiment, which involved a single cavity without a

Michelson, we used a different approach: we calibrated the tuning input of the PSL’s

VCO using a spectrum analyzer. Then we could shift the laser wavelength by a known

amount, and observe the response in the cavity readout.

Both of these techniques are commonly used to calibrate gravitational wave

interferometers, and further details can be found elsewhere [61].
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3.3 Other degrees of freedom

3.3.1 Alignment

The alignment of each cavity’s axis to that of the input beam is automatically optimized

by dithering both of its mirrors in pitch and in yaw, at four distinct frequencies in

all, and monitoring the cavity transmitted light. When the cavity is well aligned, the

light it transmits is maximized, and so an alignment modulation doesn’t affect the

transmission, to first order. Otherwise, the modulation shows up in the transmission

with a linear coupling, whose slope depends on the magnitude and direction of the

misalignment. We measure this slope by demodulating the transmission signal at each

of the four frequencies.

At each frequency, the transmission responds to misalignments of either mirror. So

each demodulated signal is fed back to both mirrors, with the appropriate coefficients

in order to diagonalize the system. The diagonalization lets us achieve greater than

1 Hz bandwidth for all the alignment servos. We cannot obtain an alignment signal

with much higher bandwidth without saturating the mirrors’ magnet-coil actuators.

(That limitation could be lifted, however, by dithering the alignment of the input

beam instead. Wavefront sensing could also be used [90].)

The location of the beam spot on each optic is monitored in much the same way

as the cavity alignment, by measuring the slope of the linear coupling between the

alignment dither and the cavity length. At present there is no active control of these

degrees of freedom.

3.3.2 Local damping

Each suspended optic is sensed in four degrees of freedom (longitudinal, pitch, yaw,

and side-to-side motion) by shadow sensors attached to the suspension towers. These

signals are filtered and fed back to the coils to damp the optics, reducing their RMS

motion. The bandwidth of these loops is kept low and the gain is rolled off steeply

in order to eradicate the sensing noise of these loops in the measurement band. The

63



two remaining bulk degrees of freedom (bounce and roll) do not couple to the optical

field’s phase or alignment to first order, and they are left uncontrolled.

Unfortunately, the shadow sensors are not very sensitive to the modes of the

bottom stage of the end mirror suspension. The ring is far more massive than the

1 gram mirror, and so it reacts only weakly to the mirror’s motion. Instead, we sense

these modes directly using an optical lever: a HeNe laser beam that reflects from

the mirror surface and is monitored on a quadrant photodetector. The HeNe beam

position signal is then fed back to damp the end mirror.

3.3.3 Seismic isolation

The optics are decoupled from ground motion through several stages of isolation. The

Small Optic Suspension gives a 1/f 2 reduction in motion above its resonant frequency

of 1 Hz. The table on which the suspensions reside is supported by a 3-layer seismic

isolation stack of masses and springs, with numerous resonances in the 1–10 Hz band.

The entire assembly rests on an actively stabilized platform called the Hydraulic

External Pre-Isolator (HEPI) [7].

The HEPI senses motion of its platform in all 6 degrees of freedom using inductive

position sensors and accelerometers that ride on the platform, together with a seis-

mometer on the ground. The two tilt degrees of freedom are responsible for most of

the optics’ motion, as seen by the shadow sensors.

Since the suppression of this motion was being limited by the noise of HEPI’s

sensors, we implemented a feedback of the shadow sensor signals to the HEPI platform.

After setting up this extra feedback path, and optimizing the transfer function for

seismometer feedforward, the coupling of ground motion was reduced by a factor of

10 to 100. Ground motion was once a serious obstacle to locking the interferometer

during the day, when “anthropogenic noise” (that is, human activity) is at its peak,

but now its effect is usually manageable.
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Figure 3-7: Block diagram of the HEPI active seismic isolation platform. Several of the
HEPI sensors measure a combination of platform motion and ground motion; the latter
is subtracted off using the signal from a nearby seismometer. Dashed lines indicate the
feedback paths added to enhance the isolation.
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3.3.4 Vacuum envelope

The passive seismic isolation stack and all the optics it supports are housed within

a LIGO HAM (Horizontal Access Module) vacuum chamber. This chamber is part

of the LASTI (LIGO Advanced Systems Test Interferometer) facility at MIT. The

vacuum system is maintained at a pressure near 10−7 torr by a turbomolecular pump,

which is sufficient to limit air damping, acoustic coupling, and residual gas phase noise

to a negligible level.

The HAM chamber is made of 304L stainless steel, which was heat treated to

reduce outgassing. During this treatment, it acquired a coating of loosely bound oxide

particles, which serves to reduce the backscattering of stray light from the chamber

walls, but also has been found to produce a rain of particles that contaminate the

optics.

To catch some of these particles, we draped a thin metal canopy over the suspension

towers of the cavity optics. We also unmounted a noisy diaphragm pump from the ex-

terior, to avoid vibrating more particles loose. We reduced the existing contamination

to tolerable levels through drag wiping with methanol (Sigma-Aldrich spectrophoto-

metric grade), and a polymer cleaning solution (Photonic Cleaning Technologies First

Contact).

3.4 Noise status

To conclude this chapter, we present a displacement noise plot (figure 3-8) that sum-

marizes our understanding of the thermal noise terms that contribute the differential

mode measurement.

In this plot, the quantum noise curve has been computed numerically for a 4 W

input power, using a model that takes into account the known imperfections and

losses of the interferometer [48]. This curve — which defines the sensitivity goal for

the experiment — is mostly swamped by suspension thermal noise, but approaches

within a factor of 3 near 200 Hz.

The power spectral density of thermal displacement noise arising in the coating
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Figure 3-8: Measured displacement noise spectrum for the differential mode, plotted with
thermal noise models and the expected quantum noise.
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and substrate of each mirror is estimated using the following equation [67]:

Sx(Ω) =
4kBT

Ω
√
π

1

wEs

[
φs +

d

w
√
π

(
Ec
Es
φ‖ +

Es
Ec
φ⊥

)]
(3.1)

where the various symbols are defined as given in table 3.1. Here we assume that the

contribution of the substrate loss angle φs is negligible compared to the contribution

due to the coating. We also assume that the input mirror coatings are negligible

compared to those of the end mirrors, which have a higher reflectivity and therefore a

greater thickness d. Note that the coating thermal noise is large enough to preclude

reaching the SQL in this experiment with the end mirrors that we presently use.

The suspension thermal noise term, which explains almost all of the noise we

observe, is the subject of chapter 5.
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Chapter 4

Trapping and cooling

In this chapter, we discuss several experiments in which radiation pressure and feedback

forces were used to trap and cool the suspended mirrors of an interferometer, with

the ultimate objective of probing the quantum mechanics of the macroscopic mirrors.

Here trapping refers to the use of restoring forces, such as an optical spring, to

localize an object. Cooling, on the other hand, comes about when damping forces are

used to drain away the kBT thermal energy that the trapped object initially has.

Suppose the thermal energy can be reduced to less than the energy of one phonon,

so that the trap’s effective temperature Teff satisfies the condition

kBTeff . ~Ωeff (4.1)

where Ωeff denotes the resonant frequency of the trap. Then the system settles into an

increasingly pure quantum state: the motional ground state. Reaching such a state is

a major milestone in itself, as well as a crucial step toward the subsequent preparation

of quantum superpositions and entangled states involving the mirror.

As we will see, the right combination of trapping and cooling forces permits the

gram- and kilogram-scale mirrors used in our experiments to enter this quantum

regime.
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4.1 Cold forces

4.1.1 Damping forces

Thermal energy flows into the mirror from the environmental heat bath via the

mechanical suspension. The cooling techniques we use are based on the idea of coupling

the mirror to an additional environmental bath: one that arises from the optical field.

This new bath, at temperature To, can be much colder than the environment of the

mirror’s mechanical suspension at temperature Tm.

Then, instead of the mirror equilibrating with the hot bath at Tm, thermal energy

flows through it from the hot bath to the cold one. The mirror eventually reaches an

effective temperature Teff that is intermediate between To and Tm.

With the mirror at Teff , the rate of heating from the hot bath must balance the

rate of cooling from the cold bath. Modeling the dissipation mechanism as viscous

damping, characterized by the suspension’s damping rate Γm and the cold damping

rate Γo, lets us write a simple equation for the effective temperature:

Γm(Tm − Teff) = Γo(Teff − To) (4.2)

As expected, we find that the effective temperature interpolates between the two

bath temperatures:

Teff = Tm
Γm
Γeff

+ To
Γo
Γeff

(4.3)

Each bath’s contribution is weighted by its damping rate relative to the total effective

damping Γeff = Γm + Γo.

The ratio Tm/Teff is known as the cooling factor. Whenever the cold damping rate

dominates the mechanical one, a large cooling factor is possible.

In our experiments, cold damping forces are derived from low-noise (ideally,

quantum-limited) optical fields. Sometimes we choose to work with a detuned cavity,

in which the radiation pressure force acts directly on the mirror. In other cases, we

operate the cavity at zero detuning, and the optical field exiting the cavity is detected

and fed back to the mirror. In the literature, only the latter technique is usually
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referred to as “cold damping”, while the former usually goes by the name of “cavity

cooling”.

The cavity cooling technique, it should be noted, is closely related to the family

of laser cooling techniques developed for atomic systems, particularly the coherent

scattering method described by Vuletić and Chu [137]. Cavity cooling can be understood

in terms of the coherent scattering of photons by the mirror, into the two vibrational

sidebands at ±Ωeff . The detuned cavity serves to enhance the rate of scattering to

the upper sideband. Every time this up-scattering process occurs, the mirror loses

another phonon of vibrational energy.

The cooling factor we can attain with these techniques is subject to two limits:

• No matter how strong the damping force we apply, the mirror does not cool

below the temperature To of the cold bath. Bath temperatures for cold damping

and cavity cooling will be estimated in sections 4.3 and 4.5.

• No matter how cold the cold bath is, there is a limit to how strong a damping

force it is useful to apply. Increasing the damping rate Γo degrades the effective

quality factor Qeff = Ωeff/Γo of the mirror oscillator. The quality factor should

not be degraded below Qeff ∼ 0.5, or else the mirror becomes critically damped

and ceases to be an oscillator. This constraint implies a finite upper limit for

the cooling factor, even when To = 0:

Tm
Teff

<
2Ωeff

Γm
(4.4)

4.1.2 Restoring forces

Cold restoring forces vastly enlarge the class of mechanical systems that are able to

approach the ground state. To understand why, let us first consider what happens

when such forces are not being used, so that all the trapping force is provided by the

mechanics (Ωeff = Ωm).

Ground state cooling becomes possible only when the cooling factor limit stated

above in equation (4.4) is sufficient to reach the effective temperature required by
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equation (4.1). That is, we require

kBTm . ~Ωeff
2Ωeff

Γm
(4.5)

In the absence of external trapping forces, we would have to design the suspension so

as to optimize its resonant frequency-quality factor product Ω2
m/Γm. Tenuous, low

frequency suspensions with minimal damping, like those used in gravitational wave

detectors, fare poorly under this figure of merit, which favors increased stiffness over

improved losses.

However, if cold restoring forces dominate (Ωeff = Ωm + Ωo � Ωm), then the

suspension’s stiffness is no longer relevant in equation (4.5): its damping rate is the

only property that matters. Thus, we are free to optimize the damping rate and

the resonant frequency as independent variables — designing the mechanical system

purely to minimize losses, and placing the resonant frequency where we want it using

a cold force.

