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Abstract

Precision predictions of gravitational waves from pulsating and merging neutron stars rely on numer-
ical relativity simulations, which, in turn, rely on physically and numerically accurate initial conditions.
Specialized codes called initial data solvers are used to numerically integrate the general relativity and
hydrodynamics equations to determine the matter and spacetime properties in and around the star. The
current single star initial data solver used by our group, CST, is of limited accuracy; we would require a
different code if we desired more accurate models. To that end, we have investigated two different initial
data solvers in order to determine their suitability as a replacement for CST. These codes are evaluated
against each other and against CST by the degree to which they satisfy several constraints, most notably
a virial identity (GRV2) which vanishes for axisymmetric, stationary, and asymptotically flat spacetime,
conditions which are met for single star models. Future work will entail comparing the different initial
data solvers for binary stars and evolving single and binary star models in neutron star evolution code.
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1 Introduction

1.1 Motivation

Neutron star binaries and their mergers are expected to be a primary source of detectable gravitational
waves. While our current neutron star binary simulations converge to higher precision than LIGO or Ad-
vanced LIGO can detect, increased precision will be of great benefit to next-generation gravitational wave
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detectors. Furthermore, increased precision will give us the ability to better study the effect that introducing
microphysics has on our models.

Out current initial data solver, CST [1, 2] is limited in precision to approximately 1 part in 103. Increased
precision for the initial data solver is required to increase the precision of the simulation as a whole, as the
time-evolution code introduces additional numerical error with each time step. Furthermore, lack of precision
in the initial data solver makes it difficult to diagnose the sources of error possibly in the time-evolution
code and improve the time-evolution code in general.

1.2 Spectral Methods

Spectral methods are methods used to solve differential equations, in which functions are represented by
high order polynomials. In spectral methods, a function f(x) : R 7→ R is represented by an interpolating
polynomial I(x) (in the domain [−1, 1]). The interpolating polynomial is equal to f(x) on a set of points X
called the grid. These grid points are usually chosen such that they correspond to the zeroes or extrema of
an appropriate Chebychev polynomial. The problem is thus reduced to determining the coefficients of the
interpolating polynomial and numerically integrating and differentiating a polynomial [3].

An important part of spectral methods is the idea of compactified domains. A compactified domain is
an infinite domain such as [0,∞) that is mapped to a finite domain such as [0, 1]. The primary advantage
of compactified domains is that they allow the use of boundary conditions at infinity in numerical schemes.
They also provide additional accuracy for integrals that extend to infinity.

1.3 GRV2

GRV2 [4] is a virial identity which holds in asymptotically flat, axisymmetric spacetime. It is thus particularly
useful to check the accuracy of single star simulations. We intended to use it as a quantitative measure of
the accuracy of various initial data solvers.

With a metric of the form1

ds2 = −e2νdt2 + e2α(d%2 + dζ2) +B2%2e−2ν(dϕ− ω dt)2 (1)

where (ν, ω, α,B) are the metric potentials, GRV2 can be expressed as [5, 6]:

grv2 = |1− λ2| = 0 (2)

λ2 = 8π

∫ +∞
0

∫ +∞
0

f(%, ζ) d% dζ∫ +∞
0

∫ +∞
0

g(%, ζ) d% dζ
(3)

f(%, ζ) =

(
p+ (ε+ p)

v2

1− v2

)
e2α (4)

g(%, ζ) = (∇ν)
2 − 3

4
%2B2e−4ν(∇ω)2 (5)

(∇α)2 ≡
(
∂α

∂%

)2

+

(
∂α

∂ζ

)2

(6)

As a virial identity, GRV2 expresses a relationship between the equilibrium states of the different forms
of energy in the rotating neutron star. In the Newtonian limit, GRV2 becomes:

π∫
0

∞∫
0

[
p+ ρv2 − 1

8πG
(∇ν)

2

]
r dr dθ = 0 (7)

with the integral taken in spherical coordinates. This roughly corresponds to the standard virial theorem
relating rotational (the ρv2 term), gravitational (the (8πG)−1(∇ν)2 term), and thermal (the p term) energies
in a bound system.

