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1 Quantum noises

Contemporary so-called second-generation gravitational-wave detectors, such as Advanced
LIGO [1, 2], Advanced VIRGO [3], and KARGA [4], which are under construction now,
will be quantum noise limited over the detection frequency band. At low frequencies, it
is dominated by the radiation pressure noise which is due to quantum fluctuation in the
amplitude of the optical field [5]; while at high frequencies, the shot noise dominates which
arises from the phase fluctuation. There is a trade-off between these two noises that is called
Standard Quantum Limit (SQL) [6]. In the linear position meter (the gravitational-wave
interferometer is special case of it) the shot noise corresponds to the measurement noise
and radiation pressure noise to the back-action noise. The SQL is not an ultimate limit
for measurement precision: there are several methods of overcoming it in gravitational-wave
detectors. The most well-known examples are Quantum Non-Demolition (QND) measure-
ments and Back-Action Evading (BAE) measurements (see, e.g., [7, 8, 9, 10]). The first
method tries to measure conserved dynamical quantity of the system [6, 7, 11, 12]. The
second method uses the correlation between the measurement noise and the back-action
noise [10, 13, 14, 15, 16, 17].

Though there are many various approaches, applicable for different special cases (e.g., for
the certain frequency range), the community looks for other solutions. In this work we
investigate multiple optical springs approach.

2 Optical rigidity

The Hamiltonian of a system with a resonator (length L and resonant frequency ωc) with
one movable mirror (resonant frequency ω0) which motion is being measured by laser (with
frequency ω0):

Ĥ =
~ω2

m

2
x̂2 +

p̂2

2m
+ ~ωcê

†ê+ ~G0x̂ê
†ê+ i~

√
2γ
(
âê†e−iω0t − â†êe−iω0t

)
(1)

The first term corresponds to the mechanical mode ([x̂, p̂] = i~). The second one describes the
cavity mode with annihilation operator ê and commutator [ê, ê†] = 1. The third is interaction
between the oscillator and light with optomechanical coupling constant G0 = ω0/L. The
last term describes the pump â, where γ is half-bandwidth of the resonator.

This Hamiltonian can be linearized if we assume the pump is big so we can replace the
operators by the sum of the mean value and small perturbation:

ê→ ē+ ê, ê� ē.

Then in the rotating wave approximation we get linearized Hamiltonian:

Ĥ =
~ω2

m

2
x̂2 +

p̂2

2m
+ ~δê†ê+ ~G0x̂(ê†ē+ ē∗ê) + i~

√
2γ
(
âê† − â†ê

)
(2)

where δ = ωc − ω0 is detuning. We can assume that ē is real value, so we can simplify the
equation by the substitution g = G0ē.
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The Hamilton equation is [18]:

˙̂e = − i
~

[ê, Ĥ]− γa (3)

We find:
˙̂e+ (γ + iδ)ê = −igx̂+

√
2γâ (4)

For the output signal we have [18]:

b̂ = −â+
√

2γê (5)

The same we can derive for the mechanical mode, and get the system of Langevin equations:
˙̂e+ (γ + iδ)ê = −igx̂+

√
2γâ

˙̂x = p̂
m

˙̂p+ γmp̂ = −mω2
mx̂+ ~g(ê† + ê) + ζ̂th

(6)

where ζ̂th is Brownian thermal force with correlation function

〈ζ̂th(t)ζ̂th(t′)〉 = 2mγmkBTδ(t− t′).

For the cavity mode in the spectral representation we can get:

ê(ω) =
gx̂(ω) + i

√
2γâ(ω)

ω − δ + iγ
(7)

ê†(ω) =
−gx̂(ω) + i

√
2γâ(−ω)

ω + δ + iγ
(8)

For the mechanical mode from (6) we get:

m(¨̂x+ γm ˙̂x+ ω2
mx̂) = −~g(ê† + ê) + ζ̂th = FBA + ζ̂th (9)

Calculate the back-action term:

FBA = ~g(ê†+ê) = −~g
{
gx̂(ω)

(
1

ω − δ + iγ
− 1

ω + δ + iγ

)
+ i
√

2γ

(
â†

ω + δ + iγ
+

â

ω − δ + iγ

)}
=

= − 2~g2δx̂(ω)

(ω − δ + iγ)(ω + δ + iγ)
+ 2~g

√
γ

â1(γ − iω) + δâ2

(ω − δ + iγ)(ω + δ + iγ)
= −K(ω)x̂(ω) + F̂n(ω)

(10)

where

â1 =
â+ â†√

2
, â2 =

â− â†

i
√

2
,

and we also introduce optical rigidity K and noise term F̂n.