This scheme for shifting the resonant frequency has been called “optical dilution”,

which is a name that alludes to the damping dilution effect of gravity in pendulums [124,

30, 119]. Consider that a thin wire loaded with a massive bob forms an oscillator even

in zero gravity, since the wire’s elasticity provides a (very weak) restoring force. Such

a device would have damping similar to that of a pendulum under gravity. But in the

pendulum, the gravitational restoring force (which is practically lossless) dominates

over that of the wire, shifting the resonance to a much higher frequency. Consequently,

a pendulum has less dissipation per oscillation period (that is, a better quality factor)

than the same device would exhibit in the absence of gravity.

In our system, cold restoring forces that arise from the optical field play a role that

is analogous to the gravitational force on a pendulum. As with the damping forces

treated in the previous section, a cold restoring force can be produced in two ways.

We may detune the cavity to produce an optical spring, or adjust the feedback to

provide a “servo spring”. In the experiment we will discuss next, the optical spring

takes center stage.
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4.2 Stable all-optical trap

The experiment introduced in this section was designed to show that a combination of

radiation pressure forces can overwhelm the mechanical forces of a mirror suspension,

creating a stable trap for the mirror. The result was published in reference [37].

4.2.1 Background

The previous literature on optical trapping of suspended mirrors includes a remarkable

early experiment by Dorsel et al. [45], which illustrated both the stabilizing and the

destabilizing aspects of radiation pressure forces. Subsequent work on suspended-

mirror interferometers had considered optical springs and optical (anti-)damping forces

in separate contexts:

• The possibility of making strong optical springs was explored, theoretically and

experimentally [29, 27, 128]. Proposals were advanced for applying the optical

spring to enhance the sensitivity of gravitational wave detectors [29, 96], and to

generate ponderomotively squeezed light [40].

• The threat of the optical anti-damping force to destabilize a cavity, and give

rise to parametric instabilities of the mirror acoustic modes, was identified and

demonstrated [38, 96].

Meanwhile, in micro- and nano-mechanical experiments, optical springs strong

enough to approach the stiffness of the mechanics had not been pursued. But sev-

eral groups had demonstrated strong optical damping forces, and recognized their

application to cooling the system toward the ground state [92, 100, 58, 15, 126].

As we will discuss below, the (stabilizing) optical spring force is normally accom-

panied by the (destabilizing) anti-damping force, while the (stabilizing) damping force

is accompanied by a (destabilizing) anti-spring. Therefore, a stable system whose

dynamics were fully dominated by radiation pressure forces had never been observed.

The regime had been achieved only with the help of active feedback control to stabilize

the dynamics [38, 96].
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Figure 4-1: Simplified schematic of the double optical spring experiment. The high-
power carrier beam is shown in red, while the low power subcarrier beam is shown in
blue. The shaded box denotes seismically isolated suspended optics inside the vacuum
chamber. Abbreviation key: FI = Faraday isolator; HWP = half-wave plate; PBS = po-
larizing beamsplitter; AOM = acousto-optic modulator; EOM = electro-optic modulator;
PDH = Pound-Drever-Hall readout photodetector.

However, in this experiment, we overcome the instability by using the radiation

pressure of a second optical field, thus providing a stable all-optical trap.

4.2.2 Experimental setup

The setup shown schematically in figure 4-1 was used to demonstrate the optical

trapping scheme. The 250 gram input mirror of the L = 0.9 m long cavity is suspended

as a pendulum with oscillation frequency of 1 Hz for the longitudinal mode. The

1 gram end mirror is suspended by two optical fibers 300 µm in diameter, giving a

natural frequency Ωm = 2π × 172 Hz for its mechanical mode, with quality factor

Qm = 3200. On resonance, the intracavity power is enhanced relative to the incoming

power by a resonant gain factor 4/t2I ≈ 5× 103, where t2I is the power transmission of

the input mirror, and the resonant linewidth (HWHM) is γc = 2π × 11 kHz.

About 3 W of 1064 nm Nd:YAG laser light passes through a Faraday isolator

before it is split into two paths by a half-wave plate and polarizing beamsplitter (PBS)

combination that allows control of the laser power in each path. The carrier (C) field

comprises most of the light incident on the suspended cavity. About 5% of the light is
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Figure 4-2: Graphical representation of the total optical rigidity due to both optical
fields, as a function of carrier and subcarrier detuning, for fixed input power (power in the
subcarrier field is ∼ 1/20 the carrier power) and observation frequency (Ω = 2π × 1 kHz).
The shaded regions correspond to detunings where the real and imaginary parts of the total
spring constant are differently positive or negative. The (logarithmically spaced) contours
shown are scaled according to Ωeff : brighter regions have larger Ωeff . The labels (a) – (d)
refer to the measurements shown in figure 4-3.

frequency-shifted by 161.66 MHz, equal to one free spectral range (FSR)
c

2L
, using an

acousto-optic modulator, and phase modulated by an electro-optic modulator (New

Focus 4004). This subcarrier (SC) field can further be detuned from resonance to

create a second optical spring. The two beams are recombined on a second PBS before

being injected into the cavity, which is mounted on a seismic isolation platform in

a vacuum chamber. A Pound-Drever-Hall (PDH) error signal [46] derived from the

SC light reflected from the cavity is used to lock it, with feedback to both the cavity

length as well as the laser frequency. By changing the frequency shift of the subcarrier,

the carrier can be shifted off resonance by arbitrarily large detunings.
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4.2.3 Double spring technique

As we found in chapter 2, when the cavity is detuned from resonance, the radiation

pressure force acts as a spring with a complex, frequency-dependent spring constant,

the real part of which can be written as follows in the quasistatic regime:

Re {Ko} = mΩ2
o

= mΩ2
q

δ

2

(
1

1 + δ2

)2 (4.6)

Recall that Ωq is the “quantum frequency” where the undetuned cavity’s quantum

noise touches the SQL, and δ is the detuning relative to the cavity linewidth.

Note the dependence of Ω2
o on the sign of the detuning δ. For δ > 0 (in our

convention), Ω2
o > 0 corresponds to a restoring force, while δ < 0 gives an anti-

restoring force. We do not explore the latter regime experimentally since it is always

unstable for our system (see figure 4-2).

Moreover, due to the delayed response of the cavity light to mirror motion, the

restoring force is accompanied by viscous damping, with damping rate Γo given by:

Im {Ko} = mΩΓo

= −Re {Ko}
2Ω

γc

(
1

1 + δ2

) (4.7)

Because the cavity response lags the motion of the mirrors, a restoring spring

constant coincides with anti-damping, while damping coincides with an anti-restoring

force. We can now see that when both optical forces dominate their mechanical

counterparts, the system becomes unstable.

To stabilize the system we use two optical fields that respond on different time

scales. One field should respond quickly, so that it makes a strong restoring force

and only a weak anti-damping force. The other field should respond slowly, so that it

creates a strong damping force, with only a minor anti-restoring force.

This configuration could be achieved with two cavities of differing bandwidths that

share a common end mirror. However, it is simpler to use a single cavity and two
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fields with vastly different detunings. From equations (4.6) and (4.7), we find

Im {Ko}
Re {Ko}

= −2Ω

γc

(
1

1 + δ2

)
, (4.8)

suggesting that an optical field with larger detuning has less damping per stiffness.

The physical mechanism for this is that at larger detunings, the optical field resonates

less strongly than for smaller detunings, so the time scale for the cavity response is

shorter, leading to smaller optical damping.

To create a stable system, we consider a carrier field with large detuning δC ≈ 3

that creates a restoring force, but also a small anti-damping force. To counteract the

anti-damping, a strong damping force is created by injecting a subcarrier with small

detuning δSC ≈ −0.5. For properly chosen power levels in each field, the resulting

system is stable; we found a factor of 20 higher power in the carrier to be suitable in

this case.

To illustrate the behavior of the system at all detunings, the various stability

regions are shown in figure 4-2 for this fixed power ratio. Point (d) in particular shows

that the system is stable for our chosen parameters.

4.2.4 Discussion

Noteworthy features of this optical trapping technique include:

• Extreme rigidity: With no subcarrier detuning and δC ≈ 0.5, the 172 Hz

mechanical resonance of the 1 gram mirror oscillator was shifted as high as

5 kHz (curve (a) in figure 4-3), corresponding to an optical rigidity of Re {Ko} =

2× 106 N/m.

To put this number into perspective, consider replacing the optical mode with

a rigid beam with Young’s modulus E. The effective Young’s modulus of this

mode with area A of the beam spot (1.5 mm2) and length L = 0.9 m of the

cavity, is given by E = mΩ2
effL/A = 1.2 TPa, stiffer than any known material

(but also with very small breaking strength). Such rigidity is required to operate
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Figure 4-3: The optical spring response for various power levels and detunings of the
carrier and subcarrier. Measured transfer functions of displacement per force are shown as
points, while the solid lines are theoretical curves. The dashed line shows the response of the
system with no optical spring. An unstable optical spring resonance with varying damping
and resonant frequency is produced when (a) δC = 0.5, δSC = 0; (b) δC = 3, δSC = 0.5; (c)
δC = 3, δSC = 0; and it is stabilized in (d) δC = 3, δSC = −0.3. Note that the damping of
the optical spring increases greatly as the optomechanical resonance frequency increases,
approaching Γeff ≈ Ωeff for the highest frequency optical spring.
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the cavity without external control; ambient motion would otherwise disrupt

the cavity resonance condition.

• Stabilization: Also shown in figure 4-3 are curves corresponding to varying

carrier and subcarrier detunings. In curves (b), (c) and (d), we detune the carrier

by more than the cavity linewidth since the optical spring is less unstable for

large δC . With no subcarrier detuning, the optomechanical resonant frequency

reaches Ωeff = 2π × 2178 Hz, shown in curve (c). Note that the optical spring

is unstable, as evidenced by the phase increase of 180◦ about the resonance

(corresponding to anti-damping).

Next we detune the subcarrier in the same direction as the carrier, shown in curve

(b), which increases the resonant frequency and also increases the anti-damping,

demonstrated by the broadening of the resonant peak. For both curves (b) and

(c), electronic servo control is used to keep the cavity locked. If the control

system is disabled, the amplitude of the cavity field and mirror oscillations grow

exponentially.

Remarkably, when the subcarrier is detuned in the opposite direction from

the carrier, the optical spring resonance becomes stable, shown in curve (d),

allowing operation of the cavity without electronic feedback at frequencies above

30 Hz; we note the change in phase behavior and the reduction of the resonant

frequency. This shows how the frequency and damping of the optical spring can

be independently controlled.

• Optical cooling: In this experiment, the displacement spectrum is dominated

by laser frequency noise at Ωeff . We can nonetheless estimate the effective

temperature of the optomechanical mode by measuring the displacement of the

mirror, and equating
1

2
mΩ2

effx
2
rms =

1

2
kBTeff (4.9)

where xrms is the RMS motion of the mirror.

To determine xrms in this experiment, we measure and integrate over the noise
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Figure 4-4: The measured noise spectral density of the cavity length is shown for several
configurations corresponding to different detunings. The magenta curve corresponds to
δC ≈ 3 and δSC ≈ −0.5. The green and blue curves are obtained by reducing δSC and
increasing δC in order to keep Ωeff approximately constant, while varying Γeff . The spectrum
is integrated between 1500 and 2300 Hz to calculate the rms motion of the oscillator mode,
giving effective temperatures of 0.8, 3.8 and 12.2 K. The limiting noise source here is not
thermal noise, but in fact frequency noise of the laser, suggesting that with reduced frequency
noise, even lower temperatures could be attained.

spectral density of the error signal from the cavity, calibrated by injecting a

frequency modulation of known amplitude at 12 kHz. The displacement noise

measured in this way is shown in figure 4-4. The lowest measured temperature

is 0.8 K, corresponding to a cooling factor of 2.5× 103.