1I’ve written GRV2 here with the metric used by the AKM solver, though in principle other metrics (i.e., other choices of
metric potentials) can be used.
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2 Initial Data Solvers

2.1 AKM Solver

The AKM solver [7, 5] uses a two domain spectral method. Physical space (in cylindrical (%, ζ) coordinates)
is broken up into two subdomains, each mapped to the cross product of intervals ([0, 1] × [0, 1] in spectral
(s, t) space) where the outer subdomain is compactified. The AKM solver uses the domain [0, 1] instead of
[−1, 1] because it assumes the star to be equatorially as well as axially symmetric. The boundary between
subdomains is placed at the stellar surface; this allows for smooth representations of the physical fields,
eliminating the Gibbs phenomenon across the surface.

Physically, the AKM solver treats a rotating star as an axisymmetric, perfect fluid with stress energy
tensor

Tαβ = (ε+ p)uαuβ + pgαβ (8)

where ε is the total energy density, p is the pressure, and ui is the matter four-velocity. Here ε = ρo + ρi,
where ρo is the rest energy density and ρi is the internal energy density.

The AKM solver uses a Newton-Raphson scheme to iteratively solve the nonlinear GR and hydrodynamic
equations for all field quantities and the shape of the stellar surface. It then integrates quantities such as
the gravitational and baryon mass and the total angular momentum.

2.1.1 Spectral Coordinates

The AKM solver uses a different set of coordinates in each spectral subdomain. Each subdomain is formally
indicated with an index k. In the interior (k = 1) subdomain, the mapping

%21(s, t) = r2et

ζ21 (s, t) = s
(
G(t)− r2et

) (9)

is used. The inner domain is bounded by

s = 0 : equatorial plane, ζ = 0

s = 1 : stellar surface, (%, ζ) =
(
re
√
t,
√
G(t)− r2et

)
t = 0 : rotation axis, % = 0

t = 1 : equator, % = re, ζ = 0.

In the exterior (k = 0) subdomain, the mapping

%20(s, t) = t
(
r2e − r2p + ξ2(s)

)
ζ20 (s, t) = (1− t)

(
ξ2(s)− r2p

)
+G(t)− r2et

(10)

with

ξ(s) = rp + re
1− σ(s)

σ(s)
(11)

σ(s) =
sinh ((1− s) ln εs)

sinh (ln εs)
(12)

is used. The outer domain is bounded by

s = 0 : spatial infinity,
√
%2 + ζ2 →∞

s = 1 : stellar surface

t = 0 : rotation axis, % = 0

t = 1 : equatorial plane, ζ = 0.
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In both domains, re and rp are the equatorial and polar radii of the star. G(t) is a one dimensional function,
G : [0, 1]→ R, which describes the shape of the stellar surface. In particular, G(0) = r2p and G(1) = r2e . The
parameter εs is a free parameter which can be rescaled to adjust the resolution of the spatial mesh in the
vicinity of the stellar surface [5]. This is primarily useful for highly flattened stars; in typical cases, we set
εs = 1 which results in σ(s) = s.

2.1.2 GRV2 in the AKM Spectral Domain

For accurate computation of GRV2, we must compute it in the spectral domain. Thus, we necessarily must
split up the integrals in (3) into their interior and exterior subdomain parts:

λ2 = 8π

∫ 1

0

∫ 1

0
f0(s, t)|J0| ds dt+

∫ 1

0

∫ 1

0
f1(s, t)|J1| ds dt∫ 1

0

∫ 1

0
g0(s, t)|J0| ds dt+

∫ 1

0

∫ 1

0
g1(s, t)|J1| ds dt

. (13)

