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1 Quantum noises

Contemporary so-called second-generation gravitational-wave detectors, such as Advanced
LIGO [1, 2], Advanced VIRGO [3], and KARGA [4], which are under construction now,
will be quantum noise limited over the detection frequency band. At low frequencies, it
is dominated by the radiation pressure noise which is due to quantum fluctuation in the
amplitude of the optical field [5]; while at high frequencies, the shot noise dominates which
arises from the phase fluctuation. There is a trade-off between these two noises that is called
Standard Quantum Limit (SQL) [6]. In the linear position meter (the gravitational-wave
interferometer is special case of it) the shot noise corresponds to the measurement noise
and radiation pressure noise to the back-action noise. The SQL is not an ultimate limit
for measurement precision: there are several methods of overcoming it in gravitational-wave
detectors. The most well-known examples are Quantum Non-Demolition (QND) measure-
ments and Back-Action Evading (BAE) measurements (see, e.g., [7, 8, 9, 10]). The first
method tries to measure conserved dynamical quantity of the system [6, 7, 11, 12]. The
second method uses the correlation between the measurement noise and the back-action
noise [10, 13, 14, 15, 16, 17].

Though there are many various approaches, applicable for different special cases (e.g., for
the certain frequency range), the community looks for other solutions. In this work we
investigate multiple optical springs approach.

2 Optical rigidity

The Hamiltonian of a system with a resonator (length L and resonant frequency ωc) with
one movable mirror (resonant frequency ω0) which motion is being measured by laser (with
frequency ω0):

Ĥ =
~ω2

m

2
x̂2 +

p̂2

2m
+ ~ωcê

†ê+ ~G0x̂ê
†ê+ i~

√
2γ
(
âê†e−iω0t − â†êe−iω0t

)
(1)

The first term corresponds to the mechanical mode ([x̂, p̂] = i~). The second one describes the
cavity mode with annihilation operator ê and commutator [ê, ê†] = 1. The third is interaction
between the oscillator and light with optomechanical coupling constant G0 = ω0/L. The
last term describes the pump â, where γ is half-bandwidth of the resonator.

This Hamiltonian can be linearized if we assume the pump is big so we can replace the
operators by the sum of the mean value and small perturbation:

ê→ ē+ ê, ê� ē.

Then in the rotating wave approximation we get linearized Hamiltonian:

Ĥ =
~ω2

m

2
x̂2 +

p̂2

2m
+ ~∆ê†ê+ ~G0x̂(ê†ē+ ē∗ê) + i~

√
2γ
(
âê† − â†ê

)
(2)

where ∆ = ωc − ω0 is detuning. We can assume that ē is real value, so we can simplify the
equation by the substitution g = G0ē.
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The Hamilton equation is [18]:

˙̂e = − i
~

[ê, Ĥ]− γa (3)

We find:
˙̂e+ (γ + i∆)ê = −igx̂+

√
2γâ (4)

For the output signal we have [18]:

b̂ = −â+
√

2γê (5)

The same we can derive for the mechanical mode, and get the system of Langevin equations:
˙̂e+ (γ + i∆)ê = −igx̂+

√
2γâ

˙̂x = p̂
m

˙̂p+ γmp̂ = −mω2
mx̂+ ~g(ê† + ê) + ζ̂th

(6)

where ζ̂th is Brownian thermal force with correlation function

〈ζ̂th(t)ζ̂th(t′)〉 = 2mγmkBT∆(t− t′).

For the cavity mode in the spectral representation we can get:

ê(ω) =
gx̂(ω) + i

√
2γâ(ω)

ω −∆+ iγ
(7)

ê†(ω) =
−gx̂(ω) + i

√
2γâ(−ω)

ω +∆+ iγ
(8)

For the mechanical mode from (6) we get:

m(¨̂x+ γm ˙̂x+ ω2
mx̂) = −~g(ê† + ê) + ζ̂th = FBA + ζ̂th (9)

Calculate the back-action term:

FBA = ~g(ê†+ê) = −~g
{
gx̂(ω)

(
1

ω −∆+ iγ
− 1

ω +∆+ iγ

)
+ i
√

2γ

(
â†

ω +∆+ iγ
+

â

ω −∆+ iγ

)}
=

= − 2~g2∆x̂(ω)

(ω −∆+ iγ)(ω +∆+ iγ)
+2~g

√
γ

â1(γ − iω) +∆â2

(ω −∆+ iγ)(ω +∆+ iγ)
= −K(ω)x̂(ω)+ F̂n(ω)

(10)

where

â1 =
â+ â†√

2
, â2 =

â− â†

i
√

2
,

and we also introduce optical rigidity K and noise term F̂n.

