
LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
-LIGO-

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUE OF TECHNOLOGY

Technical Note LIGO-T130074-v1 September 25, 2013

Simulating the Advanced LIGO

Interferometer

Using the Real Control Code

Juan F. Castillo, The University of Texas at El Paso

California Institute of Technology
LIGO Project –MS 18-34
1200 E. California Blvd.

Pasadena, CA 91125
Phone (626) 395-2129
Fax (626) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project –NW22-295

185 Albany St
Cambridge, MA 02139
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

LIGO Hanford Observatory
P.O. Box 1970
Mail Stop S9-02

Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

LIGO Livingston Observatory
P.O. Box 940

Livingston, LA 70754
Phone 225-686-3100
Fax 225-686-7189

https://www.ligo.caltech.edu/

https://www.ligo.caltech.edu/

LIGO-T1300734-v1

1 | P a g e

1 ABSTRACT

The interferometer of the advanced LIGO requires complicated software controls to operate.

To better understand both the hardware and software, we should apply the same software

used to control the interferometers in a simplified simulation. This model will incorporate a

simulation of the control code to the internal seismic isolation system of the horizontal access

module (HAM ISI). By using the actual control code, the simulation model will expose issues

specific to that code and distinguish them more easily from issues that may arise in the

hardware of the interferometers. The model has shown successful dampening results when

applied to the undamped system. The ability to troubleshoot the overall system by using a

simulation is critical in effectively dealing with present and future problems.

2 INTRODUCTION

The goal of the Advanced Laser Interferometer Gravitational Observatory is to conclusively

identify gravitational waves from cosmological events. By using a Michelson interferometer,

the system will directly observe the difference between the path lengths of two

perpendicular laser beams [1]. The LIGO Livingston and Hansford sites are currently

undergoing a major renovation. New hardware systems are being equipped on site in order to

yield far superior results than the previous installation [2]. While some components are still

being updated, other components, such as the Dual Recycle Michelson Interferometer (DRMI),

are being tested for functionality and stability. Advanced LIGO is moving into a commissioning

phase, which takes the newly installed hardware and performs adjustments meant to

maximize performance.

The measurements being taken from the system are extraordinarily small. Extreme caution

must be taken to ensure the functionality of the physical instruments as well the operational

software. Having a series of simulations that can predict the behavior of hardware as well as

software coding could vastly improve the success of future adjustments [3]. Implementing a

real-time simulation of the hardware that communicates to the control code will generate a

practical troubleshooting technique. A simulation model operating on a nightly basis,

continuously verifying that changes to the control code work, will create a viable diagnostic

tool.

LIGO-T1300734-v1

2 | P a g e

3 APPROACH

The objective of this project is to implement a real-time simulation of the HAM ISI control

code to the cavity and suspension models of the interferometer. The HAM ISI defines what the

analog system of interferometer senses. The system takes controls signals from the actuator

and transmits this information to the sensors [1]. The project focused on two topics, the

schematic and the noise filters, to create the simulation. Matlab Simulink was used to build

the schematic and Matlab scripts were used to synthesize the noise filters.

Simulink is used as a drawing tool whose output is parsed by a script to generate a C code.

The actual C code is used to run the simulation. Simulink is merely used as a drawing program

[4]. The figure below shows the simulation model from the top level. The yellow highlighted

box represents the simulation component and the pink component represents the library part

identical to the control code of the HAM ISI.

Figure 1: Top Level Simulink schematic

The simulation’s output is the control code’s input and the control’s output is the

simulation’s input. In order to replicate a real-time interaction between the two components,

noise filters were incorporated.

LIGO-T1300734-v1

3 | P a g e

Understanding what noises the interferometer contends with is critical in reproducing the

systems reactions. Noise is anything that makes it harder to measure the gravitational wave

signal in the interferometer [1]. These noises affect the stabilization of the components in

relation to each other. The main focus of this simulation is seismic noise. Seismic noise has

many forms. Major factors range from earthquakes to the ocean tides to basic human traffic

[5]. There are many other noises such as shot noise and electronic noise that are not

represented. Filter components are used to simulate the noise in the model.

Through a series of Matlab scripts and functions, the components are embedded into the

simulation’s schematic. Two filter arrays were built using this process, the actuator to sensor

filters and the ground to sensor filters. The output of both arrays are added together,

creating a single response signal for each sensor. The signals are ultimately received by the

HAM ISI control code. The graph below represents one of the filter’s frequencies from the

actuator to a CPS (position) sensor. The script achieved results that produce an accurate

representation of the discrete data into a state-space representation.

Figure 2: Magnitude Plot - blue is actual data and red is approximation

LIGO-T1300734-v1

4 | P a g e

Figure 3: Phase Plot - blue is actual data and red is approximation

There are some additional calibrations that had to be included into the simulation. The HAM

ISI control code component outputs its signals in actuator basis. Therefore, the data from the

control code cannot be transmitted to the simulation component without some calibration.

One inverted matrix was added to convert the simulation’s input data from actuator basis to

the Cartesian basis. The output signals are then recalibrated from Cartesian basis back to

sensor basis using two inverted matrices, one for each sensor.

An additional calibration had to be implemented as well. The simulation component was

designed to handle actual measurement units, but the HAM ISI’s data is digitized in counts.

Thus, a set of inverse filters were created to calibrate the incoming digital signals from

counts to actual measurements units. This process was reversed and applied to the outgoing

signals. Figure 4 shows the internal components of the simulation block. For more specifics

and information regarding this process, please refer the Section 5 titled Methods.

LIGO-T1300734-v1

5 | P a g e

Figure 4: Inside the Simulation Block

The yellow highlighted green boxes are the inverted matrices used as basis converters. The

yellow highlighted olive boxes are the inverted filters used for measurement calibration.

4 CONCLUSIONS

The simulation model has provided some successful results. The model has been compiled and

was loaded onto the test stand at LIGO. It is fully operational as a real-time system and is

currently gathering data. We have been able to prove that the model is able to dampen the

system in an undamped state. Figure 5 shows the results from a graph of the power spectrum.

LIGO-T1300734-v1

6 | P a g e

Figure 5: Power Spectrum Graph

The red line is the undamped CPS position sensor in the HAM ISI. When the damping filters are

turned on, the result is graphed as a green line. At approximately 1 Hz, the magnitude of the

power spectrum is effectively damped. The same results are shown for the GS13 inertial

sensor by comparing the undamped blue line with the damped gray line. This graph provides

evidence that the actual controls damp the simulated ground noise in the same way that the

controls damp the real ground noise. The graph also shows how the model needs improvement

in some critical areas.