We note that f(s, t) is uniformly 0 in the exterior subdomain, as all matter terms are necessarily zero outside
the star:

λ2 = 8π

∫ 1

0

∫ 1

0
f1(s, t)|J1| ds dt∫ 1

0

∫ 1

0
g0(s, t)|J0| ds dt+

∫ 1

0

∫ 1

0
g1(s, t)|J1| ds dt

. (14)

Here, |J0| and |J1| are the determinants of the Jacobian of the transformation from (%, ζ) space into (s, t)
space in domains 0 and 1, respectively. Thus we see:

|J1| =
1

4%1ζ1

(
d%21
dt

dζ21
ds

)
=
re
(
G(t)− r2et

)1/2
4(st)1/2

(15)

and2

|J0| =
1

4%0ζ0

(
d%20
ds

dζ20
dt
− d%20

dt

dζ20
ds

)
. (16)

The nabla operator also takes a different form in (s, t) space:

(∇stα)
2

= 4

(
%2k

(
∂α

∂s

∂s

∂%2k
+
∂α

∂t

∂t

∂%2k

)2

+ ζ2k

(
∂α

∂s

∂s

∂ζ2k
+
∂α

∂t

∂t

∂ζ2k

)2
)
. (17)

Note that, in the outer domain, the derivatives such as ∂s/∂%2k cannot be determined from the coordinate
definitions in (10). Instead, we use the fact that the Jacobian of the inverse transformation is equal to the
inverse of the Jacobian of the original transformation to show that

∂s

∂%2k
=

(
d%2k
ds

dζ2k
dt
− d%2k

dt

dζ2k
ds

)−1
∂ζ2k
∂t

∂s

∂ζ2k
= −

(
d%2k
ds

dζ2k
dt
− d%2k

dt

dζ2k
ds

)−1
∂%2k
∂t

∂t

∂%2k
= −

(
d%2k
ds

dζ2k
dt
− d%2k

dt

dζ2k
ds

)−1
∂ζ2k
∂s

∂t

∂ζ2k
=

(
d%2k
ds

dζ2k
dt
− d%2k

dt

dζ2k
ds

)−1
∂%2k
∂s

.

(18)

Thus we can write

(∇stα)2 = (2%kζk)−2|Jk|−2
(
%2k

(
∂α

∂s

∂ζ2k
∂t
− ∂α

∂t

∂ζ2k
∂s

)2

+ ζ2k

(
∂α

∂s

∂%2k
∂t
− ∂α

∂t

∂%2k
∂s

)2
)
, (19)

which holds in either subdomain.

2The %0 and ζ0 derivatives are not expanded in order to save space.
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2.1.3 Boundary Behavior in the Exterior Subdomain

The integrand g0(s, t) (the exterior subdomain portion of g(%, ζ) in (s, t) space) does not behave nicely at
the s = 0, t = 0, t = 1 boundaries. Much of the erratic behavior is due to the (%ζ)−1 term, which causes
problems as % or ζ tend to 0. Specifically, the integrand goes to infinity at certain boundaries, while at others,
the numerator and denominator both tend towards 0 or infinity. As we know a priori that the integral should
be finite, we must take additional care in evaluating the integral and integrand at the boundaries. Creative
choices of differentials can eliminate some of the erratic boundary behavior. Integrating over d

√
t, for

example3, we find:

lim
t→0

g0(s, t)|J0|
√
t = 4s

√
−2rp(s− 1)s+ re(1 + 2(s− 1)s)

re

(
∂ν

∂s

)2

lim
t→1

g0(s, t)|J0|
√
t =∞

(20)

whereas neither of these limits are finite when integrating over dt. Some of the problems in these integrals
may be solved by integrating g0(s, t) term by term and possibly using a different choice of differential for
each term.

The s→ 0 limit can be evaluated when integrating over ds:

lim
s→0

g0(s, t)|J0| = 0 (21)

and the integrand behaves nicely as s→ 1. The s and t limits are done in detail in Appendix A.

