### Advanced LIGO Output Mode Cleaner: Design, Fabrication and Installation



#### Koji Arai LIGO Project, California Institute of Technology

LVC meeting 2013 September @ Hannover LIGO-G1301001

### Overview

### Advanced LIGO Output Mode Cleaner (OMC)

- An optical cavity to remove unwanted optical fields from the interferometer output beam.
- The first OMC was built and tested at Caltech, and installed at LLO
- The design, fabrication, and test results

#### **OMC ISC team**

Rich Abbott<sup>1</sup>, Koji Arai<sup>1</sup>, Sam Barnum<sup>3</sup>, Peter Fritschel<sup>3</sup>, William Korth<sup>1</sup>, Jeffrey Lewis<sup>1</sup>, Charles Osthelder<sup>1</sup>, Sam Waldman<sup>3</sup>

#### **OMC SUS team**

Stuart Aston<sup>2</sup>, Jeffrey Bartlett<sup>4</sup>, Derek Bridges<sup>2</sup>, Jeffrey Kissel<sup>3</sup>, Norna Robertson<sup>1</sup>

LIGO Laboratory: California Institute of Technology<sup>1</sup>, LIGO Livingston Observatory<sup>2</sup>, Massachusetts Institute of Technology<sup>3</sup>, LIGO Hanford Observatory<sup>4</sup>

## Mission of the OMC

#### **DC Readout**

aLIGO employs a DC readout scheme for sensing of GW signals



### **DC Readout is good:**

- removes nonstationary shot noise
- mitigates technical noises associated with the RF sidebands

# Mission of the OMC

### **Enemies of the DC Readout**

- Carrier HOMs (higher-order modes)
- RF modulation sidebands (any spacial modes)
- do not contribute to the signal and increase the shot noise



eLIGO AS port beam

### **Output mode cleaner**

the idea is to use a short (~1m) optical cavity for the filtering



Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P4

## OMC cavity design

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P5

### **Basically eLIGO OMC design was followed**

Bowtie 4-mirror ring cavity
 even mirrors => simpler HOM structure
 ring cavity => less back scattering



Finesse: ~400 (for ~98% transmission)
 Roundtrip length ~1m (the breadboard size)
 Curved mirror radius ~2.5m

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P6

#### **Important parameter: Transverse Mode Spacing (TMS)**

An optical cavity has a repetitive resonant structure



If TMS/FSR is a rational number (m/n), n-th order HOMs get transmitted

MOREOVER: The vertical and horizontal modes have different TMSs due to astigmatism of the curved mirrors (i.e. non-zero incident angle) =>The higer the mode number, the wider the resonance is.

TMS/FSR is dependent on the cavity geometry =>Careful adjustment of TMS/FSR is the key to avoid HOMs

### **Estimation of the filtering performance**

- Total transmitted power
- =  $\sum$ (power in each mode) x (transmission of each mode)
- Modeling of the interferometer output beam (details in G1201111)
  power laws based on the eLIGO performance of the IFO optics
  LLO eLIGO OMC scan



This wouldn't be a prediction, but have some usefulness, anyway

### **Estimated filtering performance**

- Expected junk light power at the dark port (100W input = 4kW @BS)
  ~12W leakage => filtered down to 1mW. <u>Well within the PD capability.</u> This could become better thanks to mode healing and better optics in aLIGO
- Cavity length tolerance: L=1.132 +/- 0.005 [m]
- Mirror RoC tolerance: R=2.575 +/- 0.015 [m]



Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P9

#### How the OMC breadboard looks like





balance weight (4x)



Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P10

#### **PZT-curved mirror subassembly**

- PZT + 1/2" curved mirror: Glued on a mounting prism
- Bonding: Epoxy with borosilicate glass spheres (75-90um dia.)
- Wedging of the components: Characterized and arranged to minimize pitch misalignment of the cavity







Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P11

### Bottom (cavity) side gluing

- Breadboard: held in a transport fixture
- Flat optics: Fused silica prisms with mirror coatings
- Template: for optics alignment
- Fine alignment:

each curved mirrors were aligned with two micrometers on the template

- Monitoring of the FSR and TMS with an optical testing setup
- Bonding:

UV-cure epoxy & UV illumination





### Top (cable) side gluing

 Suspension interface: Glass wire brackets To hook the suspension wires with conical clamps crimped

- Mounting blocks: Made of Invar to minimize CTE difference





Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P13

#### **Vacuum Baking**

#### at 80degC for 48 hours

- completion of curing epoxy
- reduce surface outgass



Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P14

### **Attaching peripheral components:**

DC photodiodes / QPDs
 Housings mounted on invar blocks
 Height adjusted by shims
 DCPD housing coated with Alumina

#### - Cables

Routed to the cable harness







Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P15

#### **OMC ready for the shipment**



# **Optical testing**

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P16

### A tabletop setup@CIT

- fine parameter adjustment during the gluing
- characterization after the baking

Power budget PZT responses - A broadband EOM FSR, finesse, and HOM structure



#### **Power Budget** Estimated from the input power, transmitted power, visibility, and cavity finesse Specfication Cavity transmission for TEM<sub>00</sub>: 97.8 % 98.4 % Curved mirror transmission: 42 ppm 50 ppm Loss per bounce: 22.3 ppm 10 ppm Loss per roundtrip: 173 ppm 140 ppm PD Q.E. 92% Total thruput of TEM00 90% (PD Q.E. = 92%)

About 20% total loss allowed for 6dB squeezing.