At low frequencies below 1 Hz, the damped results show a higher magnitude than undamped

results. This is in stark contrast to actual data models where the lines are level with each

other. We have concluded that there are issues with the calibration of the data at low

frequencies. We have explored various possibilities, such as the physical units in the Cartesian

basis not matching. Unfortunately we have not been able to debug the simulation. Although

the model is not without error, I am confident we have laid the groundwork for future

modifications to be incorporated in an overall effective simulator.

There are also a number of possible expansions stemming from this project. Eventually, noises

that were neglected should be incorporated such as the shot and electronic noise. A

LIGO-T1300734-v1

7 | P a g e

simulation of the suspension system should also be included for the overall model. As a side

note, to verify the model’s reliability, an alternative approach for building a simulation can

be applied. Instead of using the data model fitting approach we created, a model using first

principals (size and mass of objects, etc. with relation to the physical world) could be

created. Using our model with a first principle model could establish proof of trustworthiness.

5 METHODS

5.1 MATLAB SIMULATION MODEL

The control code component defines what the analog system of the interferometer senses and

then transmits this data using actuators and sensors The types of sensors we focused on are

the CPS (capacitive position sensor) and GS13 (Geotech Seismic) sensors, both of which are

analog. The CPS is a position sensor and the GS13 is an inertial sensor. These sensors carry

information pertaining to the degrees of freedom in the seismic isolation system. The analog

data from these sensors is digitized using an analog to digital converter. The digital data is

then used by the suspension and cavity system to correct abnormities in position due to noise.

Using a large variety of filters helps to distinguish what events are causing seismic noise. The

system can then reestablish its overall orientation by using precision actuators that align the

components.

After the adjustments mentioned above have corrected the orientation of the cavity and

suspension, the resulting data is looped back into the control code. This data, which is in

digital form, is sent through a digital to analog converter and transmitted into the

interferometer to start the process over. This established sequence creates a real-time

control code process that will operate indefinitely.

5.2 FILTER DEFINITION

The filters are created using several Matlab scripts listed in the Appendix section of this

report. The Matlab scripts created for this project incorporate various Matlab functions from

the LIGO Matlab Library. The directory is located on the test stand at:

 /ligo/svncommom/SusSVN?sus/trunk/Commom/MatlabTools

LIGO-T1300734-v1

8 | P a g e

One such function is vectfit4 [6], which takes a vector (transfer function data set) and fits it

to a state-space model with a common zero and pole set (zpk). Another function called

Autoquack (with related sub functions) prepares these zpk models and writes them to the

appropriate component modules in the simulation schematic.

Two sets of recorded data were used to create two sets of filter arrays. The first set

represents the frequency response of the ground to the sensors. This set of data was

undamped and not stimulated. The second set of data is between the actuators of the system

and the sensors. This set of data was recorded undamped with excitation. In order to build

the noise filters, the frequency dependent transfer functions must be converted into

equivalent frequency dependent filters that will simulate the system. The data we have used

is from the Horizontal Access Module Internal Seismic Isolation System embedded in an .frd

(frequency response data) Matlab file. The data set is in the Cartesian basis, converted from a

local basis for the purpose of uniformity. The set was recorded overnight as a continuous time

domain function and embedded into a discrete frequency domain matrix. The data consist of

6 actuators with 12 correlating sensors per actuator.

Scripts for the matrix filters were initially created to iterate a given number of times to

obtain a more accurate representation. This method was changed to a converging method

with an adjustable tolerance. This change produces a more accurate model of the data set

while ensuring the program runs more efficiently. Once the matrices were created, they were

tested and verified using a program named Foton. Foton (Filter Online Tool) that takes a zero

pole gain (zpk) model and embeds a filter into a predefined Simulink filter block [9]. The tool

reads and writes coefficient files for the online system to use in the specified block.

The scripts had to be revised several times in order to produce a better output. In addition to

the adjustments mentioned above, the program was having difficulties accurately reproducing

signals with very small frequency magnitudes. By adjusting the “weight” option in the vectfit4

function, the program was better able to simulate the response behavior.

LIGO-T1300734-v1

9 | P a g e

6 REFERENCES

[1] Saulson, Peter R., Fundamentals of Interferometric Gravitational Wave Detectors.

Singapore: World Scientific, 1994.

[2] Lantz, B., Schofield, R., O’Reilly, B., Clark, D. E., & DeBra, D., “Requirements for a

Ground Rotation Sensor to Improve Advanced LIGO”, Bulletin of the Seismological Society of

America, vol. 99, no. 2B, pp. 980-989, May 2009

[3] Betweiser,B., Controls with a Simulated Plant. LIGO.

https://dcc.ligo.org/DocDB/0061/G1100590/001/G1100590.pdf.

[4] Bork, R., and M. Aronsson, AdvLigo CDS Real-time Code Generator (RCG) Application

Developers Guide. LIGO. https://dcc.ligo.org/public/0001/T080135/003/T080135-v3.pdf.

[5] Zhdanova, A., Real-time Simulation of a Suspended Cavity with the Advanced LIGO Digital

Controls System. LIGO T1200462-x0-v2 (2012).

[6] Gustavsen, B. & Semlyen, A., "Rational approximation of frequency domain responses by

Vector Fitting", IEEE Trans. Power Delivery, vol. 14, no. 3, pp. 1052-1061, July 1999.

[7] Gustavsen, B., "Improving the pole relocating properties of vector fitting", IEEE Trans.

Power Delivery, vol. 21, no. 3, pp. 1587-1592, July 2006.

[8] Deschrijver, D., Mrozowski, M., Dhaene, T. & De Zutter, D., “Macromodeling of Multiport

Systems Using a Fast Implementation of the Vector Fitting Method”, IEEE Microwave and

Wireless Components Letters, vol. 18, no. 6, pp. 383-385, June 2008.

