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Signal Model for Continuous GWs

Signal received at a detector from a nearly periodic source
(e.g., spinning neutron star, white dwarf binary):

h(t) = F+A+ cos[φ(t) + φ0] + F×A× sin[φ(t) + φ0] (1)

Orientation of angular momentum of system described by
angles ι (inclination to line of sight) and ψ (angle on sky
of projected angular momentum). Polarization amplitudes
from signal amplitude h0 & inclination ι:

A+ =
h0
2

(1 + cos2 ι) = h0
1 + χ2

2
(2a)

A× = h0cos ι = h0χ (2b)

Antenna patterns F+,× determined by polarization angle ψ
& amplitude modulation coefficients a & b (which come from
detector geometry & sky position as shown in figure 1):

F+ = a cos 2ψ + b sin 2ψ (3a)
F× = −a sin 2ψ + b cos 2ψ (3b)
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Figure 1: Basis vectors which determine AM coefficients &
antenna patterns from detector geometry tensor d

↔
. Given

sky position ⇒ propagation direction ~k, can define ~i & ~j
pointing “West & North on the sky” & construct basis ten-
sors ε↔+ = ~i ⊗~i −~j ⊗~j & ε↔× = ~i ⊗~j +~j ⊗~i . AM coefficients
are a = d

↔
: ε↔+ & b = d

↔
: ε↔×. Preferred polarization basis

aligns~l or ~m along projected angular momentum of source
(chosen so −π/4 ≤ ψ ≤ π/4) and defines e

↔
+ =~l⊗~l− ~m⊗ ~m

& e
↔
× =~l ⊗ ~m + ~m⊗~l . Antenna patterns are F+,× = d

↔
: e
↔

+,×.

Divide signal parameters into

• Amplitude parameters A ≡ {h0,χ = cos ι,ψ,φ0}
• Phase parameters λ ≡ {α, δ, f0, f1, ...} which determine

(Doppler modulated) φ(t)

Detection Statistics: F-stat & B-stat

• Signal hypothesis Hs(As,λs): x(t) = n(t) + h(t ;A,λ)
•Noise hypothesis Hn: x(t) = n(t)

If signal parameters {As,λs} known, optimal detection
statistic is likelihood ratio

P(x |Hs(As,λs))
P(x |Hn)

= exp[Λ(x ;As,λs)] (4)

For targeted search, phase params λs (sky position, fre-
quency, spindowns) known, but amp params As unknown.
F-statistic method [1] defines maximized log-likelihood ratio

F(x) = max
A

ln
P(x |Hs(A,λs))

P(x |Hn)
= max
A

Λ(x ;A,λs) (5)

Optimal statistic is actually B-statistic [2] (Bayes factor;
marginalized, not maximized)

B(x) =
P(x |Hs)
P(x |Hn)

=
∫

dAP(x |Hs(A,λs)) P(A|Hs(λs)
P(x |Hn)

=
∫

dAexp [Λ(x ;A,λs)]
(6)

New Coordinates on Amplitude Parameter Space

[1] introduce functions {Aµ(h0,χ,ψ,φ0)|µ = 1, ... 4} so that

h(t) = Aµhµ(t ;λ) (implicit
∑4
µ=1) (7)

and Λ(x ;A,λ) is quadratic in {Aµ}, allowing analytic max-
imization. We define a different set of such coordinates
{Aµ̂} which are closer to the physical parameters:

A1̂ = P1 = p cos θp and A2̂ = P2 = p sin θp (8a)

A3̂ = Q1 = q cos θq and A4̂ = Q2 = q sin θq ; (8b)

with

p =
A+ + A×

2
= h0

(
1 + χ

2

)2
and θp = 2ψ + φ0 ; (9a)

q =
A+ − A×

2
= h0

(
1− χ

2

)2
and θq = 2ψ − φ0 (9b)
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Figure 2: Correspondence between radial polar coordi-
nates p & q and physical amp params h0 & χ = cos ι. We
plot lines of constant h0 ∈ [0,∞) & χ ∈ [−1, 1], drawn in
first quadrant of the {p, q} plane. (The red shaded repre-
sents unphysical coordinate values.) Circular polarization,
χ = ±1, corresponds to q = 0 or p = 0.
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Figure 3: Correspondence between angular polar coordi-
nates θp & θq and physical amp params φ0 & ψ. The
principal region of polarization ψ ∈ (−π/4, π/4] and phase
φ0 ∈ [0, 2π) is shown in the {θp, θq} plane; θp and θq are
each periodically identified, with period 2π. Note that since
the transformation {ψ,φ0} → {ψ + π/2,φ0 + π} leaves the
waveform unchanged, the edge ψ = −π/4, φ0 ∈ [0, π) is ac-
tually identified with ψ = π/4, φ0 ∈ [π, 2π), while ψ = −π/4,
φ0 ∈ [π, 2π) is identified with ψ = π/4, φ0 ∈ [0, π). These pe-
riodic identifications show that the principal {ψ,φ0} region
is equivalent to the region θp ∈ [0, 2π), θq ∈ [0, 2π).