The dynamics of the system can be described by:

x̂(ω) = χeff (ω)[F̂n + ζ̂th +G], (11)

where G is signal and
χ−1
eff (ω) = −mω2 +K(ω) (12)

So the optical rigidity effectively modifies the dynamics of the mirror.
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3 Spectral density

Now let’s descibe the output in simplier way. From the equations Eq.(7),(5) we can derive
the two-photon ouput quadratures:

b̂(ω) = Râ(ω) + 2
√
γLX̂(ω) (13)

where

L =
1

D(ω)

[
γ − iω −δ
δ γ − iω

]
(14)

D(ω) = (γ − iω)2 + δ2 (15)

X̂(ω) = Ē
k0x̂(ω)√

τ

[
0
1

]
, k0 = ω0/c, τ = L/c (16)

R = 2γL− I (17)

and Ē is amplitude of the classical field in the cavity. In the single-mode approximation the
field in the cavity is:

ê(ω) =
L(ω)√
τ

(√
γâ+ X̂(ω)

)
(18)

Thus the back-action force is:

FBA =
2~k0Ē√

τ
ê(ω)

[
1
0

]T
= Fn −K(ω)x̂(ω) (19)

where

Fn =
2~k0Ē

√
γ

√
τ

L(ω)

[
1
0

]T
(20)

K(ω) =
mJδ

D(ω)
, J =

4ω0Ic
mcL

=
4~k2

0Ē
2

mτ
(21)

which is exactly what we get in the equation (10) As we mentioned before the optical spring
term K can be included in mechanical susceptibility term, thus the dynamics of the system
is:

x̂(ω) = χeff
xx (ω)

[
F̂n +G(ω)

]
(22)

where G is external classical force and effective susceptibility is:

χeff
xx

−1
= χ−1

xx +K(ω) = −m(ω2 + iγmω − ω2
m) +K(ω) (23)

In general the system can be described by the system:
Ô(ω) = Ô(0)(ω) + χOF (ω)x̂(ω)

F̂ (ω) = F̂ (0)(ω) + χFF x̂(ω)

x̂(ω) = χeff
xx (F̂n(ω) +G(ω))

(24)

page 3



LIGO-T1300633–v1

where Ô is output from the measurement system and F̂ is the back-action force. The
measurement result we get by applying measurement operator H to the output b̂. In the
case of homodyne detection:

Ô(ω) = HTb̂(ω) =

[
cos ζ
sin ζ

]T [
b̂c
b̂s

]
= b̂c cos ζ + b̂s sin ζ (25)

In our case these parameters are:

χOF (ω) = 2
k0
√
γ

√
τ

HTL(ω)Ē

[
0
1

]
(26)

Ô(0) = HTRâ (27)

χFF (ω) = −K(ω) (28)

F̂ (0) =
2~k0Ē

√
γ

√
τ

[
1
0

]T
L(ω)â (29)

The system (24) can be resolved:

Ô(ω) = Ô(0)(ω) +
χeff
xx χOF

1− χeff
xx χFF

[
G(ω) + F̂ (0)

]
(30)

This can be renormalized to the more convenient form. In particular, we can consider the
signal as sum of the classical force and some noise:

ÔF (ω) = N̂ F +G(ω) =
X̂

χeff
xx (ω)

+ F̂(ω) +G(ω) (31)

where

X̂ (ω) =
Ô(0)(ω)

χOF (ω)
=

√
~

γmJ

D(ω)

HTD
HTRâ (32)

D(ω) = D(ω)L(ω)

[
0
1

]
=

[
−δ

γ − iω

]
(33)

F̂(ω) = F̂n =
√
mJ~γ

[
1
0

]T

L(ω)â (34)

The spectral density of output can be calculated:

SF (ω) =
SXX

|χeff
xx |2

+ SFF + 2R

{
SXF

χeff
xx

}
(35)
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And the corresponding spectral densities are:

SXX =
~

4γmJ

|D(ω)2|
HTDD†H

HTRR†H =
~

4γmJ

1∣∣∣∣HTL
[
1
0

]∣∣∣∣2 (36)

SFF = γm~J
[
1
0

]T

LL†
[
1
0

]
(37)

SXF =
~
2

D(ω)

HTD
HTRL†

[
1
0

]
=

~
2

HTL
[
1
0

]
HTL

[
0
1

] (38)

It’s useful to have these spectral densities in different normalizations. The connection be-
tween them is:

Sx = SF |χeff
xx |2 (39)

Sh = SF

(
2

mLω2

)2

(40)

4 Multiple Optical Springs

In this approach, we are not trying to use some precise techniques of the noise cancellation
(like in back-action evasion), but modifying the dynamics of test mass and therefore enhance
the response of the detector to the gravitational-wave signal (amplify this signal). In other
words, the fact that the SQL for the force depends on the dynamics of the mirrors allows us
to modify this dynamics in the way to overcome the free-mass SQL.