[9] Sigg, D., Online Digital Signal Processing. LIGO.

https://dcc.ligo.org/DocDB/0034/G020489/000/G020489-00.pdf.

https://dcc.ligo.org/DocDB/0061/G1100590/001/G1100590.pdf
https://dcc.ligo.org/public/0001/T080135/003/T080135-v3.pdf
https://dcc.ligo.org/DocDB/0034/G020489/000/G020489-00.pdf

LIGO-T1300734-v1

10 | P a g e

7 ACKNOWLEDGEMENTS

First, I’d like to thank my mentor Joseph Betzweiser for all of his support and encouragement

throughout the summer. Under his tutelage, I was able to learn and explore a large variety of

topics. Thanks to Celine Ramet for providing us with additional data and helping work out

some kinks in our system. Thanks to Ryan DeRosa, for helping me understand the HAM-ISI

module and troubleshooting the simulation. Lastly, thank you to the National Science

Foundation and the California Institute of Technology for the opportunity to participate in the

Summer Undergraduate Research Fellowship program and the National Society of Hispanic

Physicists for awarding me the Victor M. Blanco Undergraduate Summer Research Fellowship.

8 APPENDICES

CONVERT FREQUENCY FRDATA TO ZPK MODEL AND APPLY AUTOQUACK SCRIPT

% act_sensor_array.m

% CONVERT FREQUENCY FRDATA TO ZPK MODEL AND APPLY AUTOQUACK

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\ACT_SENSOR\DATA\RAW_CART_DATA.mat'

);

% CONVERGENCE TOLERANCE

tol = 1e-7;

% MAXIMUM NO. ITERATIONS IN FIT

max_iter = 100;

% ACCEPTABLE INITIAL RMSERR VALUE

err = 1e-3;

% FREQUENCY GIVEN IN RAD/SEC

w = 1*1i*2*pi;

% ORDER OF APPROXIMATION

N = 9;

% VECTFIT OPTIONS

opts.relax=1; %1 = Use vector fitting with relaxed non-triviality constraint

opts.stable=1; %1 = Enforce stable poles

opts.asymp=3; %3 = Include D and E in fitting

opts.skip_pole=0; %1 = Skip pole identification

LIGO-T1300734-v1

11 | P a g e

opts.skip_res=0; %1 = Skip identification of residues (C,D,E)

opts.cmplx_ss=0; %1 = Create complex state space model

opts.spy1=0; %0 = No plotting for first stage of vector fitting

opts.spy2=0; %1 = Create magnitude plot for fitting of f(s)

opts.logx=1; %1 = Use logarithmic abscissa axis

opts.logy=1; %1 = Use logarithmic ordinate axis

opts.errplot=0; %1 = Include deviation in magnitude plot

opts.phaseplot=0; %1 = Also produce plot of phase angle (in addition to magnitiude)

opts.legend=0; %1 = include legends in plots

%%%

%% LOOP TO CREATE ZPK ARRAY

%%%

iter_array = ones([1,72]);

iter1 = 0;

to_quack = struct('name',{},'value',{},'label',{},'subblock', {});

for num_rows = 1:12 % number of rows and columns

 for num_cols = 1:6

 iter1 = iter1 + 1;

 data = TF_C2C_Undamped_Symmetrized_frd(num_rows,num_cols);

 % EXTRACT RESPONSE(R) AND FREQUENCY SAMPLES(s)

 [R,s,ts] = frdata(data);

 s = s*1i*2*pi; % frequency samples in j*w(rad/sec)

 Ns = length(s);

 % CREATE RESPONSE DATA MATRIX

 f = ones([1,Ns]);

 iter2 = 0;

 for k = 1:Ns

 iter2 = iter2 + 1;

 U = R(:,:,k);

 f([iter2,Ns]) = U;

 end

 % COMPLEX CONJUGATE PAIRS, LINEARLY SPACED

 bet = linspace(w(1),w(end),N/2);

 poles = [];

 for n = 1:length(bet)

 alf = -bet(n)*1e-2;

 poles = [poles (alf-1i*bet(n)) (alf+1i*bet(n))];

 end

 % ASSIGN WEIGHT FOR FREQUENCY POINTS

 %weight=ones(1,Ns); % all frequency points are given equal weight

 %weight=1./(abs(f)); % strong inverse weight

 weight=1./(abs(f).^(2/3));

 %weight=1./sqrt(abs(f)); % weaker inverse weight

 % PERFORM VECTOR FIT

 disp('vector fitting...')

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 % REPEAT ITERATION FOR IMPROVED ACCURACY

 rms = zeros(1);

 iter3 = 0;

 while rmserr > err && iter3 < max_iter

 iter3 = iter3 + 1;

% disp([' Iter ' num2str(iter)])

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 if iter3 < 2

LIGO-T1300734-v1

12 | P a g e

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 elseif abs(rms(iter3)-rms(iter3-1)) > tol

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 else

 break;

 end

 end

 disp('Done.')

 A=full(SER.A);

 B=SER.B;

 C=SER.C;

 D=SER.D;

 E=SER.E;

 % Display Results

% disp(['Converged in ' num2str(iter3) ' iterations.']);

% disp('Resulting rms error convergence:');

% rms

% disp('Resulting zpk model:');

 zpk_model = zpk(c2d(ss(A,B,C,D),1/4096,'tustin'));

 % AUTOQUACK

 next_filt = struct('name','label','value','subblock');

 next_index = length(to_quack) + 1;

 next_filt.value = zpk_model;

 next_filt.name = ['HAM2_SIM_ACT_SENSOR_' num2str(num_rows) '_'

num2str(num_cols)];

 next_filt.label = ['ACT_SNSR_FILT'];

 next_filt.subblock = 0;

 to_quack(next_index) = next_filt;

 iter_array([iter1,72]) = iter3;

 end

end

disp(' ');

autoquack('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\X2ISIHAM2SIM.txt', to_quack);

CONVERT FREQUENCY FRDATA TO ZPK MODEL BY ITERATING SCRIPT

% frdatazpk_iter.m

% CONVERT FREQUENCY FRDATA TO ZPK MODEL BY ITERATING

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\H1_ISI_HAM2_TF_C2C_Raw_2013_05_08\

RAW_CART_DATA.mat');

% SPECIFIY FILE NAME AND CELL

data = TF_C2C_Undamped_Symmetrized_frd(8,3);

LIGO-T1300734-v1

13 | P a g e

% INITIAL POLES FOR VECTOR FITTING

w = 1;

% ORDER OF APPROXIMATION

N = 10;

% PROGRAM ITERATIONS

Niter = 100;