In these coordinates, the log-likelihood is

Λ(x ;A,λ) = Aµ̂xµ̂(λ)− 1
2
Aµ̂Mµ̂ν̂(λ)Aν̂

= p (x1̂ cos θp + x2̂ sin θp) + q (x3̂ cos θq + x4̂ sin θq)

− 1
2

Ip2 − 1
2

Jq2 − pq
[
K sin(θp + θq) + L cos(θp + θq)

]
(10)

where I = J in the long-wavelength limit.

Failure of the Gaussian Approximation

Given an unphysical prior P({Aµ̂}|Hs(λs)) = const, the B-
statistic is equivalent to the F-statistic [2]

Bunphys(x ;λs) ∝
∫

exp[Λ(x ;A,λs)] dP1 dP2 dQ1 dQ2 ∝ eF(x ;λs)

(11)
because the Gaussian integral picks out the maximum like-
lihood point A = Â. On the other hand, the physical
(isotropic) prior is uniform in χ, φ0 & ψ. For simplicity as-
sume it’s also uniform in h0. Coordinate transforms show

dp dq = h0
1− χ2

4
dh0 dχ and dθp dθq = 4 dψ dφ0

(12)
so

dP1 dP2 dQ1 dQ2 = 4

(
h0

1− χ2

4

)3

dh0 dχdψ dφ (13)

where we use pq =
(

h0
1−χ2

4

)2
. This means, if we use

isotropic priors, we get

Bphys(x ;λs) ∝
∫

exp[Λ(x ;A,λs)] dh0 dχdψ dφ0

∝
∫

exp[Λ(x ;A,λs)]
J (A)

dP1 dP2 dQ1 dQ2
(14)

with Jacobian J ∝ (pq)3/2. It’s tempting to Taylor expand
α(A) = − lnJ (A) about the maximum likelihood point:

α(A) = α̂ + α̂µ̂∆Aµ̂ +
1
2
α̂µ̂ν̂∆Aµ̂∆Aν̂ +O([∆A]3) (15)

Then

Λ(x ;A,λs)+α(A) ≈ −1
2
Nµ̂ν̂(x ;λs)∆Aµ̂∆Aν̂+α̂µ̂∆Aµ̂+α̂+F(x)

(16)
and we can approximate the {Aµ̂} integral as Gaussian.
But this only works if Nµ̂ν̂(x ;λs) = Mµ̂ν̂(λs) − α̂µ̂ν̂(x ;λs) is
positive definite. In these coordinates, it’s easy to calculate

α̂µ̂ν̂ =
3
2



cos 2θ̂p

p̂2
sin 2θ̂p

p̂2 0 0
sin 2θ̂p

p̂2 −cos 2θ̂p

p̂2 0 0

0 0 cos 2θ̂q

q̂2
sin 2θ̂q

q̂2

0 0 sin 2θ̂q

q̂2 −cos 2θ̂q

q̂2


(17)

If ML params are close to circular polarization (p̂ or q̂ small),
two of eigenvalues of Nµ̂ν̂(x ;λs) will be ± 3

2p2 =⇒ not posi-
tive definite. Λ has a saddle point, not a ≈Gaussian peak.

Integration in physical parameter space

Examination of (10) shows that, since p, q ∝ h0 and θp+θq =
4ψ, the log-likelihood has tractable h0 and φ0 dependence:

Λ(x ;A) = h0 ω(x ;χ,ψ) cos[φ0 − ϕ0(x ;χ,ψ)]− 1
2

h0
2[γ(χ,ψ)]2

(18)
the h0 & φ0 can be done analytically to give

B ∝
∫ 1

−1
dχ
∫ π/4

−π/4
dψ

I0(ξ(x ;χ,ψ)) eξ(x ;χ,ψ)

γ(χ,ψ)
(19)

where

ξ(x ;χ,ψ) =
[ω(x ;χ,ψ)]2

4[γ(χ,ψ)]2
(20)

Which leaves a 2D numerical integral. Since the ψ depen-
dence is mostly oscillatory, we replace parts of the inte-
grand with ψ-averaged versions:

B ∼
∫ 1

−1
dχ

I0( ¯̄ξ(x ;χ)) e
¯̄ξ(x ;χ)

γ̄(χ)
(21)

where f̄ = 2
π

∫ π/4
−π/4 dψ f (ψ) and ¯̄ξ(x ;χ) = [ω̄(x ;χ)]2

4[γ̄(χ)]2 ; we then
only have to integrate numerically over χ. This statistic is
still more powerful than the F-statistic, but quicker to calcu-
late than the exact B-statistic. [3]
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