The equation of motion for the position of the test mass x describes the dynamics of the
system:

x(Ω) = χ(Ω)F (Ω), (41)

where χ(Ω) is a mechanical susceptibility and F (Ω) is an external force. In case of free mass
the susceptibility is simply −1/mΩ2, but in the case of detuned Fabry-Pérot cavity with one
movable mirror we have to add another term (optical rigidity K(Ω)) to the susceptibility
which describes the interaction:

χ(Ω) =
(
−mΩ2 +K(Ω)

)−1
. (42)

This term is similar to the one describing the spring in the oscillator, that is why this
phenomenon is called optical spring [19, 20, 21]. The idea, proposed in the paper [22], is
to use the frequency dependence of the optical rigidity to compensate the inertia term, and
therefor to decrease the force SQL, that depends on the susceptibility [23]:

SSQL
F (Ω) = 2~|χ−1(Ω)|, (43)

and thus the larger we can make the susceptibility the better precision we get.
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4.1 Two optical springs

While the frequency and cavity bandwidth is much smaller than detuning, we can expand
the optical rigidity in Taylor series:

K ≈ K̄ − iΓoptΩ−moptΩ
2 +O(Ω3), (44)

where

K̄ =
mJδ

(δ2 + γ2)2
, Γopt = − 2mJγδ

(γ2 + δ2)4
, mopt = −MJδ(δ2 − 3γ2)

(δ2 + γ2)2
(45)

As soon as K̄,Γopt,mopt depend only on the parameters of the system: cavity bandwidth,
cavity detuning and renormalized optical power, we can choose the mopt in the way to
compensate the positive inertia and thus if we combine two carriers we can cancel the constant
K̄1,2 and inertia terms:

K̄1 + K̄2 = 0, m+mopt,1 +mopt,2 = 0. (46)

This canceling significantly reduce the force SQL comparing to the free mass one (in Eq. (42)
and (43) we do not take into account the damping term proportional to Ω):

[SSQL
F ]modified

[SSQL
F ]free mass

=

∣∣∣∣ [χ(Ω)modified]

mΩ2

∣∣∣∣ ≈ ∣∣∣∣ |mopt| −m
m

∣∣∣∣ . (47)

By changing the effective mass |mopt| → m we can achieve the ratio much smaller than one.

This approach works at low frequencies and breaks down at high frequencies since we have
to take into account higher terms of Taylor series (44) and that limits us in achieving better
sensitivity in broader frequency range.

4.2 Multiple optical springs

The idea that follows directly from this feature - add more optical springs and thus cancel
the higher terms of the Taylor expansion. Unfortunately that doesn’t work well, because the
parameter space becomes very large and it’s impossible to solve the equations.

Thus the other approach is to minimize the response in some frequency band. That means
we have to minimize functional G[χ−1

eff ] that depends on the effective susceptibility with N
optical springs:

χ−1
eff (ω) = −mω2 +

N∑
i=0

Ki(ω) (48)

Each Ki has three parameters to optimize: Ji, δi, γi, thus the parameter space has 3N di-
mensions.

We can think about two possible goals of the optimization:

• Make the response function constant over some frequency band. Then the SQL (43)
will be constant and we’ll be able to achieve it in any point.

• Make the effective mass smaller and remove higher order frequency dependence. That
means, that response curve that we want to get is parallel to the mω2

0 curve.
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5 Optimization of the response function

5.1 Cost function

The most naive functional that directly maximizes the response is:

G1 =

fmax∫
fmin

ln |χ−1
eff (f)|2 d ln f (49)

It doesn’t specify the shape of the final curve, so, in order to achieve goals we stated before,
we can create the functional, that will give us either constant susceptibility or with very
small effective mass:

G2 =

fmax∫
fmin

ln |χ−1
eff (f)− const|2 d ln f, (50)

G3 =

fmax∫
fmin

ln |χ−1
eff (f)−∆m(2πf)2|2 d ln f, (51)

The other approach is to minimize the maximum of the function over the frequency band.
In this case functionals are:

G4 = max
f

ln |χ−1
eff (f)− const|2 (52)

G5 = max
f

ln |χ−1
eff (f)−∆m(2πf)2|2 (53)

(54)

where const is some constant, ∆m is smaller than m. Finally, the absolute can be expanded
into squares of real and imaginary part of susceptibility and we can add weight to each of
them - then we get so-call multi-objective optimization:

G6 = max
f

ln
(
a<
[
χ−1
eff (f)

]2
+ b=

[
χ−1
eff (f)

]2)
(55)

where a, b - weights. The algorithm we used here is particle swarm optimization (see Appx.A).
Maximization of the function in G4,5,6 was done by Sequential Least Squares Programming
(SLSQP) [24]. Result of the optimization is on Fig. 1. Similar plots we get for any figure
of merit Gi. The explanation of it is simple - there’s a point, where χ−1

eff (f) = 0, thus
optimization can’t avoid falling in this pit.