% VECTFIT OPTIONS

opts.relax=1; %Use vector fitting with relaxed non-triviality constraint

opts.stable=1; %Enforce stable poles

opts.asymp=3; %Include both D, E in fitting

opts.skip_pole=0; %Do NOT skip pole identification

opts.skip_res=0; %Do NOT skip identification of residues (C,D,E)

opts.cmplx_ss=1; %Create complex state space model

opts.spy1=0; %No plotting for first stage of vector fitting

opts.spy2=1; %Create magnitude plot for fitting of f(s)

opts.logx=1; %Use logarithmic abscissa axis

opts.logy=1; %Use logarithmic ordinate axis

opts.errplot=1; %Include deviation in magnitude plot

opts.phaseplot=0; %Also produce plot of phase angle (in addition to magnitiude)

opts.legend=1; %Do include legends in plots

%%%

%% PREPARE DATA

%%%

% EXTRACT RESPONSE(R) AND FREQUENCY POINRS(s)

[R,s] = frdata(data);

s = s*1i*2*pi;

Ns = length(s);

% CREATE RESPONSE MATRIX

f = ones([1,Ns]);

iter = 0;

for k=1:Ns

 iter = iter+1;

 U = R(:,:,k);

 f([iter,Ns]) = U;

end

% COMPLEX CONJUGATE PAIRS, LINEARLY SPACED

bet=logspace(w(1),w(end),N/2);

poles = [];

for n = 1:length(bet)

 alf = -bet(n)*1e-2;

 poles = [poles (alf-1i*bet(n)) (alf+1i*bet(n))];

end

poles=poles*2*pi;

% ASSIGN WEIGHT FOR FREQUENCY POINTS

weight=ones(1,Ns); %All frequency points are given equal weight

%%%

%% PERFORM VECTOR FIT

%%%

disp('vector fitting...')

% REPEAT ITERATION FOR IMPROVED ACCURACY

for iter=1:Niter

 %Inculde legend in final plot

 if iter==Niter

LIGO-T1300734-v1

14 | P a g e

 opts.legend=1;

 end

 disp([' Iter ' num2str(iter)])

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,1)=rmserr;

end

disp('Done.')

%%%

%% DISPLAY RESULTS

%%%

disp('Resulting state space model:')

A=full(SER.A)

B=SER.B

C=SER.C

D=SER.D

E=SER.E

rms

CONVERT FREQUENCY FRDATA TO ZPK MODEL BY CONVERGING SCRIPT

% frdatazpk_conv.m

% CONVERT FREQUENCY FRDATA TO ZPK MODEL BY CONVERGING

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GND_L4C.mat');

% SPECIFIY FILE NAME AND CELL

data = GND_L4C(7,2);

% CONVERGENCE TOLERANCE

tol = 1e-7;

% ACCEPTABLE INITIAL RMSERR VALUE

err = 1e-3;

% FREQUENCY GIVEN IN RAD/SEC

w = 1*1i*2*pi;

% ORDER OF APPROXIMATION

N = 9;

% VECTFIT OPTIONS

opts.relax=1; %1 = Use vector fitting with relaxed non-triviality constraint

opts.stable=1; %1 = Enforce stable poles

opts.asymp=3; %3 = Include D and E in fitting

opts.skip_pole=0; %1 = Skip pole identification

opts.skip_res=0; %1 = Skip identification of residues (C,D,E)

opts.cmplx_ss=0; %1 = Create complex state space model

opts.spy1=0; %0 = No plotting for first stage of vector fitting

opts.spy2=1; %1 = Create magnitude plot for fitting of f(s)

opts.logx=1; %1 = Use logarithmic abscissa axis

opts.logy=1; %1 = Use logarithmic ordinate axis

LIGO-T1300734-v1

15 | P a g e

opts.errplot=0; %1 = Include deviation in magnitude plot

opts.phaseplot=0; %1 = Also produce plot of phase angle (in addition to magnitiude)

opts.legend=0; %1 = include legends in plots

%%%

%% PREPARE DATA

%%%

% EXTRACT RESPONSE(R) AND FREQUENCY SAMPLES(s)

[R,s,ts] = frdata(data);

s = s*1i*2*pi; % frequency samples in j*w(rad/sec)

Ns = length(s);

% CREATE RESPONSE DATA MATRIX

f = ones([1,Ns]);

iter = 0;

for k = 1:Ns

 iter = iter+1;

 U = R(:,:,k);

 f([iter,Ns]) = U;

end

% COMPLEX CONJUGATE PAIRS, LINEARLY SPACED

bet = linspace(w(1),w(end),N/2);

poles = [];

for n = 1:length(bet)

 alf = -bet(n)*1e-2;

 poles = [poles (alf-1i*bet(n)) (alf+1i*bet(n))];

end

% ASSIGN WEIGHT FOR FREQUENCY POINTS

%weight=ones(1,Ns); % all frequency points are given equal weight

%weight=1./(abs(f).^(2/3)); % strong inverse weight

weight=1./sqrt(abs(f)); % weaker inverse weight

%weight=1./(abs(f)); % weaker inverse weight

% weight=zeros(1,Ns);

% for k=1:Ns

% weight(1,k)=1/sqrt(norm(f(:,k)));

% end

% ASSIGN WEIGHT FOR FREQUENCY POINTS

%weight=ones(1,Ns); % all frequency points are given equal weight

%%%

%% PERFORM VECTOR FIT

%%%

disp('vector fitting...')

[SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

% REPEAT ITERATION FOR IMPROVED ACCURACY

rms = zeros(1);

iter = 0;

while rmserr > err

 iter = iter + 1;

% disp([' Iter ' num2str(iter)])

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 if iter<2

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 elseif abs(rms(iter)-rms(iter-1)) > tol

LIGO-T1300734-v1

16 | P a g e

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 else

 break;

 end

end

disp('Done.')

A=full(SER.A);

B=SER.B;

C=SER.C;

D=SER.D;

E=SER.E;

%%%

%% DISPLAY RESULTS

%%%

disp(['Converged in ' num2str(iter) ' iterations.']);

disp('Resulting rms error convergence:');

rms

disp('Resulting zpk model:');

zpk_model = zpk(c2d(ss(A,B,C,D),1/4096,'tustin'))

CONVERT ASCII DATA FILE TO FRD MATRIX SCRIPT

% gnd_array.m

% CONVERT ASCII DATA FILE TO FRD MATRIX

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps1_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps1_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps1_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps2_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps2_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps2_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps3_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps3_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps3_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps4_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps4_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps4_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps5_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps5_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps5_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps6_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps6_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\CPS\cps6_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs7_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs7_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs7_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs8_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs8_2');