In the next section we will investigate the quantum limit of the double optical

spring technique. We will find that radiation pressure noise presents an obstacle, and

that feedback forces offer in some respects a more convenient route to the ground

state in a suspended-mirror cavity like ours. However, the ability to operate such a

cavity without feedback control remains a unique advantage of this scheme, which is

made possible by the rigidity and stability of the double spring.
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4.3 Quantum limit of optical forces

To understand the limitations of optically-derived forces as applied to cooling, we

would like to estimate the effective temperature To of the cold bath that an optical

field provides. The quantum noise of the light determines this ultimate limiting

temperature.

In the double-spring optical trap discussed in the previous section, where radiation

pressure forces act in a detuned cavity, the limit to cooling can be attributed to

the intra-cavity radiation pressure fluctuations. Recall from chapter 2 that, in the

quasistatic approximation (Ω � γc), the radiation pressure force noise has a white

power spectrum whose magnitude is given by

S
(RP )
F (Ω) = ~mΩ2

q

(
1

1 + δ2

)2

(4.10)

To estimate To, we can equate S
(RP )
F with the magnitude of a thermal excitation

spectrum,

S
(T )
F (Ω) = 4kBTomΓeff (4.11)

Writing the result in terms of the carrier optical spring frequency ΩC , and subcarrier

damping rate ΓSC , we obtain useful expressions for the phonon occupation number

due to each optical field:

NC =
kBTC
~Ωeff

=
1

2

Ω2
C

ΩeffΓeff

1

δC

(4.12)

NSC =
kBTSC
~Ωeff

= −1

2

ΓSC
Γeff

1 + δ2
SC

2δSC

γc
Ωeff

(4.13)

From equation (4.12), we see that the carrier’s contribution NC can be made

negligibly small, in the limit of large carrier detuning δC . It should be noted that, in

this limit, the carrier power must be vastly increased, in order to maintain the desired
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optical spring frequency (the required power scales as δ3
C).

When it comes to the subcarrier’s contribution NSC , we seem to be caught between

a rock and a hard place. Even after optimizing the detunings (choosing δC large so

that Γeff ≈ ΓSC , and setting δSC = −1), equation (4.13) reduces to NSC ≈ γc/(2Ωeff).

So we cannot approach the ground state as long as Ωeff � γc. But as Ωeff starts to

approach γc, we have the problem that the quasistatic approximation breaks down,

and the system can no longer be treated as a simple oscillator governed by an optical

spring constant. (The optical restoring force becomes frequency-dependent.)

There is, however, one possible escape from this subcarrier noise dilemma. NC and

NSC can both be improved by using squeezed light to suppress the radiation pressure

noise, which would allow the double-spring oscillator to approach the ground state.

We note that micro-mechanical cooling experiments often use very stiff mirror

oscillators, with Ωm & γc. In such cases the optical damping force may be suitable for

ground state cooling [55]. This regime is sometimes referred to as the “good cavity”

limit. However, the phrase is quite misleading, since whether a cavity is “good” or

not surely depends on the application that one has in mind. It turns out that cavities

like the ones we use — which are less convenient for implementing passive cavity

cooling schemes — are especially well suited to the purpose of monitoring the mirror

displacement. In what follows, we will introduce an alternative cooling strategy that

plays to the strengths of a cavity that is “good” for measurement.

4.4 Feedback cooling

In this section, we discuss an experimental demonstration of improved mirror cooling,

using a feedback-based cold damping approach. This work was previously published

in reference [39].

4.4.1 Cold damping technique

The roots of the cold damping technique can be traced back at least as far as 1956,

when vibration reduction in mechanical structures by active feedback was discussed
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by Olson [105]. In 1979, Robert Forward (also the builder of an early prototype

gravitational wave interferometer) used feedback to damp a structure supporting a

mirror [51]. Active damping in the context of quantum noise was introduced by Mancini

et al. [86], experimentally implemented by Cohadon et al. [36], and subsequently applied

by other groups [78, 117].

Cold damping relies on a highly sensitive readout of mirror displacement that,

in our experiments, is provided by the light that exits the cavity. We synthesize a

damping force by tailoring the filter function that is applied to the displacement signal

before feeding it back to control the mirror.

The degree of freedom that we seek to monitor and control is the mirror’s center-

of-mass displacement x. However, our optical measurements actually probe the

location of the mirror surface (averaged over the optical beam), which differs from the

center-of-mass location due to the mirror’s internal thermal noise, and includes an

additional sensing noise due to the laser shot noise. Combining these noises into a

total displacement noise xS, we can write the output signal as

xmeas = x+ xS (4.14)

The center-of-mass is also subject to force noises F , such as radiation pressure

noise and the thermally driven motion of the mirror suspensions, plus the optical

spring force, and our feedback force, which is proportional to x̃meas in the frequency

domain:

−m
(
Ω2 − iΩΓm − Ω2

m

)
x̃ = F̃ −Ko(Ω)x̃−Kf (Ω)x̃meas (4.15)

Here Ko(Ω) is the (complex) optical spring constant as defined in equations (4.6)

and (4.7), while Kf (Ω) is the feedback kernel. In this experiment, we have

Kf (Ω) ≈ imΩΓf (4.16)

with Γf large enough to overwhelm the optical anti-damping Γo, such that the modified

dynamics of x are stable.

83



Combining the preceding equations, we can write the equation of motion for the

damped oscillator under feedback, driven by random forces:

(
−mΩ2 + imΩΓeff +mΩ2

eff

)
x̃ = F̃ −Kf (Ω)x̃S (4.17)

The added noise term Kf(Ω)x̃S in equation (4.17) represents the conversion of

sensing noise into a force noise on the optic, by the action of the feedback system.

This noise mechanism is the price we pay for cold damping, and it will be analyzed

further in section 4.5.

4.4.2 Experimental setup

We turned to cold damping in this work after modifying the experiment of section 4.2 in

order to achieve a lower noise floor. The apparatus, shown schematically in figure 4-5,

is identical to that of section 4.2 except for the following upgrades:

• The coupling of laser frequency noise to cavity displacement is reduced by

shortening the cavity length L by nearly a factor of 10 (from 0.9 m to 10 cm).

At the 10 cm length, the bases of the mirror suspension towers nearly touch

each other, precluding any further reduction.

• The thermal noise of the end mirror suspension is improved by snipping its fibers

just below the point where they attach to the 1 gram mirror. In this way, the

suspension is reduced in stiffness by a factor of 180, and in mechanical loss by a

factor of 80 (from Ωm = 2π × 180 Hz with a Qm of 3200 to Ωm = 2π × 12.7 Hz

with a Qm of 19950).

After improving the frequency noise by a factor of 10, and the thermal noise by an

even larger factor, we would expect to again be limited by frequency noise, but with

Teff ∼ x2
rms about 100 times lower. However, the shorter cavity length also imposes

two significant limitations:

• The cavity FSR is stretched from 160 MHz to 1.5 GHz. Consequently, the

160 MHz AOM that formerly generated the subcarrier field (offset by one FSR)
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Figure 4-5: Simplified schematic of the feedback cooling experiment. (Compare to figure 4-
1.)

can no longer be used for that purpose. Although it would be not be hard to

make and use a subcarrier in the same FSR as the carrier (for instance, via

two opposing AOMs, or an additional phase-locked laser), it is even easier to

dispense with the subcarrier, and apply cold damping instead.

• The cavity linewidth γc is broadened from 2π × 11 kHz to 2π × 95 kHz. This

change weakens the filtering action of the cavity pole on the intracavity radiation

pressure, at the 137 kHz drumhead mode frequency of the 1 gram mirror. As a

result, this mode becomes easier to push into parametric instability (and is very

difficult to stabilize by feedback, since the end mirror is not actuated directly).

To avoid ringing up the drumhead mode, we operate with only about 100 mW

of input laser power, when the laser is detuned on the blue side of the cavity

resonance to make an optical spring. Thus the optical spring frequency is limited

to about 1 kHz.

To maximize the optical restoring force, the cavity is locked off-resonance by

δ ≈ 0.5. The PDH error signal for the locking servo is split between a high bandwidth

analog path fed back to the laser frequency, and a digital path fed back to the input

mirror’s magnet/coil actuators.

85



600 800 1000 1200 1400

20
50

10
0

20
0

ΩΩ 2ππ (Hz)

di
sp

la
ce

m
en

t
fo

rc
e 

(a
rb

. u
ni

ts
) (a)

(b)

(c)

(d)

(a)
(b)
(c)
(d)

ΩΩeff 2ππ
974 Hz
977 Hz
988 Hz

1018 Hz

Qeff

10.7
5.1
2.4
1.1

Figure 4-6: The transfer function of an applied force to mirror motion, for increasing levels
of damping [curves (a) to (d)]. The force is applied via the magnet/coil actuators, and the
response is measured by the PDH error signal. The points are measured data, and the lines
are fitted Lorentzians from which the resonant frequency and damping constant are derived
for each configuration. Statistical errors in the fit parameters are of order 1%.

The digital feedback is used at frequencies below 10 Hz to keep the cavity locked

in its operating state. The analog path to the laser frequency is arranged so that it

provides derivative feedback, damping and cooling the motion of the oscillator. The

effective damping may be controlled by adjusting the gain of the feedback loop.

Additional analog feedback is supplied to the magnet/coil actuators to damp a

parametric instability of the input mirror at 28 kHz [77, 38].

4.4.3 Results

As expected, the noise in this experiment remains dominated by frequency noise of

the laser at Ωeff . We estimate the effective temperature of the optomechanical mode,

as determined by this noise, according to equation (4.9).

To determine xrms in our experiment, we first find the resonant frequency and

damping of the oscillator by measuring its frequency dependent response to a driving
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of the resonance are measured and depicted in figure 4-6. The spectra are integrated from
850 to 1100 Hz, the frequency range where the mirror motion is the dominant signal, to
obtain the rms motion of the mirror and its effective temperature. The broad limiting noise
source is frequency noise of the laser. Narrow spectral features in addition to the main
optical spring resonance are due to coupling of acoustically driven phase noise.

force, shown in figure 4-6. In the same configuration, we then measure the noise

spectral density of the error signal from the cavity, calibrated by injecting a frequency

modulation of known amplitude at 12 kHz. The measured displacement spectra, as

the electronic damping was varied, are shown in figure 4-7.

Since the effective resonant frequency is at Ωeff ≈ 2 π × 1000 Hz, we integrate the

spectrum from 850 Hz to 1100 Hz to obtain an estimate of the motion of the mirror.

To correct for the finite integration band, we assume a thermally driven displacement

noise spectrum for the oscillator, given by

S(T )
x (Ω) =

4kBTΓeff/m

(Ω2
eff − Ω2)2 + Ω2Γ2

eff

(4.18)

and find Teff by setting our measured spectrum integral equal to a thermal spectrum
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integrated over the same frequency band. The lowest temperature reached is 6.9±

1.4 mK. Thus the cooling factor from the ambient Tm = 295 K is 43000 ± 11000.

Systematic error in the calibration dominates statistical error in these uncertainty

estimates.

We note that the mechanical quality factor was increased by a factor of about

80, from 19950 to 1.6× 106, by optical dilution. Without the cold restoring force, a

cooling factor exceeding 2Qm = 39900 cannot be achieved in this system, due to the

limit of equation (4.4).