A half of the budget already eaten up by the OMC. (**not nice**) These PDs were previously (eLIGO) reported to have Q.E.>95% Need further investigation (or replacement)

## **Optical testing**

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P18

#### **Cavity round-trip length ~ two methods** 1) Offset locking: FM-AM conversion at around the FSR 2) AM sideband injection



Cavity length: (Spec.: 1.132 +/- 0.005 m) 1.131438 +/- 4×10<sup>-6</sup> m 1.131421 +/- 3×10<sup>-6</sup> m

Finesse:

(Spec. 390)

403.79 +/- 0.07

## **Optical testing**

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P19

### **Transverse Mode Spacing (TMS)**

PM sideband injection, intentional misalignment of the input beam -> Carrier TEM<sub>00</sub> and RF HOM get resonant Intentional clipping at the transmission PD

-> RF signal on the PD



Result: Pitch TMS/FSR: Yaw TMS/FSR:

 $0.218822 + / - 1 \times 10^{-6}$  0.2188  $0.219218 + / - 1 \times 10^{-6}$  0.2194

Spec.

#### TMS depend on the PZT voltage

#### - 3D deformation of the ring PZT? Pitch TMS/FSR: 0.2189 - 9.7×10<sup>-6</sup> V<sub>PZT1</sub> - 9.6×10<sup>-6</sup> V<sub>PZT2</sub> Yaw TMS/FSR: 0.2192 -10.8×10<sup>-6</sup> V<sub>PZT1</sub> -10.6×10<sup>-6</sup> V<sub>PZT2</sub>



The HOMs comes into the resonance at PZT voltage of ~150V. This actually does not happen as we limit the PZT voltage to 100V because of some other reason

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P21

#### **PZT response**

The DC response: checked with free running fringes The AC response: measured with the cavity locked PZT1 response@DC: 13.24 +/- 0.02 nm/V (avg) PZT2 response@DC: 12.9 +/- 0.1 nm/V (avg) First resonance: 10 kHz



### Installation @LLO

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P22

### Integration with the OMC suspension (OMCS)

- OMCS prepared with a metal bench
- Swapped the metal bench with the glass bench at LVEA
- Cabling / Weight balance
- Suspension tests in LVEA transfer functions damping control

### **Placement on HAM6**

- Loading on the ISI a compact lift truck to raise the OMCS

- Suspension tests in HAM6



### Summary

Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P23

### aLIGO OMC

Designed based on the eLIGO experience and lessons

### The first OMC was built

The building procedure was established

### **Optical testing**

Observed the as-designed cavity transmission of ~98% Total thruput (for the carrier TEM00): ~90% Confirmed that avoidance of the low-order HOMs Found that the TMS is dependent on the PZT voltages.

### Installed on LLO HAM6 in Jun 2013 Now in commission at the LLO site!



Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P24

#### **Thank you for your attention!**



Koji Arai LVC Hannover Sep. 24, 2013 LIGO-G1301001 P25

#### **Estimated filtering performance**

- Mirror RoC tolerance: R=2.575 +/- 0.015 [m]



CRn - carrier n-th mode, SB(1,2)(U,L)n - sideband n-th mode, SB1 - 9MHzSB, SB2 - 45MHz SB, U - upper SB, L - lower SB

#### **Comparison between eLIGO/aLIGO OMCs**

screwed on the breadboard glass wire blacket on the top side

| cavity design:<br>semi monolithic                               | same                 | for flexibility o                 | of the cavity parameters   |
|-----------------------------------------------------------------|----------------------|-----------------------------------|----------------------------|
| breadboard materialcavity designation ULE                       | gn:<br>fused silica  | (dT of the ord                    | er of 0.1K -> just 0.06um) |
| mirrors<br>Glued on the back side of<br>the fused silica prisms | Glued on the fused s | he front side of<br>silica prisms | better access              |
| Actuators<br>1 PZT + 1 heater                                   | Two PZTs             | (for redundan                     | icy)                       |
| Suspension<br>double pendulum<br>(actively damped)              | same                 |                                   |                            |
| Wire clamps                                                     |                      |                                   |                            |