
Advanced LIGO Guardian
Review

Jameson Rollins

August 26, 2013

LIGO-G1300872-v1

Outline

1 Introduction

2 System description and behavior

3 Case study: IMC

4 Technical Issues and open questions

5 Status and Plans

6 Appendices
Guardian scripts
System description directory
The guardian program
Links

LIGO-G1300872-v1 2/ 70

Introduction

Introduction

Guardian is the Advanced LIGO automation system. It will
control the global state of the interferometer by coordinating
the states of all interferometer subsystems.

In Initial LIGO, automation was handled by a handful of
“autolocker” scripts. These scripts were slow, monolithic, and
unreliable. In the face of the significantly increased complexity
of aLIGO this model fails to scale.

aLIGO needed a unified way to manage states and automate
the control of all the various interferometer subsystems...

=⇒ Guardian.

LIGO-G1300872-v1 4/ 70

Design concept

The original aLIGO Guardian design was proposed by Sam
Waldman and Matt Evans:

Distributed Guardian supervisor processes oversee
specific sub-domains of the interferometer, or systems,
i.e., subsets of EPICS channels corresponding to discrete
domains of control of the IFO.

Guardian understands states for systems. The supervisors
handle moving their systems between states upon request,
or based on state changes of the underlying physical
system.

A hierarchy of Guardians control the full IFO, with top
level manager systems controlling sets of lower-levels
systems, down to lowest level module systems that talk
directly to the front-ends.

LIGO-G1300872-v1 5/ 70

Overview

Top level managers control
lower level subordinates,
down to the lowest level
modules that talk directly to
the RCG front-ends and
Beckhoff.

Strict hierarchy is
enforced by appending
domain-specific channel
prefix to all system channel
access calls. This ensures
that no two guardians
compete for control of the
same domain.

R
C

G
 m

o
d

e
l

R
C

G
 m

o
d

e
l

Beckhoff

IOP IOP

R
C

G
 m

o
d

e
l

IFO

PSL SUSSEI ISC

R
C

G
 m

o
d

e
l

R
C

G
 m

o
d

e
l

IOP

SUSSEI

physical
plant

IO

realtime
control

Guardian
(EPICS)

EtherCat PCIe

ITM ETM

LIGO-G1300872-v1 6/ 70

Issues

Other than stalled development, there were issues with the
original design and implementation that needed to be addressed:

Too dependent on guard scripts reporting their own
state/status. This is extremely fragile, and required scripts
to have a lot of boiler plate.

Lack of structure was confusing, potentially leading to
non-deterministic behavior.

It was unfinished. Important behavior was undefined, and
lots of needed functionality was missing (particularly in
regard to the critical system supervisor).

Perl was an unfortunate language choice (passé, difficult
syntax, missing or unsupported libraries, etc.)

LIGO-G1300872-v1 7/ 70

Recent work

Recently, Guardian has been under heavy development:

Move to Python: more modern, very intuitive syntax,
more useful libraries, better EPICS bindings, well
documented, etc.

New Guardian python “interpreter” executes python
scripts with pre-loaded Guardian environment.

Much-needed structure added to system and state
descriptions.

System graphs are now fundamental objects describing
system behavior.

LIGO-G1300872-v1 8/ 70

Recent work

The most work has gone in to the system supervisor program,
which is really the core of Guardian. It has been completely
overhauled and now:

completely handles control and reporting of system state

acts as its own channel access server, providing its own
EPICS control and status records

loads system descriptions in a highly structured way that is
better able to identify bugs in system descriptions

uses system graphs to calculate state sequences

executes scripts with the new interpreter, in a tightly
managed environment

better process management

better user interface

LIGO-G1300872-v1 9/ 70

Recent work

Recently we attempted to put the LHO input mode cleaner
(IMC) and all of its subsystems under “new” Guardian control.
We didn’t quite get there, but the effort proved to be very
useful and informative.

During the experiment, the Guardian structure was overhauled
to behaves much more like a true state machine.

This was strongly informed by the needs of ISC, particularly in
regards to cavity locking and lock monitoring, and good recent
discussions with commissioners.

LIGO-G1300872-v1 10/ 70

System description and behavior

Systems

Each Guardian supervisor process oversees a
system. Each system represents a domain
of control of the IFO.

At the manager level, the domain is the set
of subordinate guardians.

At the module level, the domain is the set of
EPICS records with a particular channel
prefix (e.g. H1:SUS-ITMX_).

