

Earth Tide Prediction and Compensation for Advanced LIGO

Noah Kurinsky (*Tufts University*) Mentor: Kiwamu Izumi (*LHO*)

LIGO-G1300834-v1

Project Goals

- Characterize the effect of solid earth tides on the aLIGO interferometers through analytical prediction
- Determine whether an on-line feed-forward system is necessary to remove these effects
- Provide a conceptual design and implement such a system if necessary
- Develop an operational diagnostic tool to display tidal predictions if not, for direct comparison to real time feedback compensation

Tidal Model of the Earth

- Tidal displacement of a point on earth determined in proportion to tidal potential at that point
- General case for $A(r, \phi, \lambda)$ on earth's surface and object at $O(r, \delta, \alpha)$ of the form

$$U_{\{r=a\}} \propto C_1(\phi, \delta) \cos(2H) \\ + C_2(\phi, \delta) \cos(H) \\ + C_3(\phi, \delta)$$

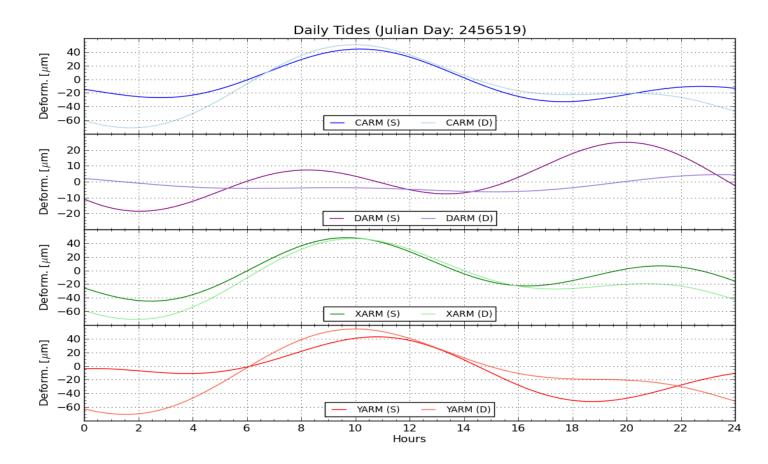
where $H = H_0 - \alpha - \lambda$

Elastic Earth Model (Love)

Assume isotropy and elasticity as defined by:

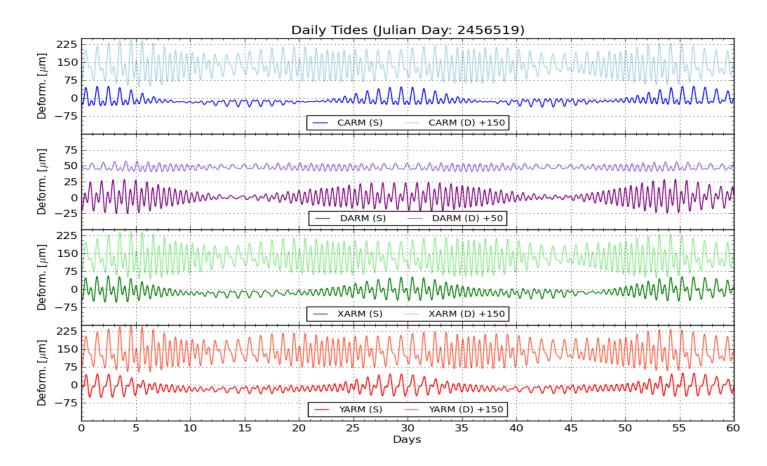
 $u_{r} = h \frac{U(A)}{g}$ Vertical Displacements $u_{\theta} = \frac{l}{g} \frac{\partial U(A)}{\partial \theta}$ Horizontal $u_{\lambda} = \frac{l}{g} \frac{1}{\sin \theta} \frac{\partial U(A)}{\partial \lambda}$ Displacements

Computation Methods


- Two methods to compute tidal deformation:
 - » Displacement Use tidal displacements of corner and end stations to calculate longitudinal displacement
 - » Strain Use tidal displacement equations to derive strain tensor, and project strain elements along arms
- Which is better?
 - » Strain simpler conceptually, makes more assumptions
 - » Displacement more robust, more prone to computational error
- Both currently implemented, for future comparison