LIGO-T1300734-v1

17 | P a g e

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs8_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs9_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs9_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs9_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs10_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs10_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs10_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs11_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs11_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs11_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs12_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs12_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GS13\gs12_3');

d1 =

frd(cps1_1(:,2)+cps1_1(:,3)*1i,cps1_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d2 =

frd(cps1_2(:,2)+cps1_2(:,3)*1i,cps1_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d3 =

frd(cps1_3(:,2)+cps1_3(:,3)*1i,cps1_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d4 =

frd(cps2_1(:,2)+cps2_1(:,3)*1i,cps2_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d5 =

frd(cps2_2(:,2)+cps2_2(:,3)*1i,cps2_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d6 =

frd(cps2_3(:,2)+cps2_3(:,3)*1i,cps2_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d7 =

frd(cps3_1(:,2)+cps3_1(:,3)*1i,cps3_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d8 =

frd(cps3_2(:,2)+cps3_2(:,3)*1i,cps3_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d9 =

frd(cps3_3(:,2)+cps3_3(:,3)*1i,cps3_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d10 =

frd(cps4_1(:,2)+cps4_1(:,3)*1i,cps4_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d11 =

frd(cps4_2(:,2)+cps4_2(:,3)*1i,cps4_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d12 =

frd(cps4_3(:,2)+cps4_3(:,3)*1i,cps4_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d13 =

frd(cps5_1(:,2)+cps5_1(:,3)*1i,cps5_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d14 =

frd(cps5_2(:,2)+cps5_2(:,3)*1i,cps5_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d15 =

frd(cps5_3(:,2)+cps5_3(:,3)*1i,cps5_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d16 =

frd(cps6_1(:,2)+cps6_1(:,3)*1i,cps6_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

LIGO-T1300734-v1

18 | P a g e

d17 =

frd(cps6_2(:,2)+cps6_2(:,3)*1i,cps6_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d18 =

frd(cps6_3(:,2)+cps6_3(:,3)*1i,cps6_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d19 =

frd(gs7_1(:,2)+gs7_1(:,3)*1i,gs7_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d20 =

frd(gs7_2(:,2)+gs7_2(:,3)*1i,gs7_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d21 =

frd(gs7_3(:,2)+gs7_3(:,3)*1i,gs7_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d22 =

frd(gs8_1(:,2)+gs8_1(:,3)*1i,gs8_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d23 =

frd(gs8_2(:,2)+gs8_2(:,3)*1i,gs8_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d24 =

frd(gs8_3(:,2)+gs8_3(:,3)*1i,gs8_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d25 =

frd(gs9_1(:,2)+gs9_1(:,3)*1i,gs9_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d26 =

frd(gs9_2(:,2)+gs9_2(:,3)*1i,gs9_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d27 =

frd(gs9_3(:,2)+gs9_3(:,3)*1i,gs9_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d28 =

frd(gs10_1(:,2)+gs10_1(:,3)*1i,gs10_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d29 =

frd(gs10_2(:,2)+gs10_2(:,3)*1i,gs10_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d30 =

frd(gs10_3(:,2)+gs10_3(:,3)*1i,gs10_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d31 =

frd(gs11_1(:,2)+gs11_1(:,3)*1i,gs11_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d32 =

frd(gs11_2(:,2)+gs11_2(:,3)*1i,gs11_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d33 =

frd(gs11_3(:,2)+gs11_3(:,3)*1i,gs11_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d34 =

frd(gs12_1(:,2)+gs12_1(:,3)*1i,gs12_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d35 =

frd(gs12_2(:,2)+gs12_2(:,3)*1i,gs12_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d36 =

frd(gs12_3(:,2)+gs12_3(:,3)*1i,gs12_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

% FREQUENCY RESPONSE DATA MATRIX

LIGO-T1300734-v1

19 | P a g e

GND_L4C = [d1 d2 d3; d4 d5 d6; d7 d8 d9; d10 d11 d12; d13 d14 d15; d16 d17 d18; ...

 d19 d20 d21; d22 d23 d24; d25 d26 d27; d28 d29 d30; d31 d32 d33; d34 d35 d36]

CONVERT FREQUENCY FRDATA TO ZPK MODEL AND APPLY AUTOQUACK SCRIPT

% gnd_l4c_array.m

% CONVERT FREQUENCY FRDATA TO ZPK MODEL AND APPLY AUTOQUACK

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_L4C\DATA\GND_L4C.mat');

% CONVERGENCE TOLERANCE

tol = 1e-7;

% MAXIMUM NO. ITERATIONS IN FIT

max_iter = 100;

% ACCEPTABLE INITIAL RMSERR VALUE

err = 1e-3;

% FREQUENCY GIVEN IN RAD/SEC

w = 1*1i*2*pi;

% ORDER OF APPROXIMATION

N = 9;

% VECTFIT OPTIONS

opts.relax=1; %1 = Use vector fitting with relaxed non-triviality constraint

opts.stable=1; %1 = Enforce stable poles

opts.asymp=3; %3 = Include D and E in fitting

opts.skip_pole=0; %1 = Skip pole identification

opts.skip_res=0; %1 = Skip identification of residues (C,D,E)

opts.cmplx_ss=0; %1 = Create complex state space model

opts.spy1=0; %0 = No plotting for first stage of vector fitting

opts.spy2=0; %1 = Create magnitude plot for fitting of f(s)

opts.logx=1; %1 = Use logarithmic abscissa axis

opts.logy=1; %1 = Use logarithmic ordinate axis

opts.errplot=0; %1 = Include deviation in magnitude plot

opts.phaseplot=0; %1 = Also produce plot of phase angle (in addition to magnitiude)

opts.legend=0; %1 = include legends in plots

%%%

%% LOOP TO CREATE ZPK ARRAY

%%%

iter_array = ones([1,36]);

iter1 = 0;

to_quack = struct('name',{},'value',{},'label',{},'subblock', {});

for num_rows = 1:12 % number of rows and columns

 for num_cols = 1:3

 iter1 = iter1 + 1;

 data = GND_L4C(num_rows,num_cols);

LIGO-T1300734-v1

20 | P a g e

 % EXTRACT RESPONSE(R) AND FREQUENCY SAMPLES(s)

 [R,s,ts] = frdata(data);

 s = s*1i*2*pi; % frequency samples in j*w(rad/sec)

 Ns = length(s);

 % CREATE RESPONSE DATA MATRIX

 f = ones([1,Ns]);

 iter2 = 0;

 for k = 1:Ns

 iter2 = iter2 + 1;

 U = R(:,:,k);

 f([iter2,Ns]) = U;

 end

 % COMPLEX CONJUGATE PAIRS, LINEARLY SPACED

 bet = linspace(w(1),w(end),N/2);

 poles = [];

 for n = 1:length(bet)

 alf = -bet(n)*1e-2;

 poles = [poles (alf-1i*bet(n)) (alf+1i*bet(n))];

 end

 % ASSIGN WEIGHT FOR FREQUENCY POINTS

 %weight=1./sqrt(abs(f)); % independent weaker inverse weight

 weight=zeros(1,Ns); % common weaker inverse weight

 for k=1:Ns

 weight(1,k)=1/sqrt(norm(f(:,k)));

 end

 % PERFORM VECTOR FIT

 disp('vector fitting...')