IFO

R
C

G
 m

o
d

e
l

R
C

G
 m

o
d

e
l

IOP

SUSSEI

ITM

SUS

IFO

ITM

R
C

G
 m

o
d

e
l

LIGO-G1300872-v1 12/ 70

System states and graphs

Systems are composed of states,
connected together to form directed
graphs.

States are nodes, and directed edges
point to adjacent states that can be
reached directly.

These graphs fundamentally describe
the system and determine its
behavior.

LOCKED

DOWN

BOOST

WFSON

LOWNOISE+WFS

ACQUIRE

LOWNOISE

UP

WFSOFF

IMC system graph

LIGO-G1300872-v1 13/ 70

System states and graphs

Standard graph analysis has already
proven very useful for designing
systems, understanding their
behavior, debugging, etc.

The supervisor currently uses
standard “shortest path” algorithms
for determining the next target state
given a higher-level requested state
(state sequences).

To the right is an auto-generated
graph of the ISC IMC system.

LOCKED

DOWN

BOOST

WFSON

LOWNOISE+WFS

ACQUIRE

LOWNOISE

UP

WFSOFF

IMC system graph

LIGO-G1300872-v1 14/ 70

Inheritance

Inheritance allows systems
to inherit from a base
system description.

SUS is using this
extensively, defining a base
system for all suspensions...

...that is extended for optics
that need additional ISC
control states.

MISALIGNED

SAFE

WDWATCH

DAMPED

ALIGNED

SUS “common”

LIGO-G1300872-v1 15/ 70

Inheritance

Inheritance allows systems
to inherit from a base
system description.

SUS is using this
extensively, defining a base
system for all suspensions...

...that is extended for optics
that need additional ISC
control states.

MISALIGNED

SAFE

WDWATCH

DAMPED

ALIGNED

PRELOCK

ACQUIRE

LOWNOISE

SUS-MC2

LIGO-G1300872-v1 16/ 70

State behavior

LIGO-G1300872-v1 17/ 70

snap state=
target?

CONTINUE

N
running?

Y

manual? script
statusrun

Y

N

Y

NRETURN

FAIL

new
target?

N

ERROR

Y

Above is the basic state flow control in the supervisor.
Upon entering state:

EPICS snap shot applied (if specified)

state run script launched (if specified)

State behavior

LIGO-G1300872-v1 18/ 70

snap state=
target?

CONTINUE

N
running?

Y

manual? script
statusrun

Y

N

Y

NRETURN

FAIL

new
target?

N

ERROR

Y

Scripts are executed in the background in separate, tightly
monitored processes via the Guardian interpreter.

Supervisor waits for script processes to complete, but can
terminate them as needed (currently not reflected in
diagram above).

State behavior

LIGO-G1300872-v1 19/ 70

snap state=
target?

CONTINUE

N
running?

Y

manual? script
statusrun

Y

N

Y

NRETURN

FAIL

new
target?

N

ERROR

Y

Supervisor then loops depending on manual mode setting
and script return status:

CONTINUE: run script again

FAIL: enter manual mode with error flag

RETURN: move to state completion

State behavior

LIGO-G1300872-v1 20/ 70

snapstate=
target?

Y

N snap state=
target?

CONTINUE

N
running?

Y

manual? script
statusrun

Y

N

Y

NRETURN

FAIL

new
target?

N

ERROR

Y

The supervisor constantly monitors its REQUEST channel
and calculates new target states from the system graph if
the request changes.

Requests are accepted or denied based on the existence of
paths from the current state to the requested state.

State behavior

LIGO-G1300872-v1 21/ 70

snapstate=
target?

Y

N snap state=
target?

CONTINUE

N
running?

Y

manual? script
statusrun

Y

N

Y

NRETURN

FAIL

new
target?

N

ERROR

Y

Supervisor now functions more like a true finite state
machines.

In fact, the supervisor can be effectively treated as a
programmable logic controller (PLC), and systems could be
programmed as standard state logic controllers.

This was the approach taken for the IMC Guardian.

User interface

The supervisor is controlled
by, and reports its status via,
its own set of EPICS records.

States are loaded as ENUM
records:

eases selection (improper states are rejected immediately)

can be provided as drop-down lists in MEDM screens

state records can be recorded in frames without
modification

LIGO-G1300872-v1 22/ 70

Case study: IMC

Case study: IMC

IFO IMC

SUS MC1

SUS MC3

SUS MC2PSL ISC IMC

HPI HAM2

ISI HAM2

IFO HAM2

HPI HAM3

ISI HAM3

IFO HAM3

Recently at Hanford
we attempted to build out
the input mode cleaner (IMC)
Guardian as a proof of principle.