The other approach is to make Taylor expansion up to high-order terms and then minimize
coefficients of this expansion with different weights:

G7 = a

(∑
i

Ki(0)

)2

+ b

(
i
∑
i

K ′i(0)

)2

+ c

(
1

2

∑
i

K ′′i (0)−m

)2

+ d

(
i

6

∑
i

K ′′′i (0)

)2

+ ...

(56)
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Figure 1: Effective susceptibility comparing to the free mass one.

Unfortunately this approach gives us the same result as previous ones.

The next step is creating more complex functional, that takes into account both first deriva-
tive (it should change gradually and with proper rate to help us avoid the dips) and second
derivative (this is optional, but rather useful).

The other option is to use properties of the function’s shape - we discuss that in the next
section.

5.2 Vector fitting

As we show above, the usual minimization doesn’t work as wanted, so we propose using
another method, called vector fitting [25, 26]. Its idea is quite simple - we fit into data the
function of form:

f(s) =
N∑
i=1

ci
s− ai

+ d+ sh (57)

where s = iω, ci are residuals, ai are poles and d, h are some constants. In general ci, ai can
be pares of complex conjugated values. This method works in two steps: on the first step it
determines poles of the function and on the second step it uses least squares method to fit
linear functino of residuals to the data. More details about the algorithm can be found in
the original paper [25].

In our case we can rewrite the optical spring term:

K(s) =
mJδ

(γ − s)2 + δ2
=

mJδ

(γ + iδ − s)(γ − iδ − s)
=
m

2

(
−iJ

s− (γ + iδ)
+

iJ

s− (γ − iδ)

)
(58)

So for the algorithm we should put

ai = γ − iδ, ai+1 = a∗i , ci = iJ, ci+1 = c∗i = −iJ, h = 0. (59)

Then the idea is to fit this kind of function into mω2 and thus achieve only constant 1/d
total response function.
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6 Discussion and future plans

The system that we investigate has many parameters to change and optimize, so it should
be very flexible for achieving the goal, but the figure of merit for such optimization is not
obvious. The research that we have done in Section 5.1 shows that direct optimization
can’t provide us the result we want to get — broad-band reduction of reverse effective
susceptibility. Nevertheless, we have two options for the further work: creating function of
merit with derivatives and vector fitting algorithm. The last one looks more promising, so
it is the next step of the work. After (and if) we find a way to reduce the susceptibility we
should think about construction of the output spectral density. It should be some optimal
combination of output channels, as described in [27]. Moreover, each output has it’s own
homodyne detection angle, and whole system should be optimized over all the angles in order
to achieve the best sensitivity.
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A Particle Swarm Optimization

The particle swarm optimization (PSO)[28, 29] is genetic algorithm that doesn’t require
gradient of the function and good initial guess for the parameters. It works good with multi-
dimensional problems, where usual methods cannot give good convergence. It is used widely
[30] in all kinds of optimization problems.

General idea is the following: algorithm has several candidate solutions (called particles)
and moves them iteratively, changing the position and velocity of each particle in parameter
space using simple rule, that brings the swarm of particles in the minimum after some time.
The algorithm is the following:

• Initialize particles randomly from the parameter space and set these coor-
dinates as best known position of i-th particle pi

• Evaluate the fitness of the initial population

• Choose the best fitness f(g) between them, and the coordinates of the best
particle is g

• While termination criteria is met:

– For each particle:

∗ Update the velocity of the particle:

vi ← χ(vi + ϕ1U(0, 1)(pi − xi) + ϕ2U(0, 1)(g − xi))

∗ Update the position of the particle: xi ← xi + vi

∗ If the fitness f(xi) < f(pi):

· Update best known position of the particle: pi = xi

· If the fitness f(xi) < f(g): update best known global position
g = xi

Here U(0, 1) is random number from region (0, 1) and we choose parameters of the scheme
to provide convergence [31]:

χ =
2

|2− (ϕ1 + ϕ2)−
√

(ϕ1 + ϕ2)2 − 4(ϕ1 + ϕ2)
, ϕ1 = 2.05, ϕ2 = 2.05

Unfortunately PSO algorithm tends to get in local minimums, and in order to avoid this
property some modifications were proposed [32, 33, 34] and we chose dissipative PSO [35],
which randomly resets speed or velocity of the particle, adding the dissipation to the system.
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