4.5 Quantum limit of feedback forces

Returning to equation (4.17), which governs the center-of-mass motion under feedback

forces, let us now suppose that the noise terms F̃ and x̃S are due to radiation pressure

noise and shot noise, respectively. So in the quasistatic approximation and with

detection in the optimal quadrature, both noises are white, with spectral densities

given by:

S
(RP )
F (Ω) = ~mΩ2

q

(
1

1 + δ2

)2

(4.19)

S(S)
x (Ω) =

~
mΩ2

q

(
1 + δ2

)2
(4.20)

as we derived in chapter 2.

The effective temperature and occupation number associated with the radiation

pressure noise were obtained in equation (4.12), which we can now simplify further:

only the carrier field is being used, and its optical spring supplies the dominant

restoring force (Ωeff ≈ ΩC). Accordingly, we write

NC =
1

2

Qeff

δC
(4.21)

Under cold damping with feedback kernel Kf(Ω) ≈ imΩΓf , the servo converts

shot noise into a frequency-dependent force noise, Kf(Ω)x̃S. Due to the frequency
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dependence, a comprehensive treatment of this noise mechanism becomes somewhat

complicated [55, 42]. For instance, the feedback must be band-limited in some way, or

else the noise at high frequencies would grow without bound.

In this section, we would like to obtain a simple estimate of the limiting occupation

number, and so we will make the approximation that the feedback force noise is white:

Kf (Ω)x̃S ≈ Kf (Ωeff)x̃S. This approximation is reasonable provided that the oscillator

mode is well localized around Ωeff (which is true whenever Qeff � 1).

Equating the spectral density of the cold damping feedback noise with that

of a thermal excitation, we find the effective temperature and occupation number

attributable to the feedback:

Nf =
kBTf
~Ωeff

=
1

4

Γ2
f

Ω2
q

Qeff

(
1 + δ2

C

)2
(4.22)

In order to set equation (4.22) in a more useful form, we write Ωq in terms of Ωeff ,

and Γf in terms of Γeff ≈ Γf + ΓC , obtaining

Nf =
1

8

δC
Qeff

+ 2
Ωeff

γc
δC

(
1

1 + δ2
C

)
+ 2

Ω2
eff

γ2
c

QeffδC

(
1

1 + δ2
C

)2

(4.23)

Note that as long as we select Ωeff � γc and δC � 1, the second two terms of

equation (4.23) can be made negligible. Then the total occupation number can be

written as follows:

Neff = NC +Nf

≈ 1

2

Qeff

δC
+

1

8

δC
Qeff

(4.24)

Finally, we have to optimize the ratio δC/Qeff , so as to achieve the smallest occupation

number. The minimum occurs when δC = 2Qeff , which yields Neff ≈ 1
2
. Thus, we are

able to approach the ground state under these conditions.
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4.6 Toward the ground state in LIGO

Can we bring the trapping and cooling techniques we have developed in this chapter

to a LIGO interferometer? This is a rather compelling idea, both for technical and

historical reasons.

One technical advantage is the exquisite sensitivity of the LIGO instruments, where

most of the non-fundamental noise sources have been wrung out already. Another

factor is the kilogram-scale test masses they contain: quantum mechanics has yet to

be tested on a mass scale even remotely so large.

In historical terms, the model system of a cavity with a movable mirror, together

with the theory of quantum measurement and backaction in such a system, forms

the intellectual foundation that underpins almost every experimental effort to reach

the mechanical ground state. The interferometric gravitational wave detector is the

canonical application that first motivated the development of this body of ideas. So it

is fitting to look for ways that advanced gravitational wave detectors can continue to

contribute to our understanding of the quantum domain in mechanical systems.

The biggest problem in trapping and cooling the LIGO mirrors is that radiation

pressure forces strong enough to manipulate their dynamics are not presently available.

However, we have already seen how to replace optical cooling with a feedback damping

force. In this section, we will supplant optical trapping with a servo spring, obtaining an

electro-optical trap for LIGO’s mirrors. The result has been published in reference [3].

4.6.1 The LIGO interferometers

In the initial phase of LIGO, three kilometer-scale interferometric detectors were

operated, with the goal of directly detecting gravitational waves of astrophysical

origin [9, 4]. The results reported here are derived from measurements performed on

the 4 km detector at LIGO’s Hanford Observatory.

The detector, shown in figure 4-8, comprises a Michelson interferometer with a

4 km long Fabry-Perot cavity of finesse 220 placed in each arm in order to increase

the sensitivity. Each mirror of the interferometer has mass 10.8 kg, and is suspended
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Figure 4-8: Optical layout of a LIGO interferometer. Light reflected from the two Fabry-
Perot cavities formed by input and end mirrors, M1 – M4, is recombined at the beam splitter
(BS). To control the differential degree of freedom, an optical signal proportional to mirror
displacement is measured on the photodetector (PD), and fed back as a differential force on
the mirrors, after filtering to form restoring and damping forces.
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from a vibration-isolated platform on a fine wire to form a pendulum with resonant

frequency Ωm = 0.74 Hz, in order to shield it from external forces and to enable it to

respond to a gravitational wave as a mechanically free mass above the natural resonant

frequency. To minimize the effects of laser shot noise, the interferometer operates

with high power levels: approximately 400 W of laser power of wavelength 1064 nm is

incident on the beam splitter, resulting in over 15 kW of laser power circulating in

each arm cavity.

The detector is sensitive to changes in relative mirror displacements of about

10−18 m in a 100 Hz band centered around 150 Hz. It is this low noise level which

allows for the preparation of low-energy states for the oscillator mode considered next.

The four mirrors of the LIGO interferometer (figure 4-8) are each an extended

object with a displacement xi (i = 1, . . . , 4) defined along the optical beam axis. While

all longitudinal and angular degrees of freedom of the mirrors are actively controlled,

we limit our discussion to the differential arm cavity motion, which is the degree of

freedom excited by a passing gravitational wave, and hence designed to be the most

sensitive to mirror displacements. This mode corresponds to the differential motion of

the centers of mass of the four mirrors, x = (x1 − x2)− (x3 − x4), and has a reduced

mass m = 2.7 kg.

A signal proportional to differential length changes is measured at the antisymmetric

output of the beam splitter, as shown in figure 4-8. This signal is filtered by a servo

compensation network before being applied as a force on the differential degree of

freedom, by voice coils that actuate magnets affixed to the mirrors.

4.6.2 Servo spring

In order to synthesize a restoring force and a damping force, we wish to apply a

feedback kernel of the form

Kf (Ω) ≈ mΩ2
eff + imΩΓeff (4.25)
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Figure 4-9: Response function of mirror displacement to an applied force, for various
levels of damping. The points are measured data, the thin lines are a zero-parameter
model of the complete feedback loop, and the thick lines spanning the resonance are fitted
Lorentzians, from which the effective resonant frequency and quality factor are derived for
each configuration.
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with Ωeff and Γeff much larger than Ωm and Γm, respectively, such that the modified

dynamics of x are given by a damped oscillator driven by random forces, as in

equation (4.17). This feedback creates an electro-optical potential well in which the

mirrors oscillate.

In LIGO, we can modify the existing servo control system that holds the interfer-

ometer on resonance, so that it convolves the position-dependent PDH signal with

filter functions approximating the real and imaginary parts of Kf given by equa-

tion (4.25). However, the LIGO feedback system incorporates additional filters and

propagation delays that cause deviations from the ideal damped spring. For example,

at frequencies below 100 Hz, the magnitude of Kf(Ω) sharply increases, in order to

suppress seismically driven motion; while above a few kilohertz, it is precipitously

reduced, to prevent the control system from feeding shot noise back onto the mirrors.

Nonetheless, in the frequency band important for this measurement (near the

electro-optical resonant frequency), the feedback is well approximated by a spring and

damping force, as shown in figure 4-9.

4.6.3 Analysis and results

Note that the output signal xmeas measures the center of mass motion with an additional

sensing noise, rather than x alone (see equation (4.14)). In order to establish a bound

on the true mirror motion x, the limiting sources of noise must be considered.

If external force noise dominates (F̃ � Kf(Ω)x̃S), then xmeas ≈ x, and the

measured signal corresponds to the center-of-mass motion. However, in the case

that sensing noise dominates (that is, Kf (Ω) x̃S � F̃ ), then a correction factor must

be applied to the measured signal to recover the center-of-mass motion. Taking

equations (4.14) and (4.17), in the limit that F = 0, we find that

x̃ =
Kf (Ω)

mΩ2
x̃meas (4.26)

When Kf (Ω)/(mΩ2)� 1, the measured noise x̃meas may be arbitrarily suppressed

by the feedback; however, the mirror motion will reach a finite level as limited by the
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sensing noise x̃S. This “squashing” effect has been explored previously [117, 113]. It

is important to correct for this effect in order to avoid underestimating the mirror

motion.

In LIGO, the levels of each noise x̃S and F̃ are not precisely known. However,

we can make a conservative correction by applying a factor max (1, Kf (Ω)/(mΩ2)) to

determine the worst possible center-of-mass motion, thereby accounting for the fact

that the servo can inject noise back onto the oscillator.

We may then determine the effective temperature of the mode according to

equation (4.9). We apply the above-mentioned correction to obtain an upper bound

for x2
rms, as follows:

x2
rms =

∫
max

(
1,
Kf (Ω)

mΩ2

)2

Sxmeas(Ω) dΩ (4.27)

Here Sxmeas is the single-sided power spectral density of the measured motion xmeas.

Note that we must limit the frequency band of this integral, because we cannot

measure the mirror’s motion at arbitrarily high frequencies, and including all the

high-frequency sensing noise in the integration would cause it to diverge.

Finally, the corresponding occupation number may be determined by

Neff =
kBTeff

~Ωeff

(4.28)

Figure 4-10 shows the amplitude spectral density of mirror displacement, with the

sensing noise correction factor already applied, for varying levels of cold damping. To

determine the effective temperature of the mode from these data, we must estimate

the effective frequency Ωeff and the root-mean-square displacement fluctuation xrms.

To do so, first we drive the differential mirror motion and measure the response,

shown in figure 4-9. These response functions are fit to a damped oscillator model;

Ωeff and Qeff are products of the fit.

Then xrms is computed by integrating the spectrum according to equation (4.27),

in the band from 100 to 170 Hz. To correct for the finite integration band, we scale the
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Figure 4-10: Amplitude spectral density of displacement in the frequency band of integra-
tion. The curves (from highest to lowest) were produced by applying increasingly strong cold
damping to the oscillator, corresponding to the measurements of figure 4-9. The depression
in the lowest curve is due to the shape of the background noise spectrum; the effects of the
servo are corrected for according to equations (4.14) and (4.27). The narrow line features
between are mechanical resonances of auxiliary subsystems, and a 120 Hz power line is also
visible.
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result by setting our measured spectrum integral equal to the spectrum of a thermally

driven oscillator (given by equation (4.18)) integrated over the same frequency band.

In this way, we measure a minimum effective temperature Teff = 1.4 ± 0.2 µK,

corresponding to thermal occupation number Neff = 234 ± 35. Systematic error of

15% in the calibration dominates statistical error in these uncertainty estimates.

4.6.4 Future prospects

In this work, we have established a new method by which interferometric gravitational

wave detectors, designed as sensitive probes of general relativity and astrophysical

phenomena, might also become sensitive probes of macroscopic quantum mechanics.

An interesting question arises as to whether this technique can lead to ground state

cooling of the interferometer mirrors. It is straightforward to adapt the simplified treat-

ment of section 4.5 to the case of a servo spring. Moreover, a detailed calculation [42]

has been performed, showing that the continuous displacement measurement required

for feedback does in fact introduce a small additional term to the uncertainty relation

for the oscillator position and momentum fluctuations, due to measurement-induced

steady state decoherence.