The full IMC control might
involve about 12 components.

Ambitions were scaled back to implementing just the
components involved in IMC cavity locking:

IMC: H1:IMC-

SUS-MC2: H1:SUS-MC2_

SYS-IMC: IMC manager

LIGO-G1300872-v1 24/ 70

Case study: IMC

IFO IMC

SUS MC1

SUS MC3

SUS MC2PSL ISC IMC

HPI HAM2

ISI HAM2

IFO HAM2

HPI HAM3

ISI HAM3

IFO HAM3

IFO IMC

SUS MC2 ISC IMC

Recently at Hanford
we attempted to build out
the input mode cleaner (IMC)
Guardian as a proof of principle.

The full IMC control might
involve about 12 components.

Ambitions were scaled back to implementing just the
components involved in IMC cavity locking:

IMC: H1:IMC-

SUS-MC2: H1:SUS-MC2_

SYS-IMC: IMC manager

LIGO-G1300872-v1 25/ 70

Useful types of state behavior

We implemented three different kinds of states for this test:

SINGLE

State run script is executed once only, then state completes.

WAIT

Run script executed in CONTINUE loop, waiting for condition (e.g.
cavity trans power above threshold). Once condition is met, state
completes.

WATCH

Run script executed in CONTINUE loop, watching for condition
(power drops below threshold). Once condition is met, script specifies
a GOTO for a new target state, then state completes.

LIGO-G1300872-v1 26/ 70

IMC locking

LIGO-G1300872-v1 27/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

We started by building out graphs and state code for the system
components, SUS-MC2 and IMC, and manually put them through
their paces.

IMC locking

LIGO-G1300872-v1 28/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

We then built the SYS-IMC manager to oversee SUS-MC2 and IMC.

IMC locking

LIGO-G1300872-v1 29/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

ALIGNED

DOWNDOWN

LOWNOISE

SAFE

WDWATCH

DAMPED

Walk through of a LOWNOISE SYS-IMC request...

IMC locking

LIGO-G1300872-v1 30/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

ALIGNED

DOWNDOWN

LOWNOISE

SAFE

WDWATCH

DAMPED

From initialization, where no state is defined, jump to DOWN goto
state. This requests ALIGNED from SUS-MC2 and DOWN from
IMC, and waits for them to reach those states.

IMC locking

LIGO-G1300872-v1 31/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

ALIGNED

DOWNDOWN

LOWNOISE

SAFE

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOCKED

LOCKED

ACQUIRE

UP

Once subordinates reach requested states, SYS-IMC proceeds to
LOCKED. IMC waits in ACQUIRE for the cavity to lock, and
proceeds immediately to LOCKED once it catches.

IMC locking

LIGO-G1300872-v1 32/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

ALIGNED

DOWNDOWN

LOWNOISE

SAFE

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOCKED

LOCKED

ACQUIRE

UP

BOOST

LOWNOISE

BOOST

LOWNOISE

Once IMC reaches LOCKED, SYS-IMC proceeds immediately to
BOOST, which requests the LOWNOISE configurations from
SUS-MC2 and IMC.

IMC locking

LIGO-G1300872-v1 33/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

ALIGNED

DOWNDOWN

LOWNOISE

SAFE

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOCKED

LOCKED

ACQUIRE

UP

BOOST

LOWNOISE

BOOST

LOWNOISE

Finally, SYS-IMC reaches the requested LOWNOISE state where it
sits and watches its subordinate states. IMC LOWNOISE is likewise
watching the cavity transmitted power.

IMC locking

LIGO-G1300872-v1 34/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

ALIGNED

DOWNDOWN

LOWNOISE

SAFE

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOCKED

LOCKED

ACQUIRE

UP

BOOST

LOWNOISE

BOOST

LOWNOISE

If the cavity drops lock, IMC immediately drops to DOWN.
SYS-IMC notices the IMC state change and drops to LOCKED,
which requests SUS-MC2 → ACQUIRE, IMC → LOCKED.

IMC locking

LIGO-G1300872-v1 35/ 70

LOCKED

LOCKED

ACQUIRE

UP

WFSONWFSOFF

BOOST

LOWNOISE

BOOST

LOWNOISE+WFS

LOWNOISE+WFS

WFSONWFSOFF

SUS-MC2 SYS-IMC IMC

WATCH

SINGLE

WAIT

DOWN DOWN

LOWNOISE

SAFE

MISALIGNED ALIGNED

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOWNOISE

ALIGNED

DOWNDOWN

LOWNOISE

SAFE

WDWATCH

DAMPED

PRELOCK

ACQUIRE

LOCKED

LOCKED

ACQUIRE

UP

BOOST

LOWNOISE

BOOST

LOWNOISE

Note the SUS-MC2 path from LOWNOISE → PRELOCK, which
helps get the suspension back into the ACQUIRE state quickly.