Prediction Code

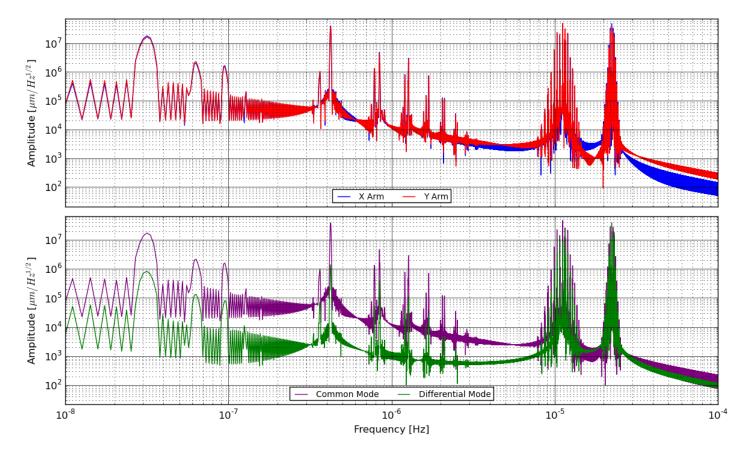
- Can use either method to predict tidal strains at Hanford and Livingston either for one time or a time range.
- Employs high-precision simulation data to predict location of moon and sun (from JPL)
- Computes YARM, XARM, CARM, and DARM
- Outputs predictions either to file or terminal


Daily Tides

LIGO-G1300834-v1

LIGO

Monthly Tides



LIGO-G1300834-v1

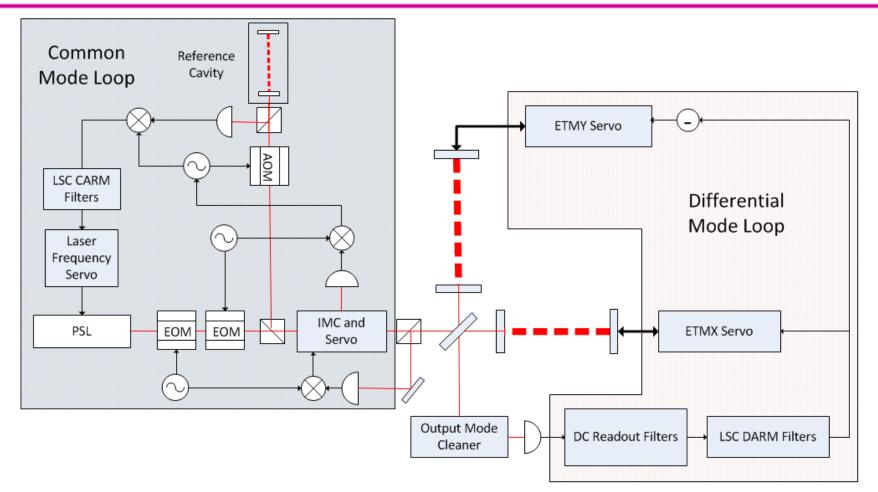
LIGO

Daily Tides FFT, Beginning on Julian Date 2456468

LIGO-G1300834-v1

LIGO

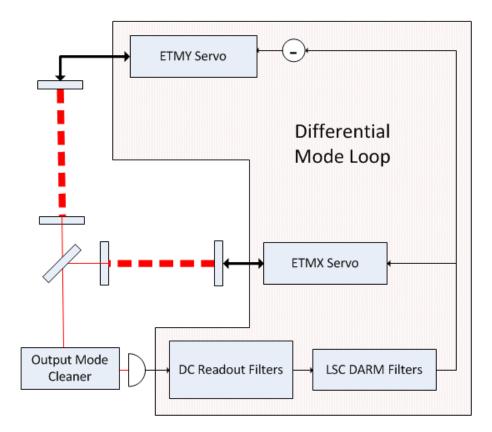
Previous Tidal Analysis


- Previously discussed HIFO-Y ALS system and ongoing analysis of long-term stability
- HIFO "instability" highly correlated with reference cavity temperature fluctuations
- HIFO-Y ALS not designed for long-term operation, lacks ability to separate CARM and DARM
- LSC system main compensation system for long-term drifts, e.g. Tidal effects

Is Feed-Forward Necessary?