A sub-SQL noise spectrum in the vicinity of Ωeff can circumvent this limit. Such

a spectrum can be achieved by injection of a squeezed state into the antisymmetric

port of the interferometer, for example. As classical noises are suppressed, and the

squeezing becomes stronger, the oscillator should approach a pure state.

Recall that a major upgrade of the LIGO detectors is presently underway. Advanced

LIGO, expected to be completed in 2014, should give a factor of 10 to 15 improvement

in displacement sensitivity relative to that of the detector used for this work (with a

concomitant factor of 4 increase in mass). In Advanced LIGO, the circulating laser

power will increase to 800 kW, permitting strong restoring forces to be generated

optically. The Advanced LIGO detectors are expected to operate near the SQL.

Future detectors will surpass the SQL, and in so doing, enable compelling experi-

mental demonstrations of quantum theory at the macroscale, involving kilogram-scale

test masses with kilometer-scale separations [99, 42, 76].
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Figure 4-11: Cooling as a benchmark for the ponderomotive interferometer.

4.7 Cooling as a benchmark

The trapping and cooling technique that was introduced in the previous section

can be applied to any instrument capable of displacement actuation and sensing.

After the series of experiments described in sections 4.2 and 4.4 were completed,

the ponderomotive interferometer was upgraded to its full Fabry-Perot Michelson

configuration, as set forth in chapter 3. Taking advantage of its improved noise floor

(which was mainly due to the cancellation of laser noise in the Michelson), we used

the optimal feedback cooling strategy to obtain nearly a factor of ten reduction in

temperature, relative to the single-cavity result found in section 4.4. The present

limits to cooling in our experiment can be attributed to the 1-gram mirror suspensions,

as we will see in the next chapter. Data from this benchmark cooling run are plotted

in figure 4-11.
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Chapter 5

Radiation pressure and thermal

noise

In this chapter, we will investigate suspension thermal noise, which is the primary noise

mechanism that currently limits the performance of the ponderomotive interferometer.

This effect dominates the interferometer’s displacement noise spectrum throughout a

broad frequency band, and has so far prevented us from observing quantum backaction

in the system.

In addition to being the highest priority problem to solve in future iterations of

the experiment, our thermal noise limited spectrum represents an opportunity to

validate our understanding of an important noise mechanism. Suspension thermal

noise is of interest in a wide range of mechanical instruments, including other quantum

opto-mechanics experiments, reference cavities for laser frequency stabilization, and

gravitational wave interferometers. We find excellent agreement of our spectrum with

theory in a regime where, to our knowledge, this type of noise had not been previously

observed.

5.1 Thermal noise

Damping and thermal noise are two sides of the same coin. Both phenomena occur

whenever a system is allowed to exchange energy with its environment. Damping is
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what we observe when the system is initially very excited: energy leaks out of the

system and is dissipated as heat in the environment. Eventually an equilibrium is

reached between this process, and the small influx of energy due to random fluctuations

of the environment that act to excite the system.

The Fluctuation Dissipation Theorem, derived by Callen and Welton [32], is the

conceptual linchpin that defines the precise relationship between the equilibrium level

of thermal noise and the strength of the damping. It can be written in the following

form:

S
(T )
F (Ω) = 4kBTR(Ω) (5.1)

where SF (Ω) is the power spectrum of force noise that acts on the system, and R(Ω)

is the resistance, which characterizes the damping.

For example, in an electrical circuit, equation (5.1) gives a description of Johnson

noise, the noisy electromotive force produced by a resistor R at temperature T . In a

mechanical system, the same thermodynamics are at work, although the concept of

“resistance” may not be familiar in the context of mechanics. It is given by the real

part of the mechanical impedance Z(Ω) = 1/(−iΩχ(Ω)), where χ(Ω) is the mechanical

susceptibility (transfer function of force to displacement). Note that the thermal

displacement noise spectrum can be obtained from equation (5.1) by inserting the

susceptibility, as follows:

S(T )
x (Ω) = |χ(Ω)|2S(T )

F (Ω)

=
4kBTR(Ω)

Ω2|Z(Ω)|2

=
4kBT

Ω2
Re

{
1

Z(Ω)

} (5.2)

The quantity 1/Z(Ω) is known as the admittance.

Using this theorem, we can translate measurements of the mechanical losses found

in the interferometer into estimates of its thermal noise limited sensitivity. Likewise,

displacement measurements that reach the thermal noise limit can be used to inform

us about the dissipation mechanisms at work in the interferometer.
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A widely used, dimensionless parametrization of damping is the loss angle φ(Ω),

which extends an oscillator’s spring constant to include a small imaginary part:∗

Km(Ω) = mΩ2
m (1− iφ(Ω)) (5.3)

The loss angle can take on an arbitrary frequency dependence, which allows it to

describe a wide array of dissipation mechanisms. It has a simple relationship with the

resistance: φ(Ω) =
Ω

mΩ2
m

R(Ω).

Ordinary viscous damping corresponds to a loss angle φ(Ω) = ΓmΩ/Ω2
m, linearly

proportional to frequency. However, an alternative form of damping was introduced

by Kimball and Lovell [74], and is expected to describe the internal friction of a

mechanical structure such as a mirror suspension. This structural damping is what

remains after all external effects (such as air friction or eddy current damping) are made

negligible. Structural damping is characterized by a loss angle φ(Ω) = Γm/Ωm = 1/Qm,

independent of frequency (at least across some finite band of frequencies).

Near the resonant frequency Ωm, the effects of viscous and structural damping are

almost indistinguishable. However, away from resonance, their thermal noise power

spectra have different slopes (see figure 5-1). They diverge by the factor Ω/Ωm, in

accordance with the Fluctuation Dissipation Theorem. This difference is very impor-

tant in mechanical instruments where measurements are made off-resonance, including

seismometers, gravitational wave detectors, and the ponderomotive interferometer.

In any such device, the nature of the damping mechanism plays a pivotal role in

determining the thermal noise limited sensitivity.

Nonetheless, to our knowledge, only a few measurements of suspension thermal

noise exhibiting structural damping have been reported until now. In those cases

it was observed at very low frequencies, below 10 Hz [103, 84, 11]. By contrast, the

ponderomotive interferometer is sensitive to suspension thermal noise across a wide

frequency band of 80–5000 Hz. Previous measurements of thermal noise in this band

have been limited by the noise of the optical coatings, rather than the noise of the

∗The extra factor in the spring constant is sometimes written as (1 + jφ(Ω)), with a sign flip in
the imaginary part, which is as it should be if one propagates in time with ejΩt rather than e−iΩt.
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Figure 5-1: Thermal displacement noise amplitude spectra due to viscous and structural
damping (assuming a 10 Hz oscillator of Q 106 and reduced mass 0.5 gram at temperature
300 K), showing the divergent noise above and below resonance. The viscous damping curve
roughly coincides with the level of radiation pressure noise achievable in the experiment.

102



suspension itself [67, 104, 19].

We have verified our interpretation of the interferometer’s noise floor, by using it

to fit a model of thermal noise due to structural damping in the 1 gram end mirror

suspension. The calculation follows the method described by Levin [82]. This method

was implemented in the finite element analysis software COMSOL by Abraham Neben,

who also developed exquisitely detailed 3D models of the end mirror suspension. In

section 5.1.1 we review Levin’s method. In section 5.1.2, we discuss the properties

of the end mirror suspension. Details of the finite element computation and fitting

procedure are found in section 5.1.3]. In section 5.1.4 we consider the implications of

this result for future iterations of our experiment. The results discussed here have

been presented in reference [101].

5.1.1 Levin’s method

To calculate the thermal noise spectrum using equation (5.2), we need to know the

real part of the admittance 1/Z(Ω). For idealized models such as the simple harmonic

oscillator, it is straightforward to derive the equation of motion and find the admittance

analytically.

But an exact analytic treatment is not practical for a real system like a mirror

suspension, which has many normal modes of oscillation that contribute to the

thermal noise limit. An approximate method for a multi-mode system is to apply the

Fluctuation Dissipation Theorem to the normal modes individually (treating each

one as an independent harmonic oscillator), and thus to obtain thermal noise power

spectra corresponding to each mode. The resulting spectra are simply added up to

estimate the total noise. The assumption underlying this approach is that the noise

of distinct modes is uncorrelated, and can be summed incoherently. However, this

assumption may not be justified, particularly when the losses are not distributed

homogeneously throughout the mechanical structure.

Levin’s “direct approach” [82] is capable of accurately estimating the thermal noise

spectrum of a mirror surface’s displacement, as sampled by an incident laser beam.

To use this method, we must work out the mirror’s response to a force applied on its
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surface. The force is sinusoidal in time with frequency Ω and peak amplitude F0, and

it is spatially distributed across the mirror’s face with a profile matching that of the

laser beam. We then compute the average power, Wdiss(Ω), that is dissipated in the

mirror as a result of the applied force. Finally, we use the prescription

Re

{
1

Z(Ω)

}
=
Wdiss(Ω)

F 2
0

(5.4)

and equation (5.2) to obtain the thermal displacement noise power spectrum.

Levin’s approach is relatively easy to translate into a numerical method using

finite element analysis. In this way, it can correctly account for all known information

about the geometry and material properties of each component of a mirror suspension,

yielding highly accurate results. However, when interpreting those results, it can still

be valuable to think in terms of normal modes. For instance, the thermal noise of an

individual mode may be dominant in a particular frequency band, and knowing which

mode is the culprit may suggest a route to mitigating the noise. This has proven to

be the case in our analysis of the thermal noise of the ponderomotive interferometer’s

1 gram end mirror suspension.

5.1.2 End mirror suspension as built

The overall experimental setup used to obtain thermal noise limited displacement

spectra is described in chapter 3. Central to the results of this chapter are the

1 gram mirror oscillators, which are suspended from fused silica fibers as illustrated in

figure 5-2. Each fiber is 40 mm in length, and tapers from a maximum diameter of

3 mm to a minimum of ∼ 150 µm. A thicker region, called the “ear”, is located at the

bottom, and is about 10 mm long and 1.5 mm in diameter. The shape of the ear was

informed by the need for a steep spatial gradient at the transition between the small

diameter fiber and the large diameter ear, which allows for better decoupling of ear

and mirror motion. See figure 5-3 for a close-up view of the ear region. The ears are

bonded to the mirror with Vac-Seal epoxy (Tra-Con).

The purpose of the tapering fibers is to minimize the thermal noise of the funda-
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Figure 5-2: Left panel: Finite element model of a 1 gram mirror suspended by fused silica
fibers, showing the fibers that taper in the middle and are thicker at the ends where the
epoxy bonding is done. The 1 gram mirror oscillator is attached to a fused silica ring that is
itself suspended as a pendulum. This double pendulum system provides greater isolation
from seismic noise, but has little impact on the accuracy of the model due to the much
greater mass of the outer ring. Right panel: photograph of the 1 gram mirror suspension.

Figure 5-3: Left panel: Close-up view of the finite element mesh of the 1 gram mirror
suspension. The model was generated from high-resolution photographs of the mirror and
ears. Right panel: image of the displacement of the twisting ear mode, with blue being least
displaced and red being most displaced.
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Figure 5-4: Ringdown measurement of the quality factor of the 10 Hz longitudinal mode
of the end mirror suspension, showing Q ∼ 106.
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Figure 5-5: Pitch mode quality factors, degraded after a vent, take a few weeks to recover
to their typical values.
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mental mode of oscillation (which occurs at about 10 Hz), by ensuring that it stores

energy mostly in the pristine fused silica near the middle of the fiber, and not in the

lossy epoxy at either end. Quality factors of greater than 106 are measured for the

10 Hz mode (see figure 5-4), which would imply that the thermal noise of this mode is

far better than what is required to observe the quantum backaction.