Results

While we weren’t able to accomplish everything we set out to,
the experiment was nonetheless very successful.

Worked closely with SUS team to write much of the base
SUS code and system descriptions.

Old IMC autolocker was completely translated to new
Guardian structure.

Successfully demonstrated the supervisor running on real
systems: worked very well (quick response, fine-grained
control). Clearly demonstrated usefulness for
commissioning.

Successfully demonstrated manager Guardians controlling
subordinate systems.

Developed useful development and commissioning tools.

Weren’t quite able to get it to the point of leaving it
running on its own, but very close.

LIGO-G1300872-v1 36/ 70

Technical Issues and open questions

State verification and alarm handling

Biggest open question: How do we want to handle state
verification and alarming?

Current implementation has no special alarm handling: states
can be programmed to check and respond to channels or alarms
as needed (e.g. WATCH states as described above.)

This doesn’t work for long running state run scripts. But
are long running scripts really necessary? Can we instead
program systems with PLC-like state logic, with
short-running scripts executed in loops? What else is
needed to accomplish this?

Do we need alarms to trigger termination of long-running
scripts at the supervisor level?

LIGO-G1300872-v1 38/ 70

State verification and alarm handling

Do we want comprehensive state snapshots that include all
settings at alarm levels? Or do we want to separate settings
from alarm levels?

There is some worry that full state snap shots (settings &
alarms) will be:

fragile: susceptible to capturing unintended changes

expensive: take too long to apply on state transitions

However, without full state setting snap shots, we will have to
keep track of all changes as we move to higher level states so
that they can be effectively reverted when dropping back down.

LIGO-G1300872-v1 39/ 70

System guardian → front-end mapping

Front end alarm status checksums and alarm counts are
potentially very useful, but they are currently calculated only
on a per-front end model basis.

This means that they aren’t useful for systems that share a
front end model, i.e. top-names.

We either need to calculate the checksums and alarm counts on
a per-top-name basis (requires RCG code changes), or break
things with a single domain of control per front-end process (no
top-names). (I think we should do both.)

ISC is currently the main culprit: ASC and ALS control share
the same front end models.

LIGO-G1300872-v1 40/ 70

Timing

Timing, in the sense of coordinate synchronous control or
multiple systems, is still an issue, even though the “party line”
has been that it isn’t.

Need more test and profiling to benchmark how fast channel
access is in practice, and how fast state transitions can happen,
particularly triggered state transitions of the managers.

LIGO-G1300872-v1 41/ 70

“Kernal access”

RCG has in development the ability bypass EPICS entirely and
simply write directly to shared memory on the front ends.

precisely time stamped reads and writes

more robust

networking issues/latencies go away

potentially much faster in applying large snapshots

This would initially be applicable to module-level Guardians
only.

Can imagine leveraging this with timed execution for even more
PLC-like behavior on the front ends.

LIGO-G1300872-v1 42/ 70

Channel pre-allocation

It may be desirable to require pre-defining all channel to be
accessed in scripts (i.e. in a script header).

This would allow for:

pre-connecting to all channels before script execution, to
catch channel errors before script even begins to execute

more easily accounting for/auditing all channel access

LIGO-G1300872-v1 43/ 70

Other considerations

Should we “codify” distinction between
SINGLE/WAIT/WATCH state types?

Could potentially clock execution of supervisor run loop by
hooking into front end counter (ala front end IOCs).

What else?...

LIGO-G1300872-v1 44/ 70

Status and Plans

Status

Guardian interpreter and shell are fully operational.

Python system description class fully functional.

Supervisor has been demonstrated controlling real systems.

SEI and SUS teams have writen/converted all code to
Guardian. Code has been tested at Stanford and LHO.

LIGO-G1300872-v1 46/ 70

Plans

Back to LHO to finish testing IMC Guardian.

Fully integrate the rest of the IMC subsystems (PSL, SEI,
HEPI, etc.).

Build out and test supervisor management/control
infrastructure.

Move quickly to LLO to train commissioners and deploy
infrastructure and subsystem Guardians.

Flesh out all managers and lock acquisition code.