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 % REPEAT ITERATION FOR IMPROVED ACCURACY

 rms = zeros(1);

 iter3 = 0;

 while rmserr > err && iter3 < max_iter

 iter3 = iter3 + 1;

% disp([' Iter ' num2str(iter3)])

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 if iter3 < 2

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 elseif abs(rms(iter3)-rms(iter3-1)) > tol

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 else

 break;

 end

 end

 disp('Done.')

 A=full(SER.A);

 B=SER.B;

 C=SER.C;

 D=SER.D;

 E=SER.E;

 % Display Results

% disp(['Converged in ' num2str(iter3) ' iterations.']);

% disp('Resulting rms error convergence:');

LIGO-T1300734-v1

21 | P a g e

% rms

% disp('Resulting zpk model:');

 zpk_model = zpk(c2d(ss(A,B,C,D),1/4096,'tustin'));

 % AUTOQUACK

 next_filt = struct('name','label','value','subblock');

 next_index = length(to_quack) + 1;

 next_filt.value = zpk_model;

 next_filt.name = ['HAM2_SIM_GND_L4C_' num2str(num_rows) '_'

num2str(num_cols)];

 next_filt.label = ['GND_L4C_FILT'];

 next_filt.subblock = 0;

 to_quack(next_index) = next_filt;

 iter_array([iter1,36]) = iter3;

 end

end

disp(' ');

autoquack('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\X2ISIHAM2SIM.txt', to_quack);

CONVERT FREQUENCY ASCII TO ZPK MODEL BY CONVERGING SCRIPT

% gnd_pwrspctrm.m

% CONVERT FREQUENCY ASCII TO ZPK MODEL BY CONVERGING

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_PWRSPCTRM\DATA\GND_X');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_PWRSPCTRM\DATA\GND_Y');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\GND_PWRSPCTRM\DATA\GND_Z');

% SPECIFIY FILE NAME AND CELL

dataX = GND_X;

dataY = GND_Y;

dataZ = GND_Z;

% CONVERGENCE TOLERANCE

tol = 1e-7;

% ACCEPTABLE INITIAL RMSERR VALUE

err = 1e-3;

% FREQUENCY GIVEN IN RAD/SEC

w = 1*1i*2*pi;

% ORDER OF APPROXIMATION

N = 10;

% VECTFIT OPTIONS

opts.relax=1; %1 = Use vector fitting with relaxed non-triviality constraint

opts.stable=1; %1 = Enforce stable poles

opts.asymp=3; %3 = Include D and E in fitting

LIGO-T1300734-v1

22 | P a g e

opts.skip_pole=0; %1 = Skip pole identification

opts.skip_res=0; %1 = Skip identification of residues (C,D,E)

opts.cmplx_ss=0; %1 = Create complex state space model

opts.spy1=0; %0 = No plotting for first stage of vector fitting

opts.spy2=1; %1 = Create magnitude plot for fitting of f(s)

opts.logx=1; %1 = Use logarithmic abscissa axis

opts.logy=1; %1 = Use logarithmic ordinate axis

opts.errplot=0; %1 = Include deviation in magnitude plot

opts.phaseplot=0; %1 = Also produce plot of phase angle (in addition to magnitiude)

opts.legend=0; %1 = include legends in plots

% Complex conjugate pairs, logarithmically spaced :

bet=logspace(log10(w(1)),log10(w(end)),N/2);

poles=[];

for n=1:length(bet)

 alf=-bet(n)*1e-2;

 poles=[poles (alf-1i*bet(n)) (alf+1i*bet(n))];

end

%%%

%% PREPARE DATA X

%%%

% EXTRACT RESPONSE(f) AND FREQUENCY SAMPLES(s)

f = (dataX(:,2))';

s = dataX(:,1);

s = s*1i*2*pi; % frequency samples in j*w(rad/sec)

Ns = length(s);

% ASSIGN WEIGHT FOR FREQUENCY POINTS

weight=ones(1,Ns); % all frequency points are given equal weight

%%%

%% PERFORM VECTOR FIT FOR X

%%%

disp('vector fitting for x...')

[SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

% REPEAT ITERATION FOR IMPROVED ACCURACY

rms = zeros(1);

iter = 0;

while rmserr > err && iter < 100

 iter = iter + 1;

 disp([' Iter ' num2str(iter)])

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 if iter<2

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 elseif abs(rms(iter)-rms(iter-1)) > tol

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 else

 break;

 end

end

disp('Done.')

A=full(SER.A);

B=SER.B;

LIGO-T1300734-v1

23 | P a g e

C=SER.C;

D=SER.D;

E=SER.E;

zpk_model = zpk(c2d(ss(A,B,C,D),1/4096,'tustin'));

% % %%

% % % AUTOQUACK FOR X

% % %%

to_quack =

struct('name','HAM2_SIM_PWR_SPCTRM_X','value',zpk_model,'label','PWR_X_FILT','subblock

', 0);

disp(' ');

autoquack('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\X2ISIHAM2SIM.txt', to_quack);

%

% % %%%

% % %% PREPARE DATA Y

% % %%%

% % % EXTRACT RESPONSE(f) AND FREQUENCY SAMPLES(s)

% % f = (dataY(:,2))';

% % s = dataY(:,1);

% % s = s*1i*2*pi; % frequency samples in j*w(rad/sec)

% % Ns = length(s);

% %

% % % ASSIGN WEIGHT FOR FREQUENCY POINTS

% % % weight=zeros(1,Ns);

% % % for k=1:Ns

% % % weight(1,k)=1/sqrt(norm(f(:,k)));

% % % end

% % % weight=zeros(1,Ns);

% % % for k=1:Ns

% % % weight(1,k)=1/norm(f(:,k));

% % % end

% % weight=ones(1,Ns); % all frequency points are given equal weight

% % %weight=1./(abs(f).^(2/3)); % strong inverse weight

% % %weight=1./sqrt(abs(f)); % weaker inverse weight

% % %weight=1./(abs(f)); % weaker inverse weight

% %

% %

% % %%%

% % %% PERFORM VECTOR FIT FOR Y

% % %%%

% % disp('vector fitting for y...')