However, the 1 gram mirror’s yaw mode (near 40 Hz) and pitch mode (near

70 Hz) exhibit degraded losses. Quality factors are . 5× 105, with the pitch mode Q

superior to that of the yaw mode. The losses are observed to evolve over time: they

are at their worst when the vacuum chamber has recently been vented, and slowly

recover afterward, as shown in figure 5-5. We speculate that this process is related to

absorption of water by the Vac-Seal epoxy from the air during a vent, and subsequent

outgassing while under vacuum.

We also observed a family of modes above 30 kHz, with quality factors on the

order of 100. These modes can be excited by driving the actuators of the end mirror

suspension, confirming that they are modes of that suspension.

Finally, we observed a displacement noise floor with a 1/f power spectrum, spanning

a broad frequency band from 80–5000 Hz. This noise was shown to be unrelated to

the readout and actuation chains, and unexplained by any known coupling to the

noise of the laser, or the noise of auxiliary feedback loops in the interferometer. In the

next section, finite element analysis is used to confirm that 30 kHz bending modes of

the ear-mirror epoxy bond can account for the observed noise floor.

5.1.3 Thermal noise finite element analysis

The finite element method is an approach to solving for continuum dynamics in various

physical scenarios by discretizing the geometry. We perform finite element simulations

with the COMSOL Multiphysics package, using its Structural Mechanics module.

With that software, we model the 3D geometry, then implement the Levin approach.

We apply a Gaussian load to the mirror face, and solve for the steady-state mirror

response to the load oscillating at a set of frequencies {Ω}, yielding the complex

admittance 1/Z({Ω}) directly. See Table 5.1 for material parameters used in the
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Property Value for fused silica Value for Vac-Seal epoxy

Density 2.20 g/cm3 1.01 g/cm3

Young’s modulus† 73.1 GPa 2.75 GPa
Poisson’s ratio 0.17 0.25

Loss angle‡ 3× 10−7 0.035

Table 5.1: Material properties and their assumed values.

simulations.

Using the measured displacement spectrum, we fit for the loss angle of the epoxy,

and arrived at φepoxy = 0.035. This value results in excellent agreement between

our experimental data and the output from the model, as shown in figure 5-6. We

take this result as confirmation that our displacement noise floor is dominated in the

80–5000 Hz band by structural thermal noise.

The 80–200 Hz band is in the above-resonance “wing” of the 80 Hz pitch mode.

If all the pitch modal energy were in the very low loss fused silica, then we would

expect to measure Q = 1/φfused silica ∼ 3× 106. However, we measure only ∼ 5× 105,

indicating both that pitch thermal noise is setting our noise floor in that band, and

that epoxy loss is dominating that noise.

In the 200–5000 Hz band the spectrum shows the characteristic 1/f below-resonance

thermal noise power spectrum of a structurally damped oscillator, which is well

reproduced by simulations. The modes responsible for this noise are the bending

modes of the ear-mirror joint, with resonant frequencies starting around 30 kHz. (See

figure 5-3, for an example of one such ear-mirror bending mode.)

5.1.4 Thermal noise mitigation

Various schemes have been presented to reduce the level of thermal noise in an

interferometer [75, 145, 73, 98], relying either on carefully tuned passive cancellations

or multiple measurements to disentangle the thermal noise from displacement signal.

†Value for Vac-Seal is per manufacturer specification for comparable epoxies.
‡All fused silica loss occurs in the fibers where surface losses dominate. For fibers with minimum

diameter ∼ 150 µm, Gretarsson and Harry find the value given here for fused silica [63]. Concerning
the value for Vac-Seal, see the discussion in the text.
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Figure 5-6: Measured displacement sensitivity compared with the thermal noise prediction
from finite element analysis with the normal mode method, including a 0 and −1 mm vertical
beam offset from the mirror center. Non-uniform optical losses over the mirror surface
have prevented us from exploring the full space of beam offsets in the experiment, but this
limitation should be remedied in the upgrade now underway.
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Figure 5-7: Predicted thermal noise for alternate, square-profile ear geometries with a
chopped mirror, showing the improved performance relative to radiation pressure noise.
Inset: rendering of a chopped mirror suspended with 3× 3 mm square ears.
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Our modeling results suggest several simpler geometric ways to lower our noise floor.

In the 80–200 Hz band, the measured spectrum is dominated by the thermal noise

from the pitch mode of the oscillator. Introducing a vertical offset of the incident laser

beam, shifting it ≈ 1 mm from the center of the mirror, places the beam near the

node of the pitch mode. This offset should decrease the sensed pitch thermal noise

(by increasing the modal mass), as depicted in Figure 5-6.

Above 200 Hz, the thermal noise of the mirror-ear bending modes takes over. As

the loss angle φepoxy is 5 orders of magnitude larger than φfused silica (for ∼ 150 µm

fibers [63]), it is the epoxy that dominates both the pitch and the mirror-ear bending

thermal noise. To minimize the effect of this thermal noise in our measurement band,

we investigated alternative mirror-ear geometries to maximize the strength of the

ear-mirror bond per amount of epoxy. By maximizing this quantity, we redistribute the

thermal noise of the mirror-ear modes to higher frequencies, out of the measurement

band. This quantity of merit is optimized in the case of plane-on-plane contact,

and so we propose a design that incorporates ears with square cross-section, and

“chopped” mirrors with flattened regions on the circular edge. Figure 5-7 shows a model

of this square-ears/chopped-mirror geometry, together with the predicted thermal

noise for variations on that geometry. We expect these square ears to be the most

expedient path forward, and are pursuing this design for the next iteration of the end

mirror suspension. The design is also compatible with other adhesives such as silicate

bonding [132].

5.1.5 Summary

We have experimentally demonstrated and theoretically analyzed the structural thermal

noise-limited performance of a 1 gram mirror oscillator, finding excellent agreement

between the model and the measurement. We have also proposed some avenues to

reduce the thermal noise floor in this experiment. The observation of off-resonance

thermal noise has importance for a broad class of experiments in cavity optomechanics

and gravitational wave interferometry. Accurate modeling of these complex structures

depends on detailed knowledge of their geometry and material properties, but lets
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us better understand and optimize their mechanical design. The optimizations we

have presented should permit our experiment to enter the quantum backaction limited

regime.
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Chapter 6

Ponderomotive entanglement

In this chapter, we turn our attention to future goals for the ponderomotive inter-

ferometer, after it has entered the quantum backaction regime. A longstanding goal

has been to demonstrate that the interferometer can serve as a source of squeezed

light. In fact, this is the purpose for which the experiment was originally designed [40].

Here, we will propose another application: it should be possible to employ the optical

trap configuration, discussed in chapter 4, as a novel source of entangled light. This

proposal was published in reference [142].

6.1 Background

Entanglement is one of the cornerstones of quantum mechanics, having first emerged

in the context of the famous EPR paradox [47]. It continues to be a conceptually

challenging phenomenon that plays an important role in fundamental tests of quantum

theory. Moreover, it has found many new applications in the field of quantum

information, including cryptography and teleportation.

It is anticipated that the radiation pressure coupling of light incident on a movable

mirror can be used to entangle the mirror with the optical field [20, 88], or with

other resonators [87, 143, 112, 114], while also allowing the system to act as a source

of entangled light [59, 56]. Analogous effects are possible when capacitive coupling

is substituted for the radiation pressure [16]. Recent predictions indicate that such
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effects may be observed using micromechanical devices within experimentally feasible

parameter regimes [49, 136, 109].

Meanwhile, the improving sensitivity of gravitational-wave interferometers is be-

ginning to open a new experimental regime for macroscopic quantum mechanics, and

promises to reveal quantum features such as squeezing and entanglement of their

mirrors’ motion [99]. In addition to the profoundly macroscopic size of these systems,

another distinctive feature of this regime is that radiation pressure effects, particularly

the optical spring [27, 29, 38, 128, 96], can play a dominant role in the dynamics.

A good example of radiation pressure dominated dynamics is the stable optical

trap presented in chapter 4. Recall that this technique exploits the optical restoring

and damping forces of two laser fields detuned from cavity resonance — resulting in a

stable, strong, and cold trap, where the mirror’s thermal noise has undergone a great

deal of optical dilution.

Motivated by these developments, we have evaluated the prospects for observing

entanglement in the optical trap configuration. We concentrate on entanglement

between the two output optical fields, i.e., the device’s potential as a source of

quadrature-entangled light. Since this type of entanglement places the least stringent

demands on the quantum state of the mirror, we expect that it will be among the

earliest to be demonstrated experimentally. We also note that the protocols previously

developed to characterize non-mechanical entanglement sources [107, 130, 21] can be

directly applied in this setting.

This chapter is organized as follows. In section 6.2 we offer a review of the logarith-

mic negativity entanglement measure. In section 6.3 we describe the dynamics of the

stable optical trap in some detail, providing a quantum treatment of a cavity mirror

coupled to two optical fields based on their Langevin equations, including thermal

noise of the mirror coating. This leads to a simple and general formula quantifying

the entanglement of the optical fields at the output, presented in section 6.4. The

prospects for experimentally realizing this entanglement are considered in section 6.5,

before concluding with section 6.6.
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6.2 Entanglement criterion

Many of the best-known examples of entanglement in physics involve discrete systems,

such as qubits. Moreover, the entanglement criterion we are about to describe (which

is known as the logarithmic negativity) was originally defined for discrete systems,

before being generalized to the case of continuous variables (such as the position

and momentum of a particle). In what follows, we will briefly review this historical

development.

6.2.1 Finite-dimensional entanglement

If we consider two qubits, labeled A and B, it is sometimes possible to describe the

state of each qubit individually. For instance, both qubits may be in the state |0〉, so

that the joint state |ψ〉AB = |00〉AB. In that case, the joint state is called separable.

Represented symbolically, |00〉AB = |0〉A ⊗ |0〉B.

On the other hand, in quantum mechanics it is permissible to form a superposition

of two separable states, such as: |ψ〉AB = (|00〉AB + |11〉AB) /
√

2. This is one of the

famous entangled Bell states, a joint state that does not admit separate identities for

the states of its two constituent qubits.

However, there are similar-looking superpositions of separable states that are

themselves separable. For instance, (|00〉AB + |01〉AB) /
√

2 separates into |0〉A ⊗

(|0〉B + |1〉B) /
√

2. Note that it is not always obvious at a glance whether a given

joint state can be factorized in this way, especially for a higher-dimensional system.

Deciding whether entanglement is present in some arbitrary joint state turns out to

be a challenging problem.

Peres [111] made progress on this problem by deriving a necessary criterion for

a density matrix to describe a separable state. This criterion was also shown by

Horodecki [68] to be sufficient for 2×2 or 2×3 dimensional systems, and not sufficient

in higher dimensions. The reasoning is as follows.

First, note that a separable joint density matrix ρAB can be written in the form

ρAB =
∑

k pk
(
ρA,k ⊗ ρB,k

)
, where ρA,k and ρB,k are themselves density matrices for
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the subsystems A and B, and the probability weights pk ≥ 0 with
∑

k pk = 1. Also,

taking the transpose of a matrix does not change its eigenvalues, which for a valid

density matrix are required to be non-negative. Therefore, the partial transpose of a

separable joint density matrix, σAB =
∑

k pk
(
ρTA,k ⊗ ρB,k

)
, should continue to be a

valid joint density matrix, with non-negative eigenvalues. But if ρAB is not separable,

the partially transposed σAB may have a negative eigenvalue.