2.2 LORENE

LORENE [8] is a library of C++ classes useful for numerical and computational astrophysics, though it can
be used for any problem solvable by multi-domain spectral methods. It implements classes for mathematical
structures such as vector, matrices, and tensors, as well as astrophysical structures such as stars.

Various codes have been built using LORENE and come distributed with the LORENE source, including
one designed for rotating stars. This code uses a multi-domain spectral method, where the number of
subdomains is greater than 2. The subdomains are constructed such that there is a boundary on the stellar
surface, allowing the code to avoid the Gibbs phenomenon as in the AKM solver. The code also has angular
domain boundaries. Physically, the LORENE code models a rotating star much like the AKM solver.

I did not get far enough in my work with the AKM solver to begin studying LORENE codes in detail; I
include it here for the sake of completeness as it was the primary code to be compared to the AKM solver.

3 Results

I have yet to obtain results that satisfy the primary goals of the project, to determine whether LORENE
or the AKM solver is a better replacement for CST as our groups initial data solver. However, I intend to
continue work on this project and thus I hope to be able to have a definitive answer in due course.

I do however have preliminary results outlining the convergence of various parameters in the AKM solver
(when calculated in the spectral domain) and the convergence of GRV2 using a second order Simpson’s Rule
method in the AKM solver’s pseudo-Cartesian output grid (this is very inaccurate as GRV2 depends on
values which are nonzero in regions extending to spatial infinity). These are outlined in figure 1. In plot axis
labels, “Difference” indicates that self-convergence is used, and the data point for quantity Q for n spectral
coefficients, is reported as

|Qn −Q22|

that is, the magnitude of the difference in the value of Q calculated for n spectral coefficients and the value
of Q calculated for n = nmax = 22 spectral coefficients.

3Integrating over d
√
t causes an additional factor of

√
t to appear in the numerator.
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(a)

(b)

Figure 1. (a) Self-convergence of the volume of the neutron star in the AKM solver for increasing number
of spectral coefficients. Here, a non-rotating neutron star of radius r = 2 is was used, and volume was scaled
by a factor of 3

4π . The scaled volume at n spectral coefficients, Vn was subtracted from the expected scaled
volume of 8 before taking the difference with V22. (b) Self-convergence of the baryon mass of the neutron
star in the AKM solver for increasing number of spectral coefficients.
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(c)
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Figure 1. (c) Self-convergence of the numerator of λ2 (f) in the AKM solver for increasing number of
spectral coefficients. Along with (a) and (b), demonstrates the high convergence rate of spectral methods.
(d) Convergence of GRV2 in the AKM solver for increasing number of spectral coefficients, using data
output on a finite pseudo-Cartesian grid. The scale indicates the difference between the value of GRV2
calculated for n spectral coefficients, GRV2n, and the apparent value it converged to in this simulation,
GRV2∞ = 1.2123 × 10−2. This particularly demonstrates the necessity of performing the calculation of
GRV2 in the spectral domain, as we expect GRV2∞ = 0, and we note GRV2 depends on values extending
to spatial infinity, which cannot be accounted for with a finite Cartesian grid.
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Appendices

A Boundary Behavior in the Exterior Subdomain

In the outer subdomain, the AKM solver uses (s, t) coordinates defined from (%, ζ) cylindrical coordinates as

%20(s, t) = t
(
r2e − r2p + ξ2

)
ζ20 (s, t) = (1− t)

(
ξ2 − r2p

)
+G(t)− r2et

ξ(s) = rp + re
1− s
s

(22)

To simplify the change of variables, we first change from (%, ζ) to (%2, ζ2), and then from (%2, ζ2) to (s, t).
Transforming from (%, ζ) to (%2, ζ2) space introduces the Jacobian determinant

|J′| = 1

4%0(s, t)ζ0(s, t)
(23)

to the integral. The transformation into (s, t) space then introduces the determinant

|J′0| =
(

d%20
ds

dζ20
dt
− d%20

dt

dζ20
ds

)
|J′0| = −

2re(re(s− 1)− rps)
(
re(−2rps(s− 1) + re(1 + 2s(s− 1)))− s2tG′(t)

)
s5

.

