

First Lessons from the Advanced LIGO Integration Testing

May 20, 2013 Daniel Sigg LIGO Hanford Observatory GWDAW, Elba, 2013

G1300554-v1

Advanced LIGO Commissioning

Advanced LIGO Sensitivity

LIGO

The Advanced LIGO Detector

Advanced LIGO Commissioning

Global Timeline

- October 2010: Hand-off of Observatories to Advanced LIGO for installation
- February 2012: Both Observatories have decommissioned initial LIGO detectors, started in-vacuum Installation and subsystem Integration
- April 2012: Recommendation to the NSF to place one interferometer in India
- □ Aug 2014: LLO 'L1' Interferometer accepted (internal plan date)
- □ Sep 2014 LHO 'H1' interferometer accepted (internal plan date)
- LHO 'H2' detector was on schedule to be accepted in March 2014, but instead will go to India pending NSF Approval
- Mar 2015: Data Analysis computer system completed, planned Project end

Sequence of Installation and Integration Testing

Subsystem Testing

Subsystem testing

- All components are tested before installation
- All subsystems have a test and verification phase before commissioning

Paid off big time: Much faster startup of commissioning

PSL: Accepted and working

- Lasers delivers stable 180W, currently running at 35W
- Excess frequency, intensity and jitter noise due to water cooling flow (avoid 90 degree turns)
- Lifetime of laser diodes factor 2 below specs of manufacturer
- Unknown contamination reduced AR coating performance of PMC tank windows, windows could be cleaned, since tank is open no accumulation of stuff anymore

Core Optics Coatings

ETM spiral pattern generates scattered ring

- Back scatter from beam tube baffles can effect <30Hz sensitivity</p>
- Spherical aberration acceptable (two ETMs are nearly identical)
- Arm Cavity Loss is within budget
 (50 ppm achieved vs. <75 ppm spec)

LIGO

One Arm Test Components

One Arm Test Summary and Actions

Verified the basic functionality of many subsystems:

- Two-stage active seismic isolation system (BSC ISI)
- Quadruple suspension
- Initial Alignment system/procedure
- Thermal compensation ring heater
- Green beam cavity locking
- □ Actions:
 - ALS wavefront sensors eliminated from design: alignment sufficiently stable
 - PZT steering control of ALS beam incorporated into design
 - Additional hardware was identified to support automation
 - Usability of various systems needs to be improved to be accessible to non-experts

Intermediate and Quantitative Goals of the One Arm Test

Initial alignment: Sustained flashes of optical resonance in the arm cavity	Achieved, within one week of operation
Cavity locking/ISC: Green laser locked to cavity for 10 minutes or more	
TransMon/ALS: Active beam pointing error on the TransMon table below 1 urad rms in angle and below 100 um rms in transverse motion	Achieved
Calibration: ETM displacement calibration at the 20% level	Achieved
Thermal Compensation: Ring heater wavefront distortion, measured by Hartmann sensor, in agreement with model at the 10 nm rms level	Achieved
Optical levers: Long term drift below 1 urad	Diurnal motion about twice this level, possibly actual test mass motion

Intermediate and Quantitative Goals of the One Arm Test

Controls/SUS: Decoupling of length-to-angle drive of the quad suspension	Achieved for TOP stage
Seismic isolation: Relative motion between two SEI platforms below 250 nm rms (w/o global feedback)	Achieved
Cavity alignment fluctuations: Relative alignment fluctuations below 100 nrad rms	Achieved
Controls/ISC: Long term cavity locking; fully automated locking sequence	Long term locking achieved; automation was rudimentary
Cavity length control: Relative test mass longitudinal motion below 10 nm rms	Not possible to assess with
ALS: Ability to control frequency offset between 1064 nm and 532 nm resonances at the 10 Hz level	OAT. These have become objectives for the HIFO-Y test.
ALS: Relative stability of the 1064/532 nm resonances at the 10 Hz level	

IMC Test

IMC Test Summary and Actions

□ Locking was as easy and reliable as expected

- Seismic isolation controls for HAM ISI are straightforward
- Angular stability quite good; wavefront sensor alignment control only for long term drifts
- New design for low-noise Voltage-Controlled Oscillator validated
- No major problems with high power operation

Issues and actions

- Excess laser noise (frequency, amplitude, beam pointing). No show stoppers, but room for improvement (some already made)
- PSL Intensity servo (outer stage) found to need re-engineering
- Absorption in IMC mirrors. Two of the three mirrors found to absorb 2 ppm, vs 0.6-0.7 ppm nominal – relevant to contamination control

TUUUUUT

Intermediate and Quantitative Goals of the IMC Test

IMC availability: Locked duty cycle of >90%	Achieved, would remain locked indefinitely
Mean lock duration: > 4 hours	Achieved
Optical efficiency: Transmission from PSL output to Interferometer input (O-PRM), > 75%	Achieved, 86%
IMC visibility: > 95% (include mode-matching)	Achieved, 97-98%
IMC length/frequency control bandwidth: Goal of 40 kHz or higher	Achieved, 60 kHz
IMC frequency/length crossover: ~10 Hz	Achieved
IMC transmitted power stability: relative rms fluctuations of 1% or less	Achieved, 0.5% RIN
Pointing stability: angular motion of transmitted beam, < 1.6 urad rms	Achieved, 0.4 urad
Intensity noise: transmitted light RIN <10 ⁻⁷ /Hz ^{1/2}	Not achieved
Faraday isolation: > 30 dB at full power	Not measured in-situ

901111133101111

So far so good!