So the Peres-Horodecki criterion tells us to look for negative eigenvalues of σAB.

When we find one, we know that the state must be entangled. The sum of negative

eigenvalues of σAB is known as the negativity N ; and the so-called logarithmic

negativity [116] is EN = log2(2N + 1). This entanglement measure is frequently used

in the literature, and has several advantages: it is simple to compute, and possesses

an operational interpretation [18].

6.2.2 Continuous-variable entanglement

Simon [131] figured out how the Peres-Horodecki criterion could be applied to con-

tinuous variable systems. The result uses the fact that, for continuous variables,

transposing the density operator is equivalent to time reversal (p→ −p).

For convenience, we can define a vector of observables for a bipartite system:

u = [X1, P1, X2, P2]T , containing the canonical positions Xj and momenta Pj of

subsystems j ∈ {1, 2}. For the purpose of assessing entanglement, we need only

the fluctuating part of u, so we will assume that u has zero mean (the steady-state

value ūj of each element is subtracted off if nonzero). We also specify dimensionless

canonical commutation relations between the elements of u, as follows: [Xj, Pk] = iδjk,

and [Xj, Xk] = [Pj, Pk] = 0. Note that the dimensionless coordinates X and P are

related to the usual position and momentum x, p of a mechanical oscillator via the

canonical transformation x→
√

~/(mΩm)X, p→
√
~mΩmP .

Any Gaussian state of the system can be described by a variance matrix V . This

4× 4 symmetric matrix contains the second order moments between the elements of
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u, and is defined as follows:

V =

 V 11 V 12

V T
12 V 22

 ; V jk =

 〈XjXk〉+ 〈XjPk〉+

〈PjXk〉+ 〈PjPk〉+

 . (6.1)

Here the quantity 〈uv〉+ denotes the symmetrized average 〈uv + vu〉/2.

A valid variance matrix must satisfy the uncertainty principle, stated in matrix

form as [131]:

V +
i

2
C ≥ 0 (6.2)

where the matrix C encodes the commutation relations: iCmn = [um, un]. If the

system is in a separable state, then the variance matrix must continue to satisfy the

uncertainty principle under a partial transpose (P2 → −P2):

ΛV Λ +
i

2
C ≥ 0 (6.3)

where the matrix Λ = diag(1, 1, 1,−1) implements the partial transpose operation.

Equation (6.3) gives us a succinct necessary criterion for separability.

Finally, one may write the logarithmic negativity in terms of V , as follows [12]:

EN = max

[
0,−1

2
ln
(

2Σ− 2
√

Σ2 − 4 detV
)]

(6.4)

where Σ = detV 11 + detV 22 − 2 detV 12.

6.3 Opto-mechanical dynamics

A schematic of the ponderomotive interferometer, in its optical trap configuration, is

shown in figure 6-1. Note that in each arm cavity, the motion of the massive input

mirrors can be neglected. Moreover, the antisymmetric port readout is decoupled from

all disturbances common to both cavities, as discussed in chapter 3. Hence, we can

limit our attention to a single mechanical mode: the differential degree of freedom.

In order to quantify the entanglement EN according to equation (6.4), we need
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Figure 6-1: Schematic of an optical trapping and homodyne readout apparatus for the
differential mode of a Fabry-Perot Michelson interferometer. Each arm cavity comprises a
highly reflective, low-mass end mirror and a massive input mirror of finite transmissivity.
The system is driven by two orthogonally polarized laser beams: a strong “carrier” field,
and a weaker frequency-shifted “subcarrier” created by an acousto-optic modulator (AOM).
Each optical field is monitored using a balanced homodyne readout. Feedback loops required
to hold the interferometer on resonance are not shown.
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to compute the system’s second order moments. To do so, we first write down its

linearized, Heisenberg-picture equations of motion. These equations can be derived

using the quantum Langevin approach (cf. [53, 56, 109]). They can be expressed in

the succinct form

u̇ic = Kuic + uin. (6.5)

This operator equation relates the vector uic of intra-cavity coordinates, and the vector

uin of input noises driving the system, via the coupling matrix K.

Elements of uic = [X,P,X1, Y1, X2, Y2]
T include the (dimensionless) coordinates

X,P of the mirror, and the cavity mode quadrature operators defined by Xj =

(a†j + aj)/
√

2, Yj = i(a†j − aj)/
√

2. The input noise vector is

uin =

[
0,

FT√
~mΩm

,
√

2γcXin,1,
√

2γcYin,1 +
G1xsurf√
~/(mΩm)

,

√
2γcXin,2,

√
2γcYin,2 +

G2xsurf√
~/(mΩm)

]T (6.6)

which includes a Langevin force FT driving Brownian motion of the mirror center of

mass, the vacuum noises Xin,j, Yin,j entering each cavity mode, and a mirror surface

displacement xsurf due to thermal noise of the optical coating layer. The coupling

matrix is

K =



0 Ωm 0 0 0 0

−Ωm −Γm G1 0 G2 0

0 0 −γc −∆1 0 0

G1 0 ∆1 −γc 0 0

0 0 0 0 −γc −∆2

G2 0 0 0 ∆2 −γc


. (6.7)

Here the cavity mode operators have been represented in the frame rotating

with their drive fields, so that only their detunings appear in the equations. The
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Parameter Symbol Value

End mirror resonant frequency Ωm/2π 1 Hz
End mirror damping rate Γm/2π 1 µHz
End mirror reduced mass m 0.5 g
Cavity resonant frequency ωc/2π c/(1064 nm)
Cavity linewidth (HWHM) γc/2π 9.5 kHz

Cavity length L 1 m
Carrier power 5 W

Carrier detuning δ1 −3
Subcarrier power 0.3 W

Subcarrier detuning δ2
1
2

Coating noise coefficient C 1.5× 10−13 s2/kg
Ambient temperature T 300 K

Table 6.1: Ponderomotive entangler parameters and their nominal values. Note that the
optical coating noise parameter C depends on both material and geometric properties of the
end mirror, and is broken down further in reference [40].

opto-mechanical coupling is parametrized by

G2
j = Ω2

q,j

γc
Ωm

1

1 + δ2
j

(6.8)

where Ωq,j is the usual “quantum frequency” of field j, and the detuning of each

field is ∆j = ωj − (1− x̄/L)ωc, with δj = ∆j/γc. All other parameters are defined in

table 6.1.

In the frequency domain, it is straightforward to solve equation (6.5) algebraically

for ũic in terms of ũin [56]. To gain insight into the solution, we begin with the case

where G1 = G2 = 0, decoupling the subsystems. Then the mirror’s equation of

motion is that of a thermally driven pendulum, x̃ = χm(Ω)F̃T , where the mechanical

susceptibility to force is given by χm(Ω) = [m(Ω2
m − iΓmΩ− Ω2)]−1.

Turning on the interaction has two effects on the mirror. First, it introduces new

driving terms due to radiation pressure noise. Second, it alters the mirror’s response

function. When motion is slow on the cavity timescale (Ω� γc), the opto-mechanical

susceptibility may still be written in the form χeff(Ω) = [m(Ω2
eff − iΓeffΩ− Ω2)]

−1
, but
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the system’s new resonance parameters are:

Ω2
eff = Ω2

m +
∑
j

Ω2
j ; Ω2

j = Ω2
q,j

δj
2

(
1

1 + δ2
j

)2

Γeff = Γm +
∑
j

Γj; Γj = −
2Ω2

j

γc(1 + δ2
j )

(6.9)

These expressions reveal an important feature of strong radiation pressure coupling:

it can create both static and dynamic instability. Considering a single optical field j,

note that its contributions to the spring constant, mΩ2
eff,j , and the damping rate, Γeff,j ,

have opposite sign. If both of these terms are permitted to exceed the mechanical

contributions, mΩ2
m and Γm respectively, then the system becomes unstable. This

follows from the presence of either an overall anti-restoring force, or an anti-damping

force, depending upon which sign is chosen for the detuning δj. For this reason, prior

studies on ponderomotive entanglement have avoided the regime where the optical

spring constant dominates. However, in the presence of two optical fields, the coupling

strengths and detunings can be chosen so that, when considered together, the effective

resonant frequency and damping rate both have positive sign, and are dominated by

terms of optical origin. These are the conditions needed to realize a stable optical

trap [37].

Strong coupling is the prerequisite for optical trapping: strong, in particular, when

compared with the mechanical resonant frequency. The optical spring constant is

maximized at δj = 1/
√

3, which leads to a criterion

Ω2
max,j ≡

3
√

3

32
Ω2
q & Ω2

m (6.10)

delineating the boundary of the regime where a dominant optical spring is possible.

6.4 Output variances

The optical fields exiting the cavity are potentially quantum-correlated, due to the

coupling of their intra-cavity amplitude and phase with the motion of a common mirror.
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Figure 6-2: Logarithmic negativity of output carrier-subcarrier entanglement in the DC
limit.

To study these correlations, the variance matrix of the output fields is obtained from

the solution to equation (6.5) via the cavity input-output relation, ain +aout =
√

2γcaic.

Subsequently, one finds the variance matrix of the output spatial mode at sideband

frequency Ω, in terms of the power spectra of the noise inputs, which are [53, 67]∗:

SFT (Ω) = 2mΓm~Ω [coth(~Ω/[2kBT ])− 1]

Sain,j
(Ω) = 1

Sxsurf
(Ω) = 2

C

Ω
kBT

(6.11)

Applying equation (6.4) to these modes, one finds that the logarithmic negativity

∗It should be noted that the simple temperature scaling given for the spectra of FT and xsurf ,
although it is widely used, does not capture the range of behaviors observed for the losses of real
materials as a function of temperature [66]. Our results are valid for room temperature (300 K), and
for negligible thermal noise (0 K), and can be compared with other predictions using the same simple
model. However, we do not attempt to model here the real behavior at intermediate temperatures.
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of the output fields can be written simply in the DC limit (Ω→ 0):

EN,out = −1

2
ln
(

1 + 2ξ
[
Θ−

√
Θ2 + ξ−1

])
, (6.12)

where ξ and Θ are dimensionless quantities parametrizing the entangler strength, and

the degradation due to thermal noise, respectively. The dependence of EN,out on these

quantities is depicted in figure 6-2. They are defined as:

ξ =
4

δ1δ2

Ω2
1Ω2

2

Ω4
eff

(6.13)

Θ = 1 +
1

2

kBT

~ΩmQm

(∑
j

Ω2
m

Ω2
j/δj

)
(6.14)

using also the mechanical quality factor Qm = Ωm/Γm. Note that an upper bound for

ξ over all detunings is given by

ξ ≤ 1024

27

(Ω2
max,1/Ω

2
m)(Ω2

max,2/Ω
2
m)

(1 +
∑

j Ω2
j/Ω

2
m)2

. (6.15)

Writing ξ in this form makes explicit the connection between a strong entangler and

the possibility of a strong optical spring. Unless the criterion (6.10) is satisfied by at

least one field, ξ is constrained to be small.

The expression (6.14) shows how the entanglement can survive at temperatures

that are strikingly high, given the mirror mechanical properties. Here the factor

kBT/(~ΩmQm) can be interpreted as a thermal noise figure of merit for the mechanics;

it is, in fact, the limiting thermal occupation number under cold damping. The factor

in parentheses represents the optical modification to the mechanical thermal noise.