(24)

Thus the Jacobian determinant for the total transformation is

|J0| =
1

4%0(s, t)ζ0(s, t)

(
d%20
ds

dζ20
dt
− d%20

dt

dζ20
ds

)
|J0| = −

2re(re(s− 1)− rps)
(
re(−2rps(s− 1) + re(1 + 2s(s− 1)))− s2tG′(t)

)
4s5
√(

(1− t)
(
ξ2 − r2p

)
+G(t)− r2et

) (
t
(
r2e − r2p + ξ2

)) .
(25)

Altogether then, we have the integrand

g0(s, t)|J0| =
(

(∇stν)
2 − 3

4
%20(s, t)B2e−4ν(∇stω)2

)
|J0|. (26)

We can simplify this equation using (19):

g0(s, t)|J0| =
(

(∇′stν)
2 − 3

4
%20(s, t)B2e−4ν(∇′stω)2

)
|J0|−1(2%0(s, t)ζ0(s, t))−2, (27)

where

(∇′stα)2 = %20

(
∂α

∂s

∂ζ20
∂t
− ∂α

∂t

∂ζ20
∂s

)2

+ ζ20

(
∂α

∂s

∂%20
∂t
− ∂α

∂t

∂%20
∂s

)2

. (28)

A.1 s = 0 Limit

For the s→ 0 limit, we must use L’Hopital’s Rule. Expanding (27) in Mathematica, we see that its numerator
and denominator both go to 0 as s→ 0. However, we see:

lim
s→0

g0(s, t)|J0| = lim
s→0

d
dsNumerator[g0(s, t)|J0|]
d
dsDenominator[g0(s, t)|J0|]

=
0

r7e(1− t)(−r4e(1− t))−1/2t−1/2
= 0

A.2 s = 1 Limit

The s→ 1 limit behaves nicely and we will not explicitly evaluate it here.
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A.3 t Limits

The t→ 0 limit can be found by taking the limit:

lim
t→0

[
g0(s, t)|J0| ds d

√
t
]

= 4

√
re(1 + 2s(s− 1))− 2rps(s− 1)

re

(
dν

ds

∣∣∣∣
t=0

)2

(29)

and integrating over ds d
√
t. However, this precludes us from taking the t → 1 limit in this manner. A

possible remedy could be to break up the integrand term by term and use appropriate integration parameters
for each term.

References

[1] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky. “Spin-up of a rapidly rotating star by angular momentum
loss - Effects of general relativity”. In: APJ 398 (Oct. 1992), pp. 203–223. doi: 10.1086/171849.

[2] G. B. Cook, S. L. Shapiro, and S. A. Teukolsky. “Rapidly rotating neutron stars in general relativity:
Realistic equations of state”. In: APJ 424 (Apr. 1994), pp. 823–845. doi: 10.1086/173934.

[3] Silvano Bonazzola et al. School on spectral methods, with applications to General Relativity and Field
Theory. http://www.lorene.obspm.fr/school/. [Online; accessed 30-June-2013]. 2005.

[4] Silvano Bonazzola and Eric Gourgoulhon. “A virial identity applied to relativistic stellar models”. In:
Classical and Quantum Gravity 11.7 (1994), p. 1775.

[5] Reinhard Meinel et al. Relativistic Figures of Equilibrium. Cambridge University Press, 2008.

[6] T. Nozawa et al. “Construction of highly accurate models of rotating neutron stars - comparison of three
different numerical schemes”. In: AAPS 132 (Nov. 1998), pp. 431–454. doi: 10.1051/aas:1998304.
eprint: arXiv:gr-qc/9804048.
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