% % [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

% %

% % % REPEAT ITERATION FOR IMPROVED ACCURACY

% % rms = zeros(1);

% % iter = 0;

% %

% % while rmserr > err && iter < 100

% %

% % iter = iter + 1;

% % disp([' Iter ' num2str(iter)])

% % [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

% % rms(iter,:) = rmserr;

% %

% % if iter<2

% % [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

% % rms(iter,:) = rmserr;

% %

% % elseif abs(rms(iter)-rms(iter-1)) > tol

% % [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

% % rms(iter,:) = rmserr;

% %

LIGO-T1300734-v1

24 | P a g e

% % else

% % break;

% % end

% % end

% % disp('Done.')

% % A=full(SER.A);

% % B=SER.B;

% % C=SER.C;

% % D=SER.D;

% % E=SER.E;

% % zpk_model = zpk(c2d(ss(A,B,C,D),1/4096,'tustin'));

%%%

%% AUTOQUACK FOR Y

%%%

to_quack =

struct('name','HAM2_SIM_PWR_SPCTRM_Y','value',zpk_model,'label','PWR_Y_FILT','subblock

', 0);

disp(' ');

autoquack('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\X2ISIHAM2SIM.txt', to_quack);

%%

% PREPARE DATA Z

%%

% EXTRACT RESPONSE(f) AND FREQUENCY SAMPLES(s)

f = (dataZ(:,2))';

s = dataZ(:,1);

s = s*1i*2*pi; % frequency samples in j*w(rad/sec)

Ns = length(s);

% ASSIGN WEIGHT FOR FREQUENCY POINTS

for k=1:Ns

 weight(1,k)=1/norm(f(:,k));

end

%%%

%% PERFORM VECTOR FIT FOR Z

%%%

disp('vector fitting for z...')

[SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

% REPEAT ITERATION FOR IMPROVED ACCURACY

rms = zeros(1);

iter = 0;

while rmserr > err && iter < 100

 iter = iter + 1;

 disp([' Iter ' num2str(iter)])

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 if iter<2

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 elseif abs(rms(iter)-rms(iter-1)) > tol

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter,:) = rmserr;

 else

 break;

 end

LIGO-T1300734-v1

25 | P a g e

end

disp('Done.')

A=full(SER.A);

B=SER.B;

C=SER.C;

D=SER.D;

E=SER.E;

zpk_model = zpk(c2d(ss(A,B,C,D),1/4096,'tustin'));

%%%

%% AUTOQUACK

%%%

to_quack =

struct('name','HAM2_SIM_PWR_SPCTRM_Z','value',zpk_model,'label','PWR_Z_FILT','subblock

', 0);

disp(' ');

autoquack('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\X2ISIHAM2SIM.txt', to_quack);

CREATE MATRIX INVERSE SCRIPT

% inv.matrices.m

% CREATE MATRIX INVERSE

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\INVERTED_MATRICES\DATA\GS132CART.t

xt');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\INVERTED_MATRICES\DATA\CPS2CART.tx

t');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\INVERTED_MATRICES\DATA\CART2ACT.tx

t');

SIM2GS13 = inv(GS132CART)

SIM2CPS = inv(CPS2CART)

ACT2SIM = inv(CART2ACT)

% sts_array.m

% CONVERT FREQUENCY ASCII TO FRD MATRIX

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps1_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps1_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps1_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps2_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps2_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps2_3');

LIGO-T1300734-v1

26 | P a g e

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps3_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps3_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps3_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps4_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps4_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps4_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps5_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps5_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps5_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps6_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps6_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\cps6_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs7_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs7_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs7_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs8_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs8_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs8_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs9_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs9_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs9_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs10_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs10_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs10_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs11_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs11_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs11_3');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs12_1');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs12_2');

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\DATA\gs12_3');

d1 =

frd(cps1_1(:,2)+cps1_1(:,3)*1i,cps1_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d2 =

frd(cps1_2(:,2)+cps1_2(:,3)*1i,cps1_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d3 =

frd(cps1_3(:,2)+cps1_3(:,3)*1i,cps1_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d4 =

frd(cps2_1(:,2)+cps2_1(:,3)*1i,cps2_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d5 =

frd(cps2_2(:,2)+cps2_2(:,3)*1i,cps2_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d6 =

frd(cps2_3(:,2)+cps2_3(:,3)*1i,cps2_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d7 =

frd(cps3_1(:,2)+cps3_1(:,3)*1i,cps3_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d8 =

frd(cps3_2(:,2)+cps3_2(:,3)*1i,cps3_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d9 =

frd(cps3_3(:,2)+cps3_3(:,3)*1i,cps3_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d10 =

frd(cps4_1(:,2)+cps4_1(:,3)*1i,cps4_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

LIGO-T1300734-v1

27 | P a g e

d11 =

frd(cps4_2(:,2)+cps4_2(:,3)*1i,cps4_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d12 =

frd(cps4_3(:,2)+cps4_3(:,3)*1i,cps4_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d13 =

frd(cps5_1(:,2)+cps5_1(:,3)*1i,cps5_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d14 =

frd(cps5_2(:,2)+cps5_2(:,3)*1i,cps5_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d15 =

frd(cps5_3(:,2)+cps5_3(:,3)*1i,cps5_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d16 =

frd(cps6_1(:,2)+cps6_1(:,3)*1i,cps6_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d17 =

frd(cps6_2(:,2)+cps6_2(:,3)*1i,cps6_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d18 =

frd(cps6_3(:,2)+cps6_3(:,3)*1i,cps6_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d19 =

frd(gs7_1(:,2)+gs7_1(:,3)*1i,gs7_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d20 =

frd(gs7_2(:,2)+gs7_2(:,3)*1i,gs7_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d21 =

frd(gs7_3(:,2)+gs7_3(:,3)*1i,gs7_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d22 =

frd(gs8_1(:,2)+gs8_1(:,3)*1i,gs8_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d23 =

frd(gs8_2(:,2)+gs8_2(:,3)*1i,gs8_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d24 =

frd(gs8_3(:,2)+gs8_3(:,3)*1i,gs8_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d25 =

frd(gs9_1(:,2)+gs9_1(:,3)*1i,gs9_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d26 =

frd(gs9_2(:,2)+gs9_2(:,3)*1i,gs9_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d27 =

frd(gs9_3(:,2)+gs9_3(:,3)*1i,gs9_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit','H

z');

d28 =

frd(gs10_1(:,2)+gs10_1(:,3)*1i,gs10_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d29 =

frd(gs10_2(:,2)+gs10_2(:,3)*1i,gs10_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d30 =

frd(gs10_3(:,2)+gs10_3(:,3)*1i,gs10_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

