

Crackle Noise: Finding an Upper Limit

Ben Levy Research Adviser: Eric Quintero

LIGO-G1300862-v1

 Technical Definition: Crackle occurs when a system responds to slowly changing external conditions through discrete, impulsive events spanning a broad range of sizes.

Why Do We Care?

- Tectonic activity can cause crackle in LIGO suspensions
- Could cause noise in the sensitivity band
- But, how bad is it?

LIGO's Blade Springs

We will test blade springs for crackle first

- Hang test masses from 2 blade springs
- Make these the end mirrors of a Michelson
- Lock differential displacement of masses
- Drive the system at a low frequency
- Output of Michelson will measure differential displacement caused by crackle

ECHNOLOC

186 186

- Adjusting Photo Detector Output Gain
 - Unbalanced gains reduces sensitivity

•
$$V_a = G_a(dx + IntensityNoise + ShotNoise_a)$$

- $V_b = G_b(-dx + IntensityNoise + ShotNoise_b)$
- We must minimize coherence between sum and difference of signals

LIGO

Mean Square Coherences of PD Sum and Difference in Two Cases

LIGO

Mean Square Coherences of PD Sum and Difference in Two Cases

- Designing Better Shadow Sensor Mounts
 - Flimsy mounts could cause vibrations
 - We needed a more adjustable assembly

Analysis

1/1GO

Crackle is proportional to the driving force

Analysis

• To demodulate, we use two quantities:

 $Q = \cos(2\omega_d t) \cdot signal^2$

 $I = \sin(2\omega_d t) \cdot signal^2$

 Q exhibits a DC offset in the presence of crackle because the signal² has this term:

 $2\cos(2\omega_d t) \cdot dx_f^2$

• Can make a statistical statement about the significance of the offset

Alpha Value ("amount of crackle")

10⁻¹²

10⁻³ r 10⁻⁴ 10^{-5 L} 10⁻⁶ Gaussian Background Noise 600 second Integration Time Band Pass Filter at 400Hz-500Hz 10^{-7} 10⁻¹⁵

10⁻¹⁴ 10⁻¹³ Background Noise Spectral Density (m/sqrt(Hz))

Our First Data

• 2 hrs of Driven and I hr Un-Driven Data

- 95% confidence bounds for the difference in Qs is 3.317•10⁻²⁷ ± 1.588•10⁻²⁶ m²
- $Q_{max} = 1.919 \cdot 10^{-26} m^2$

 At 100Hz, max noise density would could be seeing: 1.385•10^{-14 m}/_{√Hz}

Thank You

The NSF, LIGO, and Caltech SFP
Eric Quintero and Rana Adhikari

LIGO

harrysel