LIGO-G1300872-v1 47/ 70

TODO

TEST SUITE (system library tests already in place)

documentation

fill out cdsutils (tds/ezca) library

guardutil: more features

create/modify snapshots for states
improve system graphs

guardctl: supervisor helper utility:

start/stop/restart supervisor processes on guard machine
display logs

move script Continue loops inside interpreter for
maintaining channel access connections across runs

handle library paths for systems

packaging/release

......

LIGO-G1300872-v1 48/ 70

Appendices

Guardian scripts

Guardian scripts

Guardian scripts are basic Python, with a pre-loaded
environment specific to our needs:

#!/usr/bin/env guardian

−∗− mode: python −∗−

for dof in [’DARM’, ’CARM’, ’MICH’]:
ezca.switch(dof, ’OUTPUT’, ’ON’)

...

Note: no boilerplate! First two comment lines are optional:
shebang for running script directly from command line, and
editor mode information.

LIGO-G1300872-v1 51/ 70

Guardian script environment

The pre-loaded environment will provide useful variables and
functions, channel access class, etc.

Some useful system variables:

IFO = ’H1’

SUBSYS = ’SUS−MC2’

LIGO-G1300872-v1 52/ 70

Built-in Guardian commands

Write to the system logger:

Log(’This is a log message’)

Terminate script with failure and message:

Fail(’Failed to lock.’)

Execute script again:

Continue()

Complete state:

Return()

Complete state, and specify new target state:

Goto(’STATE0’)

LIGO-G1300872-v1 53/ 70

Channel access: PyEpics

Channel access is handled via the very nice PyEpics library:

import epics
chan = epics.PV(’H1:LSC−DARM OUTPUT’)
value = chan.get()

PyEpics provides a high-level PV (“process variable”) class, a
Device class for channel name scoping, channel subscription and
callbacks, etc. Good stuff.

LIGO-G1300872-v1 54/ 70

http://cars.uchicago.edu/software/python/pyepics3/

Channel access: EZCA

However, an EZCA class, pre-loaded by guardian and initialized
with the system prefix, should provide all CA methods we need:

ezca.switch(’DARM’, ’OUTPUT’, ’ON’)

ezca.read(’DARM OFFSET’)

ezca.write(’DARM OFFSET’, 10)

With IFO = ’H1’ and system = ’LSC’, the above would switch
on the H1:LSC-DARM filter bank output, and read/write
H1:LSC-DARM OFFSET.

We can extend this class as needed (ezca.step(),
ezca.demod(), etc.).

LIGO-G1300872-v1 55/ 70

Dynamically loadable modules/libraries

Python, and therefore guardian, supports dynamically-loadable
modules:

import math
foo = ezca.read(’FOO’)

bar = math.sin(foo ∗ math.pi)

(We can pre-load modules by default if desired (* from math,
time.sleep, etc.)

Subsystems can also define their own libraries as needed:

import isi
isi.stop bouncing()

LIGO-G1300872-v1 56/ 70

NDS

Real-time test point access is available via the very nice NDS2
client python bindings:

import nds2
conn = nds2.connection(’h1nds’, 31200)

for buf in conn.iterate([’H1:LSC−DARM INPUT’]):
do stuff(buf[0].data)

We will want to wrap this as well, to specify site-specific
connection info and provide channel prefixing and convenience
functions, i.e. TDS:

foo = tds.avg(’DARM INPUT’, 2)

LIGO-G1300872-v1 57/ 70

System description directory

System description directory

Systems are described by a system description directory
The system “states” directory contains state description
directories for each system state:

<SYSTEM>/guard
/states/<STATE>/...

/<STATE>/...
/<STATE>/...
/...

LIGO-G1300872-v1 59/ 70

System state directories

Each state directory contains the following description
structure:

<STATE>/snap
/run

/successors/<STATE>
/...

[/goto]

LIGO-G1300872-v1 60/ 70

Anatomy of a state: snap

<STATE>/snap

snap: EPICS values and alarm levels to be set immediately
upon entering state.

LIGO-G1300872-v1 61/ 70

Anatomy of a state: snap

<STATE>/run

run: State run script. Executed as main function of state.

LIGO-G1300872-v1 62/ 70

Anatomy of a state: successors

<STATE>/successors/<STATE>
/...

successors: directory of files that indicate directly reachable
states from this state. State files are just indicators (empty
files).

LIGO-G1300872-v1 63/ 70

Anatomy of a state: goto

<STATE>/goto

goto: flag (empty file) that indicates that the state is accessible
from ANYWHERE.

