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Motivation

Given an experimentally measured LIGO wave 
form from a black hole binary, can we 

determine the electric charge of the source?

This is hard because astrophysical black holes are 
expected to have exceedingly little charge.
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General Relativity

"Mass tells space-time how to curve, and 
space-time tells mass how to move."

- John Wheeler
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Which path between A and B is a straight line 
(or geodesic)?

One answer: the path of extremal (minimal) 
distance 

Note: that this definition requires a notion of 
distance.

A B
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The Metric: g(_,_)
The metric is a function that takes two vectors and 
returns a number. It is a more general dot product.

Just like with a dot product, the metric gives you a 
natural definition of length (or norm):

From a norm, you can define a notion of distance

 ||
v ||2= v ⋅ v  ||

v ||2= g(v, v)

Usually, it is defined differently at every point, 
making it a function of position. 
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Spacetime is endowed with a metric, defining a 
notion of distance. Matter travels on straight paths, 

as defined by the metric, through spacetime.

How does matter tell spacetime how to curve?

How does spacetime tell matter how to move?

The metric satisfies Einstein’s Equations.

Gµν =
8πG
c4

Tµν
A bunch of 

derivatives of 
the metric

Measure of “Energy” 
content of spacetime

The indices index the equations
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Minkowski Space
Special relativity is a “special” solution of general 

relativity.

The metric associated with special relativity is called 
the Minkoski metric: 

η(_,_)
The Minkoski metric does not depend on the point 

in spacetime (if the right coordinate system is 
chosen)
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Black Hole Solutions
Name Stress-Energy 

Source Symmetry

Schwarzschild Vacuum Spherical

Kerr Vacuum Axial

Reissner- 
Nordstrom Electric Field Spherical

Kerr-Newman Electric Field Axial
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Gravitational Waves
The metric is measurable in the same way that the 
scalar and vector potential of electromagnetism are 

measurable. 
What are E/M waves?

They are the “part” of the E/M field that carries 
energy to infinity.

Similarly, we need a criterion for determining 
the “part” of the metric that we will call 

gravitational waves.
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The concept of energy is subtle in GR

Instead, we will use the following working 
definition that is applicable for spacetimes that are 

“almost” one of the spacetimes listed in the 
previous table. That is, the metric only deviates 

slightly the from a “background” metric.:

h(_,_) = g(_,_)− k(_,_)
gravitational wave

part of metric
actual metric

background metric
- one of the metrics

listed in table
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One can show that            must satisfy a wave 
equation, by insisting that            satisfy 

Einstein’s Equations.

h(_,_)
g(_,_)

The particular form of wave equation depends on 
the background spacetime.

11



Black Hole Binaries
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Restatement of goal
We are “reproducing” the waveforms (finding 

solutions to the equations governing        ) during 
the ring down stage of a charged black hole binary.

h(_,_)

We will compare these waveforms to the 
waveforms from uncharged black hole binaries 
during the ring down stage of their evolution.

We will determine if LIGO is sensitive enough to 
detect the differences.
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Are there any physically relevant solutions to the 
perturbation equations that we could use as a basis 

to to build up other solutions?
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Normal modes
A normal mode is a solution to a differential 

equation with the harmonic dependence:

eiωt
real

Examples:
E = 0E = 0
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Quasinormal modes
A quasinormal mode is a solution to a differential 

equation with the time dependence:

ei(ω r+iϖ i )t = e−ω iteiω rt

complex

exponential growth/decay

harmonic

general solution can almost be written as linear 
combination of QNM
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Optical Cavity

E = outgoing wave at 
Infinity
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Current State of 
Research

The Kerr-Newman perturbation equations cannot 
currently be solved exactly. 

We are solving them in several limits to obtain the 
Quasinormal modes

These limits are: small charge (astrophysically
relevant)

wkb/geometrical optics regime
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Perturbation Theory
Perturbation Theory is a method for obtaining 
approximate solutions to a differential equation

dy
dx

⎛
⎝⎜

⎞
⎠⎟
2

+ y2 = 4 + 4x2

Imagine a parameterized family of solutions

y(x,ε )
That is, for each    ,           is a solution ε y(x,ε )
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Taylor expand this family of solutions about ε = 0

y(x,ε ) = y(x,0)+ dy
dε 0

ε + ⋅⋅⋅= y(0) + y(1)ε + ⋅⋅⋅

Plug this expansion into the ODE, first noting:

We let       correspond to a known solutionε = 0

y(x,0) = 2x

dy
dx

= dy
(0)

dx
+ dy

(1)

dx
ε + ⋅⋅⋅
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(dy
(0)

dx
+ dy

(1)

dx
ε + ⋅⋅⋅)2 + (y(0) + y(1)ε + ⋅⋅⋅)2 = 0

Both sides of this equation are power series in   .
Two power series are equal iff the coefficients of 

each term are equal.

ε

Thus, we can solve the above equation, term by 
term.

The zeroth order equation is simply:

(dy
(0)

dx
)2 + (y(0) )2 = 4 + 4x2

which is satisfied by y(0) = 2x
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To first order:
 
2(dy

(0)

dx
i
dy(1)

dx
)+ 2(y(0) i y(1) ) = 0

y(1) = −x dy
(1)

dx y(1) = Ce
−1
2
x2

Thus, so far our episolonth solution looks like 

y(x,ε ) = y(0) + y(1)ε + ⋅⋅⋅= 2x +Ce
1
2
x2

ε + ⋅⋅⋅
If    is suitably small (i.e. our solution is close to  
the zeroth order solution,             ), we can 

truncate the series, leaving:

ε
y(0) = 2x

y(x,ε ) ≈ 2x + εe
−1
2
x2
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