This factor is lower bounded over all detunings by
∑

j

√
27

16
Ω2
m/Ω

2
max,j. Hence, when

the criterion (6.10) is satisfied by both optical fields, a large suppression of the thermal

noise is possible.
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Figure 6-3: Budget of limiting classical noise sources based on the parameters of table 6.1,
plotted with the Standard Quantum Limit SSQL(Ω) = 2~/(mΩ2).

6.5 Experimental prospects

A real experiment must contend with technical noise sources such as seismic and

laser noise, as well as the noises (vacuum, coating and suspension thermal) that are

included in the treatment given here. We assume that all technical noises can be

remediated, including the excess thermal noise discussed in chapter 5. This would

permit the experiment to achieve the classical noise budget presented in figure 6-3,

and allow us to evaluate the prospects for entanglement using the analysis described

above.

Results of numerical evaluation of EN,out(Ω) are presented in figure 6-4, showing

that entanglement of the output light should be produced within the frequency band

of interest, and that it is remarkably robust against thermal noise — even surviving a

room-temperature environment. The spectra are flat until suppressed by the onset of

the coating noise; while in the absence of thermal noise they are cut off at the cavity

linewidth γc/2π ≈ 9.5 kHz. The magnitude at low frequency is well approximated by
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Figure 6-4: Predicted logarithmic negativity spectra for entanglement of the output carrier
and subcarrier fields, plotted for various ambient temperatures.∗Additional parameters are
specified in table 6.1.

equation (6.12).

Given the assumptions of table 6.1, the entangler strength parameter is ξ ≈ 13.2,

and the thermal degradation parameter is Θ ≈ 1.8 at room temperature. In this

“strong entangler” limit, one finds

EN,out
ξ�1→ −1

2
ln

(
1− 1

Θ
+

1

4

ξ−1

Θ3

)
, (6.16)

from which it is evident that the magnitude of the negativity is being constrained

solely by Θ, as depicted in figure 6-2. Although within the limits of our approximations

the output entanglement never totally vanishes, a soft, low-loss suspension is necessary

to avoid diminution of the logarithmic negativity by thermal noise. To capture an

appreciable fraction of the available entanglement, for a suspension with Ωm/2π ∼ 1 Hz

a quality factor Qm ∼ 106 is required. This is experimentally challenging but has been

achieved, for example, in suspensions constructed of monolithic fused silica [31].

Finally, we observe that homodyne detection of both output optical fields provides
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a way to measure the covariance of any pair of quadratures, and hence to recover any

element of the covariance matrix, permitting the entanglement borne by these fields

to be quantified in an experimental setting. Such techniques have been demonstrated

on entangled light produced by optical parametric oscillator systems [79, 43].

6.6 Concluding remarks

We have evaluated the capabilities of a ponderomotive entangler in a novel parameter

regime that we believe is experimentally achievable. A singular feature of the system

under consideration is the production of entanglement by gram-scale mechanical ob-

jects, while immersed in a room-temperature environment. In addition, the produced

entanglement can link optical fields of widely separated frequencies, yielding a resource

that may find applications in quantum communications and metrology [64]. An exper-

imental demonstration of entanglement in the ponderomotive interferometer should

be possible using mirror suspensions optimized for good thermal noise performance.
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Chapter 7

Outlook

The experimental work presented in this thesis has pushed the current incarnation of

the ponderomotive interferometer toward the quantum regime as far as it is practical

to go. Further progress is constrained by the thermal noise of the 1 gram mirror

suspensions. Therefore, the next era for this experiment will begin with the suspension

upgrade indicated in chapter 5.

Even a modest improvement in the suspension thermal noise will open up the

possibility to directly observe quantum back-action, thus validating our understanding

of an important limiting noise source in Advanced LIGO. When this milestone has

been achieved, the interferometer will be generating quantum correlations in its output,

and so the measurement of optical squeezing (discussed in chapter 2 and reference [40])

and optical entanglement (chapter 6) can also be pursued.

The feedback cooling technique we described in chapter 4 promises an exciting

future for studies of quantum mechanics in gravitational wave interferometers. As

tomorrow’s Advanced LIGO interferometers approach the Standard Quantum Limit,

their 40 kg mirrors will become capable of approaching the ground state of motion as

well.

We also note that the double optical spring configuration demonstrated in chapter 4

has been proposed as a technique to optimize the sensitivity of Advanced LIGO [118].

Injecting a squeezed optical field to reduce the quantum noise in a gravitational wave

interferometer was among the earliest proposals for surpassing the Standard Quantum
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Limit [34]. Shot noise reduction by this technique has recently been demonstrated in

GEO600 [1] and in an Enhanced LIGO detector, although the quantum back-action

was submerged in technical noise. Frequency independent squeezing would permit

the Advanced LIGO detectors to achieve their designed quantum noise performance

with less optical power, easing the challenge of compensating for thermal lensing in

the optics. However, to take full advantage of squeezing injection will require the

squeezed quadrature to have a specific optimal frequency dependence, which can be

implemented by filtering the optical field using additional Fabry-Perot cavities [76].

The resulting sub-SQL quantum noise should enable the preparation of very pure

quantum states of the interferometer mirrors.

The ponderomotive interferometer has a thermal noise floor due to the mirror

coatings (as shown in figure 3-8), which has to be overcome before it can reach the

SQL. Thomas Corbitt’s group has been attempting to consolidate the best features of

the ponderomotive interferometer and micro-mechanical technologies, employing a low

resonant frequency, microgram scale mirror oscillator that is fabricated from AlGaAs,

a high Q coating material [123]. The prospects for getting to the SQL in a tabletop

experiment along these lines appear bright. AlGaAs as a coating material may also lead

to reduced thermal noise for future gravitational wave detectors (beyond Advanced

LIGO). There is likely to be a good deal more in the category of technological

improvements that can be harvested at the interface between gravitational wave

detectors and micro-opto-mechanical devices, as both fields continue to mature.

Possible applications in quantum information and communication have been con-

templated for mechanical systems in the quantum regime [122]. For gravitational wave

interferometers, the principal goal in exploring this regime is to obtain sensitivity

improvements, but an additional motivation may be to supply fundamental tests of

quantum theory at the macroscale. The theoretical debate over macroscopic quantum

mechanics continues, and there are several outstanding conjectures concerning the

breakdown of quantum coherence in massive systems [44, 110]. With a view to refuting

or confirming such conjectures, Yanbei Chen and collaborators have reported on tech-

niques for realizing mechanical squeezing, entanglement, and other highly non-classical
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behavior in gravitational wave interferometers and related systems [99, 93, 72].

Decades of human excitement, effort, and ingenuity have left unresolved a number

of persistent questions concerning gravitational waves and their putative sources, and

the validity of quantum mechanics in the macroscopic domain. But the work has

not gone to waste. Instead, these seemingly disparate themes have converged in the

exquisitely sensitive interferometers we are building today — and the quest for answers

has never been more compelling.
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Symbol glossary

a†, a Cavity field creation and annihilation operators (or their fluctuating parts). 34,

37

a†in, ain Noise operators describing vacuum fluctuations of the cavity input field. 36

x̄ Mean classical amplitude of a variable x. 36

C Coating noise coefficient. 120

c Speed of light. 23

χ Movable mirror susceptibility (transfer function of force to displacement). 37, 120

C(θ,Ω) Transfer function of displacement to the output quadrature Yθ. 39

d End mirror coating thickness. 44, 68

∆ Cavity detuning (angular frequency units). 26

δ Cavity detuning (dimensionless). 26

E Optical field complex amplitude; also, Young’s modulus. 22, 25, 44, 68, 77, 108

Ein Cavity input field coupling rate. 35

EN Logarithmic negativity. 116, 117

εc Contrast defect. 44, 48

F Cavity finesse. 26, 44, 90
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FRP Radiation pressure force (or its fluctuating part). 28, 37

FT Noise operator for the Langevin force on the movable mirror (describing vacuum

and thermal fluctuations of the mirror suspension). 36, 119

FSR Cavity free spectral range. 26, 75, 84

G Opto-mechanical coupling rate. 120

g Cavity stability parameter. 49

γc Cavity linewidth. 26, 44, 74, 85, 120

Γeff Movable mirror effective damping rate. 32

Γf Feedback damping rate. 83

Γm Movable mirror mechanical damping rate. 32, 120

Γo Optical damping rate. 32

H Hamiltonian operator. 34

~ Planck’s constant (reduced). 24

K Opto-mechanical coupling matrix. 119

K Dimensionless factor determining the relative contributions of radiation pressure

and shot noise. 40

kB Boltzmann’s constant. 69

Kf Feedback kernel. 83

Km Movable mirror mechanical spring constant. 31

Ko Optical spring constant. 30, 31

L Optical path length of a cavity. 25, 44, 45, 74, 84, 90, 120
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lx, ly Optical path lengths of the arms of a Michelson interferometer. 22, 45

λ Laser wavelength. 23, 44

m Movable mirror reduced mass. 30, 44, 74, 92, 120

N Phonon occupation number. 81, 88

ω0 Laser frequency. 23

ωc Cavity resonant frequency. 26, 120

Ωeff Movable mirror effective resonant frequency. 31

Ωm Movable mirror mechanical resonant frequency. 31, 44, 74, 84, 92, 120

Ωmax Value of the optical spring resonant frequency at the cavity detuning δ = 1/
√

3

for which it is maximized. 121

Ωo Optical spring resonant frequency. 30

Ωq Frequency where the quantum radiation pressure noise and shot noise are equalized

for a displacement measurement on a free mass, achieving the Standard Quantum

Limit. 30, 41

P Optical power circulating inside a cavity; also, dimensionless momentum operator.

26, 44, 92, 116

p Movable mirror momentum operator (or its fluctuating part). 34, 37

PAS Optical power exiting the output (antisymmetric) port of a Michelson interfer-

ometer. 23

Pin Optical power applied to the input port of an interferometer. 23, 26, 44, 74, 92

φ Optical phase or phase difference in an interferometer; also, loss angle. 23, 25, 44,

68, 101, 108
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ψ Quantum state vector. 115

Q Quality factor. 33, 71, 74, 84, 106

R(Ω) Mechanical resistance. 100

Rj Radius of curvature of the optical element j. 44

rj Amplitude reflectivity of the optical element j. 23

ρ,σ Density matrices. 115

Sx(Ω) Power spectral density of a variable x. 23, 38

T, Tm Ambient temperature. 44, 70, 120

Teff Movable mirror effective temperature. 69

tj Amplitude transmissivity of the optical element j. 23, 44, 74

To Limiting temperature associated with the optical field. 70

Θ Dimensionless variable parametrizing the degradation of entanglement due to

thermal noise. 123

θopt Quadrature phase optimizing the ratio of the displacement signal to shot noise.

40

x̃ Fourier component of a variable x at frequency Ω. 23

u Vector of system operators. 116, 119

V Variance matrix. 116

w Beam spot radius. 44, 49, 68

X Quadrature operator associated with a field’s amplitude; also, dimensionless posi-

tion operator. 37, 39, 116
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x Movable mirror position operator (or its fluctuating part). 34, 37, 92

xmeas Movable mirror measured displacement. 83

xrms Root-mean-square displacement. 79, 95

xS Shot noise of the measured output quadrature Yθ, calibrated in displacement units;

also, generic displacement sensing noise. 39

xsurf Movable mirror surface displacement due to coating thermal noise. 119

ξ Dimensionless variable parametrizing the strength of entanglement. 123

Y Quadrature operator associated with a field’s phase. 37, 39

Z(Ω) Mechanical impedance. 100
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