- Know from HIFO analysis that HEPI feedback loop very stable at near-DC and no resonances near frequencies of interest
- Can use worst case tidal predictions to set requirements for feedback system:
 - » DARM 100 microns peak to peak
 - » CARM 300 microns peak to peak
 - » Twelve Hour Timescale

LSC Overview

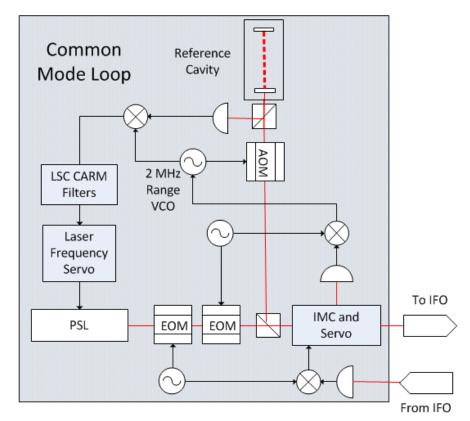


LIGO

Differential Mode Compensation

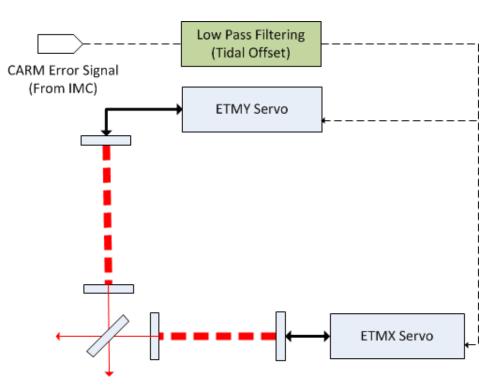
- DC Readout (comparison to dark port offset)
- Limited by response of HEPI actuation loop
- Feedback O.K.

Common Mode Compensation


• RF Readout (PDH)

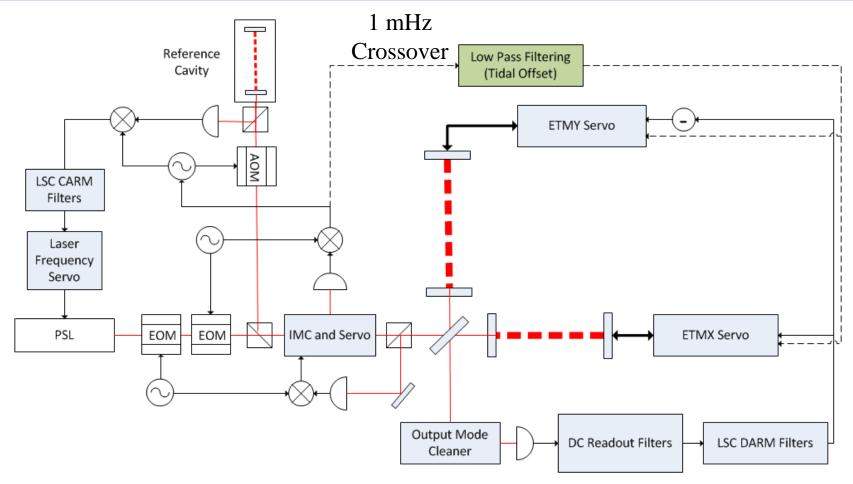
LIGO

- VCO Range ≈ 2 MHz used to offset laser frequency
- Tidal signals will saturate VCO range:


$$\Delta f = f\left(1 - \frac{L}{L + \Delta L}\right) \approx 23 \text{ MHz}$$

 Exiting Feedback Inadequate

Common Mode Compensation


- DC common mode signal can be fed back to HEPI actuators without saturation
- Requires low pass filtering and crossover analysis
- Modified feedback: O.K.

LIGO

Proposed LSC Modification

Is Feed-Forward Necessary?

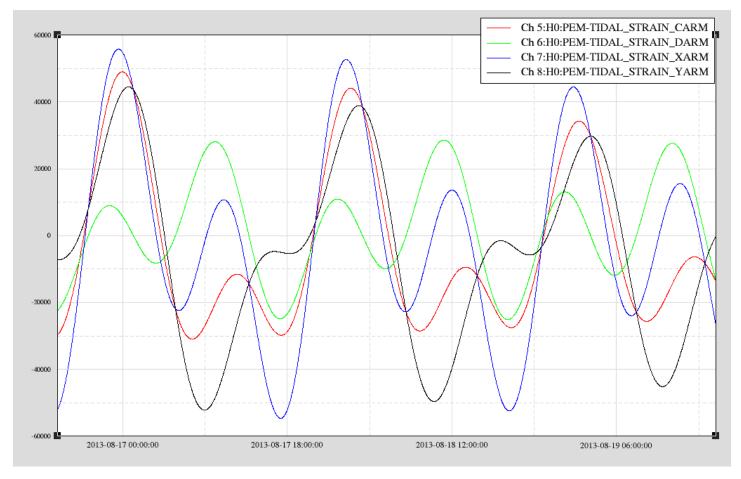
- Know from ALS analysis that HEPI feedback loop very stable at near-DC and no resonances near frequencies of interest
- Can use tidal predictions to set requirements for feedback system:
 - » DARM 100 microns peak to peak **O.K.**
 - » CARM (Modfied) 300 microns peak to peak (worst case) O.K.

