

Multi-Color Interferometry for Lock Acquisition of Laser Interferometric Gravitational-wave Detectors

レーザー干渉計型重力波検出器における動作点引込みのためのマルチカラー干渉技術

Kiwamu Izumi (LIGO Hanford Observatory)

The Stefano Braccini thesis prize 2012

24.May.2013 Pisa

LIGO-G13000614

Abstract

Contents

- 1. Background
- 2. Lock Acquisition
 - with Multi-Color interferometry
- 3. Experimental demonstration in prototype
- 4. Evaluation of Stability
- 5. Conclusion

1. Background

2. Lock Acquisition

with Multi-Color interferometry

- 3. Experimental demonstration in prototype
- 4. Evaluation of Stability
- 5. Conclusion

Gravitationl Wave Astronomy

Gravitational

 \checkmark Predicted by General Relativity

wave

- \checkmark Propagation of spacetime distortion
- \checkmark Radiated by accelerated mass
- \checkmark No direct detection ever

To obtain a sufficiently big amplitude

a highly dense and accelerated source is necessary
 Astronomical wave sources

A new window in astronomy : GW Astronomy

Large projects are ongoing around the world

They will be detecting GWs

with a detection rate of ~ a few events/year

Laser Interferometric Detector

Advanced LIGO(USA), KAGRA(Japan), advanced VIRGO(France/Italy) under upgrade/construction and will be online ~ 2015

Necessary to Control Optical Length

✓ Optical distance deviates due to disturbance Active control to maintain a certain length

Lock Acquisition

A process to bring the length to the operating point

- \checkmark Signal from interferometer is nonlinear
- \checkmark linear signal available only in the vicinity of op. point

 \checkmark Due to the seismic noise it spontaneously pass across the op. point

 \checkmark Active control pull (push) the length into the op. point

Lock Acquisition is NOT easy

Full lock proceeds step by step

- \checkmark All 5 DOF won't be in the vicinity of the operating point spontaneously \sqrt{We} lock one DOF and then lock another DOF sequentially $\sqrt{1}$ Arm cavities are locked at the very end of the progression $\sqrt{1}$ It needs to suppress residual motions so that one can pass
 - the control to the observational sensors

optically coupled cavities

* addition of SRM makes the interference condition more complicated

Difficulty 1 : Nonlinearity

Difficult to stop the mirror within the resonance linewidth

- \checkmark Ground motion ~ order of 100 nm
- \checkmark We have to confine the length within 1 nm

Difficulties 2 : coupled cavities

 \checkmark Arms occasionally couple with the central part

Dramatically changes the interference of the central part Disturbance in the signal : control of the central part

Need a New Idea

It is unclear if we can achieve full lock acquisition

Bad things can happen

✓ If arms motion get excited (e.g. big ground motion)
 You cannot stop the mirrors and the central part
 frequently gets destroyed.

✓ In the future in more sensitive detectors Actuators becomes weaker and more difficult to lock

Summary of Background

 \checkmark Necessary to maintain a certain interference condition

- \checkmark Active control suppresses the optical length deviation
- \checkmark Linear signal available only in the vicinity of resonances
- \checkmark Full lock is a step-by-step progression
- √ (1)Nonlinearity and (2) coupled cavities complicate locking of the arm cavities

 \checkmark Necessary to develop a new scheme

- 1. Background
- 2. Lock Acquisition

with Multi-Color interferometry

- 3. Experimental demonstration in prototype
- 4. Evaluation of Stability
- 5. Conclusion

Motivation of Multicolor Interferometry

Points to be fixed

Arms were not under control Arms were freely swinging

Solution

Newly adding a wide range sensor should allow us to control arm cavities independently

What kind of sensor?

 \checkmark Measures optical length \clubsuit Laser interferometry

 $\sqrt{\text{Syncs with main laser}} \ge \text{SHG}$ (Second Harmonic Generation)

Muli-Color Interferometry

 \checkmark Idea existed in the past. A dedicated design done in 2009 \checkmark Senses motion of the arms "indecently" in "wide range"

A frequency-doubled laser is placed at the end of the arms The arm mirrors are designed to be dichroic Injection of the green light from the back of the arm

Laser Freq. Carries the Length Info

\checkmark AUX laser is locked the arm length

This forces the AUX laser to follow the arm motion Frequency of the transmitted laser carries the displacement information

$$\delta\nu\propto\delta L$$

Main Laser as Freq. Reference

 ✓ What is the reference when you measure the length? Frequency of the main laser
 ✓ Beatnote frequency by the two fields
 Frequency comparison of the main and AUX laser
 The length is read and the main laser serves as reference

Wide Linear Range is Good

It can control the length in a wide range It allows us to optically decouples the arms from the rest

Summary of Multicolor Technique

 \checkmark Robust lock by independently controlling the arms

 \checkmark A new sensor with a different wavelength laser

 \checkmark AUX laser carries the displacement information

 \checkmark A wide linear range by the frequency detection

Arm length can be (1)stabilized and (2)controlled in a wide length range

 \checkmark the nonlinearity and coupled cavity issues are solved

- 1. Background
- 2. Lock Acquisition

with Multi-Color interferometry

- 3. Experimental demonstration in prototype
- 4. Evaluation of Stability
- 5. Conclusion

The motivation

Multicolor interferometry for Arm Length Stabilisation will be used in Advanced LIGO and KAGRA

A prototype test is necessary !