The dynamics of the system can be described by:

x̂(ω) = χeff (ω)[F̂n + ζ̂th +G], (11)

where G is signal and
χ−1
eff (ω) = −mω2 +K(ω) (12)

So the optical rigidity effectively modifies the dynamics of the mirror.
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3 Spectral density

Now let’s descibe the output in simplier way. From the equations Eq.(7),(5) we can derive
the two-photon ouput quadratures:

b̂(ω) = Râ(ω) + 2
√
γLX̂(ω) (13)

where

L =
1

D(ω)

[
γ − iω −∆
∆ γ − iω

]
(14)

D(ω) = (γ − iω)2 +∆2 (15)

X̂(ω) = Ē
k0x̂(ω)√

τ

[
0
1

]
, k0 = ω0/c, τ = L/c (16)

R = 2γL− I (17)

and Ē is amplitude of the classical field in the cavity. In the single-mode approximation the
field in the cavity is:

ê(ω) =
L(ω)√
τ

(√
γâ+ X̂(ω)

)
(18)

Thus the back-action force is:

FBA =
2~k0Ē√

τ
ê(ω)

[
1
0

]T
= Fn −K(ω)x̂(ω) (19)

where

Fn =
2~k0Ē

√
γ

√
τ

L(ω)

[
1
0

]T
(20)

K(ω) =
mJ∆

D(ω)
, J =

4ω0Ic
mcL

=
4~k2

0Ē
2

mτ
(21)

which is exactly what we get in the equation (10) As we mentioned before the optical spring
term K can be included in mechanical susceptibility term, thus the dynamics of the system
is:

x̂(ω) = χeff
xx (ω)

[
F̂n +G(ω)

]
(22)

where G is external classical force and effective susceptibility is:

χeff
xx

−1
= χ−1

xx +K(ω) = −m(ω2 + iγmω − ω2
m) +K(ω) (23)

In general the system can be described by the system:
Ô(ω) = Ô(0)(ω) + χOF (ω)x̂(ω)

F̂ (ω) = F̂ (0)(ω) + χFF x̂(ω)

x̂(ω) = χeff
xx (F̂n(ω) +G(ω))

(24)
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where Ô is output from the measurement system and F̂ is the back-action force. The
measurement result we get by applying measurement operator H to the output b̂. In the
case of homodyne detection:

Ô(ω) = HTb̂(ω) =

[
cos ζ
sin ζ

]T [
b̂c
b̂s

]
= b̂c cos ζ + b̂s sin ζ (25)

In our case these parameters are:

χOF (ω) = 2
k0
√
γ

√
τ

HTL(ω)Ē

[
0
1

]
(26)

Ô(0) = HTRâ (27)

χFF (ω) = −K(ω) (28)

F̂ (0) =
2~k0Ē

√
γ

√
τ

[
1
0

]T
L(ω)â (29)

The system (24) can be resolved:

Ô(ω) = Ô(0)(ω) +
χeff
xx χOF

1− χeff
xx χFF

[
G(ω) + F̂ (0)

]
(30)

This can be renormalized to the more convenient form. In particular, we can consider the
signal as sum of the classical force and some noise:

ÔF (ω) = N̂ F +G(ω) =
X̂

χeff
xx (ω)

+ F̂(ω) +G(ω) (31)

where

X̂ (ω) =
Ô(0)(ω)

χOF (ω)
=

√
~

γmJ

D(ω)

HTD
HTRâ (32)

D(ω) = D(ω)L(ω)

[
0
1

]
=

[
−∆
γ − iω

]
(33)

F̂(ω) = F̂n =
√
mJ~γ

[
1
0

]T

L(ω)â (34)

The spectral density of output can be calculated:

SF (ω) =
SXX

|χeff
xx |2

+ SFF + 2R

{
SXF

χeff
xx

}
(35)
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And the corresponding spectral densities are:

SXX =
~

4γmJ

|D(ω)2|
HTDD†H

HTRR†H =
~

4γmJ

1∣∣∣∣HTL
[
1
0

]∣∣∣∣2 (36)

SFF = γm~J
[
1
0

]T

LL†
[
1
0

]
(37)

SXF =
~
2

D(ω)

HTD
HTRL†

[
1
0

]
=

~
2

HTL
[
1
0

]
HTL

[
0
1

] (38)

It’s useful to have these spectral densities in different normalizations. The connection be-
tween them is:

Sx = SF |χeff
xx |2 (39)

Sh = SF

(
2

mLω2

)2

(40)

4 Multiple Optical Springs

In this approach, we are not trying to use some precise techniques of the noise cancellation
(like in back-action evasion), but modifying the dynamics of test mass and therefore enhance
the response of the detector to the gravitational-wave signal (amplify this signal). In other
words, the fact that the SQL for the force depends on the dynamics of the mirrors allows us
to modify this dynamics in the way to overcome the free-mass SQL.

The equation of motion for the position of the test mass x describes the dynamics of the
system:

x(Ω) = χ(Ω)F (Ω), (41)

where χ(Ω) is a mechanical susceptibility and F (Ω) is an external force. In case of free mass
the susceptibility is simply −1/mΩ2, but in the case of detuned Fabry-Pérot cavity with one
movable mirror we have to add another term (optical rigidity K(Ω)) to the susceptibility
which describes the interaction:

χ(Ω) =
(
−mΩ2 +K(Ω)

)−1
. (42)

This term is similar to the one describing the spring in the oscillator, that is why this
phenomenon is called optical spring [19, 20, 21]. The idea, proposed in the paper [22], is
to use the frequency dependence of the optical rigidity to compensate the inertia term, and
therefor to decrease the force SQL, that depends on the susceptibility [23]:

SSQL
F (Ω) = 2~|χ−1(Ω)|, (43)

and thus the larger we can make the susceptibility the better precision we get.
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4.1 Two optical springs

While the frequency and cavity bandwidth is much smaller than detuning, we can expand
the optical rigidity in Taylor series:

K ≈ K̄ − iΓoptΩ−moptΩ
2 +O(Ω3), (44)

where

K̄ =
mJ∆

(∆2 + γ2)2
, Γopt = − 2mJγ∆

(γ2 +∆2)4
, mopt = −MJ∆(∆2 − 3γ2)

(∆2 + γ2)2
(45)

As soon as K̄,Γopt,mopt depend only on the parameters of the system: cavity bandwidth,
cavity detuning and renormalized optical power, we can choose the mopt in the way to
compensate the positive inertia and thus if we combine two carriers we can cancel the constant
K̄1,2 and inertia terms:

K̄1 + K̄2 = 0, m+mopt,1 +mopt,2 = 0. (46)

This canceling significantly reduce the force SQL comparing to the free mass one (in Eq. (42)
and (43) we do not take into account the damping term proportional to Ω):

[SSQL
F ]modified

[SSQL
F ]free mass

=

∣∣∣∣ [χ(Ω)modified]

mΩ2

∣∣∣∣ ≈ ∣∣∣∣ |mopt| −m
m

∣∣∣∣ . (47)

By changing the effective mass |mopt| → m we can achieve the ratio much smaller than one.

This approach works at low frequencies and breaks down at high frequencies since we have
to take into account higher terms of Taylor series (44) and that limits us in achieving better
sensitivity in broader frequency range.

4.2 Multiple optical springs

The idea that follows directly from this feature - add more optical springs and thus cancel
the higher terms of the Taylor expansion. Unfortunately that doesn’t work well, because the
parameter space becomes very large and it’s impossible to solve the equations.

Thus the other approach is to minimize the response in some frequency band. That means
we have to minimize functional:

G =

fmax∫
fmin

ln |χ−1
eff (f)|2 d ln f, (48)

where effective susceptibility with N optical springs is:

χ−1
eff (ω) = −mω2 +

N∑
i=0

Ki(ω) (49)

Each Ki has three parameters to optimize: Ji, ∆i, γi, thus the parameter space has 3N
dimensions.
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5 Optimization of the response function

6 Output spectral density

7 Optimization of the spectral density
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