No feed-forward required

EPICS Tidal Prediction Integration

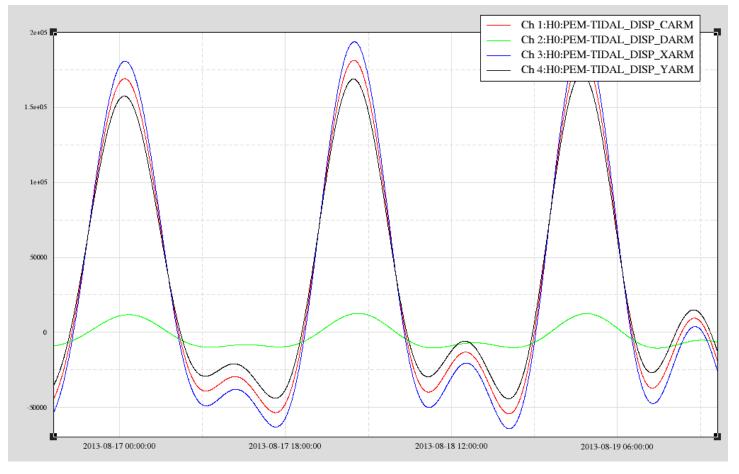
- Tidal predictions ported to EPICS for future comparison with error signals
- Tidal prediction code has been modified to run continuously, predicting tidal displacements using both methods given current system time
- Device support/IOC implemented for Hanford and Livingston
- Currently running on h0epics2

EPICS Signals


• Signal Names:

LIGO

- » H0:PEM-TIDAL_DISP_CARM
- » H0:PEM-TIDAL_DISP_DARM
- » H0:PEM-TIDAL_DISP_XARM
- » H0:PEM-TIDAL_DISP_YARM
- » H0:PEM-TIDAL_STRAIN_CARM
- » H0:PEM-TIDAL_STRAIN_DARM
- » H0:PEM-TIDAL_STRAIN_XARM
- » H0:PEM-TIDAL_STRAIN_YARM
- » H0:PEM-TIDAL_UNIXTIME
- Actively updated, stored in FRAMES


LIGO

EPICS Signals in DataViewer (STRAIN)

LIGO-G1300834-v1

LIGO EPICS Signals in DataViewer (DISP)

LIGO-G1300834-v1

Tidal Prediction: Future Plans

- Test models, verify predictions, determine accuracy
 - » HIFO-Y ALS system too unstable on long timescales to test tidal predictions
 - » LSC system not operational, as only one arm fully commissioned
 - » Is tidal prediction the chicken or the egg?
- So far, models mostly un-tested against real data, aside from general comparison to past observations

In Conclusion

- The aLIGO interferometers are capable of offloading tidal deformations through feedback alone
 - » This will require development of ultra-low frequency bypass loop
- Earth tide predictions can be monitored in real time in the control room and compared to observed longitudinal displacements
- If a feed-forward system is desired for a later aLIGO system, its implementation will be very easy and efficient due to this effort

References

- D. C. Agnew. *Earth Tides*, 2007.
- Paul Melchior. "The Tides of Planet Earth", 1987
- R. Adhikari. Sensitivity and Noise Analysis of 4 km Laser Interferometric Gravitational Wave Antennae. PhD thesis, Massachusetts Institute of Technology, 2004.
- E. Morganson. *Developing an Earth-Tides Model for LIGO Interferometers*. Technical Report, 1999
- D. Sigg. Arm Length Stabilization at LHO. Technical Report LIGO-G1300258-v1, March 2013.
- K. Somiya et. al. *Length Sensing and Control for AdLIGO* Technical Report LIGO-T060272, November 2006

LIGO

Acknowledgements

Thanks to everyone at LHO for being so supportive and welcoming!

Special Thanks to:

- » Kiwamu Izumi
- » Keita Kawabe
- » Vincent, Hugh, Hugo and the SUS team
- » Dave Barker and Patrick Thomas

EXTRA SLIDES

LIGO-G1300834-v1

Future Projects

- Fully design and characterize proposed feedback loop, or opt to implement feed-forward
- Compare tidal predictions to DARM and CARM error signals, once IFO fully commissioned
- Decide whether discrepancies are due to model errors or control system inadequacies (should be based on long-term lock stability)
- Determine whether strain or displacement method is more accurate, or whether numerical method should be used