 \checkmark Demonstration of the technique

 \checkmark Stability evaluation (must be smaller than 1 nm)

 \checkmark Estimation of the performance in the 4 km interferometer

A test was conducted at a LIGO prototype *only a single arm was used

40 m baseline interferometer

Only one full prototype for Advanced LIGO

- \checkmark on the campus of California Institute of Technology
- \checkmark Testbed for the length control of Advanced LIGO
- \checkmark Demonstration of the length control schemes

The Setup

40 m arm cavity of the prototype was used

Pictures : SHG (Second Harmonic Generation)

1x1x30 mm PPKTP

The green light generated from the crystal mounted in the oven

Pictures: AUX laser setup

~ 1.2 mW into the arm cavity700 mW 1064 nm laser

Beat-note Detection Setup

photo diode

Automation by Digital System

Lock Acquisition

 $\sqrt{Many operators}$ will run the interferometers

✓ People will lock the interferometer Many times during commissionings

Necessary to automize the sequence

What have been done

- \checkmark Automation by utilizing script language
- \checkmark Making the control sequential

Automation method can be applied to aLIGO

Automated Lock sequence

Brings the length to resonance automatically

Arm Length Stabilised !

Length stabilisation

NO ocasional resonance observed

Length can be tuned to arbitrary point

allows us to decouple the arms from the central part

Summary of prototype test

- \checkmark Demonstration at the 40 m baseline prototype
- \checkmark A single Fabry-Perot arm cavity was used
- \checkmark Automation of the lock sequence performed
- \checkmark Demonstration of the wide range control

Contents

- 1. Background
- 2. Lock Acquisition
 - with Multi-Color interferometry
- 3. Experimental demonstration in prototype
- 4. Evaluation of Stability
- 5. Conclusion

Evaluation of residual motion

Demonstration was successful

How good is the stability ?

What kind noise contributes the residual motion ? Still good in Advanced LIGO ?

Evaluation

The Linear Model

Stability in Prototype Test

Residual = 24 pm in RMS, surpassing requirement of 1nm Low and high freq. noise not identified

Main noise 1/3 : Seismic Noise

contributes at around10Hz

Main noise 2/3 : Readout and SHG noise

Residual motion [m/√Hz] or RMS

Main noise 3/3 : AUX laser

Residual Motion in advanced LIGO

Prototype test was successful then in the case of Advanced LIGO ?

Due to the length difference (40 m vs. 4 km) Frequency-related noise becomes 100 time relevant

Confirmed that it can still meet the requirement

- AUX laser frequency noise
 AUX laser needs to be controlled more tightly (modification in the servo design)
- ✓ Beatnote readout noise

narrow-range/high sensitivity detector is needed

Residual motion in 4 km arm 2/2

Residual motion in 4 km arm 2/2

Summary of the evaluation

✓ Achieved a stability of 24 pm surpassing the requirement of 1 nm
 ✓ Noise analysis based on a linear model

 \checkmark Estimated the residual motion in a 4 km arm

 \checkmark AUX laser and frequency readout noise will be more relevant in the 4 km case

✓ Confirmed that the technique can be applied to advanced LIGO

Contents

- 1. Background
- 2. Lock Acquisition
 - with Multi-Color interferometry
- 3. Experimental demonstration in prototype
- 4. Evaluation of Stability
- 5. Conclusion

A lock acquisition technique necessary for the laser interferometer was established.

Gravitational wave Astronomy will start soon.

Appendix: ADC/DAC noise

Appendix: Heterodyne length sensing

- \checkmark sideband doesn't get in the cavity
- Act as local oscillator field
- \checkmark photo detection squares the field and down converts the frequency to $\omega_{\rm m}$

Some locking approaches

	single Fabry-Perot	coupled cavities	new hardwares	features
Digital Interferometry	\bigcirc	\bigtriangleup	a few	wide linear range readouts coupled cavities noisy
Guided Lock [2]	\bigcirc	\times	nothin	wide linear range not great for coupled cavities
Multi-Color Interferometry	\bigcirc	\bigcirc	many	wide linear range readouts coupled cavities lots of new hardwares
🔵 = ОК		_ =	intermedi	ate 🗙 = not good

Delay-Line Frequency Discriminator