LIGO-T1300734-v1

28 | P a g e

d31 =

frd(gs11_1(:,2)+gs11_1(:,3)*1i,gs11_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d32 =

frd(gs11_2(:,2)+gs11_2(:,3)*1i,gs11_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d33 =

frd(gs11_3(:,2)+gs11_3(:,3)*1i,gs11_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d34 =

frd(gs12_1(:,2)+gs12_1(:,3)*1i,gs12_1(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d35 =

frd(gs12_2(:,2)+gs12_2(:,3)*1i,gs12_2(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

d36 =

frd(gs12_3(:,2)+gs12_3(:,3)*1i,gs12_3(:,1),1/4096,'Name','HAM_ISI_GND','FrequencyUnit'

,'Hz');

STS_SENSOR = [d1 d2 d3; d4 d5 d6; d7 d8 d9; d10 d11 d12; d13 d14 d15; d16 d17 d18; ...

 d19 d20 d21; d22 d23 d24; d25 d26 d27; d28 d29 d30; d31 d32 d33; d34 d35 d36]

CONVERT FREQUENCY FRDATA TO ZPK MODEL AND APPLY AUTOQUACK SCRIPT

% sts_sensor.m

% CONVERT FREQUENCY FRDATA TO ZPK MODEL AND APPLY AUTOQUACK

% INITIALIZE MATLAB

close all;

clc;

clear all;

%%%

%% DASHBOARD

%%%

% LOAD FREQUENCY DATA

load('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\STS_SENSOR\STS_SENSOR.mat');

% CONVERGENCE TOLERANCE

tol = 1e-9;

% MAXIMUM NO. ITERATIONS IN FIT

max_iter = 100;

% ACCEPTABLE INITIAL RMSERR VALUE

err = 1e-5;

% FREQUENCY GIVEN IN RAD/SEC

w = 1*1i*2*pi;

% ORDER OF APPROXIMATION

N = 9;

% VECTFIT OPTIONS

opts.relax=1; %1 = Use vector fitting with relaxed non-triviality constraint

opts.stable=1; %1 = Enforce stable poles

opts.asymp=3; %3 = Include D and E in fitting

opts.skip_pole=0; %1 = Skip pole identification

opts.skip_res=0; %1 = Skip identification of residues (C,D,E)

opts.cmplx_ss=0; %1 = Create complex state space model

opts.spy1=0; %0 = No plotting for first stage of vector fitting

LIGO-T1300734-v1

29 | P a g e

opts.spy2=1; %1 = Create magnitude plot for fitting of f(s)

opts.logx=1; %1 = Use logarithmic abscissa axis

opts.logy=1; %1 = Use logarithmic ordinate axis

opts.errplot=0; %1 = Include deviation in magnitude plot

opts.phaseplot=0; %1 = Also produce plot of phase angle (in addition to magnitiude)

opts.legend=0; %1 = include legends in plots

%%%

%% LOOP TO CREATE ZPK ARRAY

%%%

iter_array = ones([1,36]);

iter1 = 0;

to_quack = struct('name',{},'value',{},'label',{},'subblock', {});

for num_rows = 1:12 % number of rows and columns

 for num_cols = 1:3

 iter1 = iter1 + 1;

 data = STS_SENSOR(num_rows,num_cols);

 % EXTRACT RESPONSE(R) AND FREQUENCY SAMPLES(s)

 [R,s,ts] = frdata(data);

 s = s*1i*2*pi; % frequency samples in j*w(rad/sec)

 Ns = length(s);

 % CREATE RESPONSE DATA MATRIX

 f = ones([1,Ns]);

 iter2 = 0;

 for k = 1:Ns

 iter2 = iter2 + 1;

 U = R(:,:,k);

 f([iter2,Ns]) = U;

 end

 % COMPLEX CONJUGATE PAIRS, LINEARLY SPACED

 bet = linspace(w(1),w(end),N/2);

 poles = [];

 for n = 1:length(bet)

 alf = -bet(n)*1e-2;

 poles = [poles (alf-1i*bet(n)) (alf+1i*bet(n))];

 end

 % ASSIGN WEIGHT FOR FREQUENCY POINTS

% for k=1:Ns

% weight(1,k)=1/sqrt(norm(f(:,k)));

% end

% weight=1./(abs(f).^(2/3)); % strong inverse weight

 weight=1./sqrt(abs(f)); % weaker inverse weight

 % PERFORM VECTOR FIT

 disp('vector fitting...')

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 % REPEAT ITERATION FOR IMPROVED ACCURACY

 rms = zeros(1);

 iter3 = 0;

 while rmserr > err && iter3 < max_iter

 iter3 = iter3 + 1;

 disp([' Iter ' num2str(iter3)])

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 if iter3 < 2

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

LIGO-T1300734-v1

30 | P a g e

 elseif abs(rms(iter3)-rms(iter3-1)) > tol

 [SER,poles,rmserr,fit]=vectfit4(f,s,poles,weight,opts);

 rms(iter3,:) = rmserr;

 else

 break;

 end

 end

 disp('Done.')

 A=full(SER.A);

 B=SER.B;

 C=SER.C;

 D=SER.D;

 E=SER.E;

 % Display Results

% disp(['Converged in ' num2str(iter3) ' iterations.']);

% disp('Resulting rms error convergence:');

% rms

% disp('Resulting zpk model:');

 zpk_model = zpk(c2d(ss(A,B,C,D),1/4096,'tustin'));

 % AUTOQUACK

 next_filt = struct('name','label','value','subblock');

 next_index = length(to_quack) + 1;

 next_filt.value = zpk_model;

 next_filt.name = ['HAM2_SIM_GND_L4C_' num2str(num_rows) '_'

num2str(num_cols)];

 next_filt.label = ['GND_L4C_FILT'];

 next_filt.subblock = 0;

 to_quack(next_index) = next_filt;

 iter_array([iter1,36]) = iter3;

 end

end

disp(' ');

autoquack('C:\Users\Fernie\Documents\MATLAB\LIGO\HAM_ISI\X2ISIHAM2SIM.txt', to_quack);