It this file is not present, and there are no transits to this state
defined in other state transit directories, then the state will not
be accessible by guardian.

LIGO-G1300872-v1 64/ 70

System description Python class

A GuardSystem python class loads a system description into a
python object from which all system data can be easily
accessed:

Full system graph

Inheritance

GuardState object for all system states

Direct access to all scripts/files

LIGO-G1300872-v1 65/ 70

The guardian program

The Guardian program

The guardian program handles all the core functionality.
It will have three modes of operation:

script interpreter

interactive shell

system supervisor

LIGO-G1300872-v1 67/ 70

The interpreter

Guardian scripts are executed by the guardian interpreter.

When given a script as first argument and system name as
second argument, guardian executes the script in the
specially-prepped python environment:

$ guardian /path/to/guard/script

If the first line of the script is the guardian shebang line:

#!/usr/bin/env guardian

then it will be directly executable from the command line or
MEDM, e.g.:

$ /path/to/guard/script

LIGO-G1300872-v1 68/ 70

https://en.wikipedia.org/wiki/Shebang_(Unix)

The interactive shell

When called on its own, guardian will operate in interactive
(shell) mode:

$ guardian

aLIGO Guardian Shell

system: H1

prefix: H1:

In [1]: ezca.read(’LSC−DARM OFFSET ’)
Out[1]: 3.0

This is just an interactive ipython shell pre-loaded with the
standard guardian environment.

The shell is directly compatible with scripts; all commands
that work in the shell can be copy/pasted directly into guardian
scripts (modulo subsystem specification).

LIGO-G1300872-v1 69/ 70

http://ipython.org/

The system supervisor

Finally, system supervisor mode is the main workhorse of the
Guardian system.

When given a system directory as first argument, a system
name as second argument, guardian enters system supervisor
mode:

$ guardian /path/to/guard/system/dir/

In this mode, guardian becomes its own channel access server,
listening for commands via EPICS, and monitoring system
EPICS alarms.

LIGO-G1300872-v1 70/ 70

The system supervisor

Run scripts are executed in separate worker process, to isolate
them from the main supervisor thread.

Script failures put the system into MANUAL mode with an
ERROR flag.

The supervisor logs all of its activity and status to stdout, and
reports its status via GRD EPICS records.

In production, unified management of the supervisor processes
(on e.g. h1guardian0) will handle, start/stop/restart and all
logging. Process control and logging will be available from
anywhere in the control room.

LIGO-G1300872-v1 71/ 70

Guard EPICS records

Each guardian supervisor instantiates its own set of EPICS
records for its system:

For control:

<IFO>:GRD-<SYS> REQUEST (enum) requested state
<IFO>:GRD-<SYS> MANUAL (int) MANUAL mode request

For reporting system status:

<IFO>:GRD-<SYS> STATE (enum) current state
<IFO>:GRD-<SYS> TARGET (enum) target state
<IFO>:GRD-<SYS> STATUS (enum) supervisor status
<IFO>:GRD-<SYS> ERROR (bool) error flag
<IFO>:GRD-<SYS> WORKER (enum) worker status
<IFO>:GRD-<SYS> MESSAGE (string) log message

LIGO-G1300872-v1 72/ 70

Links

References

“Old” Guardian overviews:

https://dcc.ligo.org/LIGO-T1000131

https://dcc.ligo.org/LIGO-D1101755

https://dcc.ligo.org/LIGO-G1101189

Old Guardian MC auto-locker:

https://dcc.ligo.org/LIGO-T1300126

ISI blend filters:

https://dcc.ligo.org/LIGO-T1200126

LSC lock acquisition:

https://dcc.ligo.org/LIGO-T1000294

https://dcc.ligo.org/LIGO-G1300226

Automation front end idea:

https://dcc.ligo.org/LIGO-G1200608

LIGO-G1300872-v1 74/ 70

https://dcc.ligo.org/LIGO-T1000131
https://dcc.ligo.org/LIGO-D1101755
https://dcc.ligo.org/LIGO-G1101189
https://dcc.ligo.org/LIGO-T1300126
https://dcc.ligo.org/LIGO-T1200126
https://dcc.ligo.org/LIGO-T1000294
https://dcc.ligo.org/LIGO-G1300226
https://dcc.ligo.org/LIGO-G1200608

	Introduction
	System description and behavior
	Case study: IMC
	Technical Issues and open questions
	Status and Plans
	Appendices
	Guardian scripts
	System description directory
	The guardian program
	Links

