Approximation Methods for Bayesian Detection Statistics
in a Targeted Search for Continuous Gravitational Waves
John T．Whelan ${ }^{1}$ and Reinhard Prix ${ }^{2}$
${ }^{1}$ CCRG，Rochester Institute of Technology，Rochester，NY，USA；
${ }^{2}$ Max－Planck－Institut für Gravitationsphysik（Albert－Einstein－Institut），Hannover，Germany
john．whelan＠astro．rit．edu，reinhard．prix＠aei．mpg．de

Signal Model for Continuous GWs

Signal received at a detector from a nearly periodic source （e．g．，spinning neutron star，white dwarf binary）：

$$
h(t)=F_{+} A_{+} \cos \left[\phi(t)+\phi_{0}\right]+F_{\times} A_{\times} \sin \left[\phi(t)+\phi_{0}\right]
$$

Orientation of angular momentum of system described by angles ι（inclination to line of sight）and ψ（angle on sky of projected angular momentum）．Polarization amplitudes from signal amplitude h_{0} \＆inclination

$$
\begin{gather*}
A_{+}=\frac{h_{0}}{2}\left(1+\cos ^{2} \iota\right)=h_{0} \frac{1+\chi^{2}}{2} \tag{2a}\\
A_{\times}=h_{0} \cos \iota=h_{0} \chi
\end{gather*}
$$

Antenna patterns $F_{+, \times}$determined by polarization angle ψ \＆amplitude modulation coefficients $a \& b$（which come from detector geometry \＆sky position as shown in figure 1）

$$
\begin{equation*}
F_{+}=a \cos 2 \psi+b \sin 2 \psi \tag{3a}
\end{equation*}
$$

$F_{X}=-a \sin 2 \psi+b \cos 2 \psi$
（3b）

Figure 1：Basis vectors which determine AM coefficients \＆ antenna patterns from detector geometry tensor \overleftrightarrow{d} ．Given sky position \Rightarrow propagation direction \vec{k} ，can define \vec{i} \＆ pointing＂West \＆North on the sky＂\＆construct basis ten－ sors $\stackrel{\varepsilon}{+}_{+}=\vec{i} \otimes \vec{i}-\vec{j} \otimes \vec{j} \& \overleftrightarrow{\varepsilon}_{x}=\vec{i} \otimes \vec{j}+\vec{j} \otimes \vec{i}$ ．AM coefficient are $a=\overleftrightarrow{d}: \overleftrightarrow{\varepsilon}_{+} \& b=\overleftrightarrow{d}: \overleftrightarrow{\varepsilon}_{x}$ ．Preferred polarization basis aligns \vec{I} or \vec{m} along projected angular momentum of source （chosen so $-\pi / 4 \leq \psi \leq \pi / 4$ ）and defines $\overleftrightarrow{e}_{+}=\vec{l} \otimes \vec{I}-\vec{m} \otimes \vec{m}$ $\& \overleftrightarrow{e}_{\times}=\vec{l} \otimes \vec{m}+\vec{m} \otimes \vec{l}$ ．Antenna patterns are $F_{+, \times}=d: \overleftrightarrow{e}_{+}$

Divide signal parameters into
－Amplitude parameters $\mathcal{A} \equiv\left\{h_{0}, \chi=\cos \iota, \psi, \phi_{0}\right\}$
－Phase parameters $\lambda \equiv\left\{\alpha, \delta, f_{0}, f_{1}, \ldots\right\}$ which determine （Doppler modulated）$\phi(t)$

Detection Statistics： \mathcal{F}－stat $\& \mathcal{B}$－stat

－Signal hypothesis $\mathcal{H}_{s}\left(\mathcal{A}_{s}, \lambda_{s}\right): x(t)=n(t)+h(t ; \mathcal{A}, \lambda)$
－Noise hypothesis $\mathcal{H}_{n}: x(t)=n(t)$
If signal parameters $\left\{\mathcal{A}_{s}, \lambda_{s}\right\}$ known，optimal detection statistic is likelihood ratio

$$
\begin{equation*}
\frac{P\left(x \mid \mathcal{H}_{s}\left(\mathcal{A}_{s}, \lambda_{S}\right)\right)}{P\left(x \mid \mathcal{H}_{n}\right)}=\exp \left[\Lambda\left(x ; \mathcal{A}_{s}, \lambda_{S}\right)\right] \tag{4}
\end{equation*}
$$

For targeted search，phase params λ_{s}（sky position，fre－ quency，spindowns）known，but amp params \mathcal{A}_{s} unknown \mathcal{F}－statistic method［1］defines maximized log－likelihood ratio

$$
\begin{equation*}
\mathcal{F}(x)=\max _{\mathcal{A}} \ln \frac{P\left(x \mid \mathcal{H}_{s}\left(\mathcal{A}, \lambda_{S}\right)\right)}{P\left(x \mid \mathcal{H}_{n}\right)}=\max _{\mathcal{A}} \Lambda\left(x ; \mathcal{A}, \lambda_{s}\right) \tag{5}
\end{equation*}
$$

Optimal statistic is actually \mathcal{B}－statistic［2］（Bayes factor； marginalized，not maximized）

$$
\begin{aligned}
\mathcal{B}(x) & =\frac{P\left(x \mid \mathcal{H}_{s}\right)}{P\left(x \mid \mathcal{H}_{n}\right)}=\frac{\int d \mathcal{A} P\left(x \mid \mathcal{H}_{s}\left(\mathcal{A}, \lambda_{s}\right)\right) P\left(\mathcal{A} \mid \mathcal{H}_{s}\left(\lambda_{s}\right)\right.}{P\left(x \mid \mathcal{H}_{n}\right)} \\
& =\int d \mathcal{A} \exp \left[\Lambda\left(x ; \mathcal{A}, \lambda_{s}\right)\right]
\end{aligned}
$$

New Coordinates on Amplitude Parameter Space
［1］introduce functions $\left\{\mathcal{A}^{\mu}\left(h_{0}, \chi, \psi, \phi_{0}\right) \mid \mu=1, \ldots 4\right\}$ so that

$$
\begin{equation*}
\left.h(t)=\mathcal{A}^{\mu} h_{\mu}(t ; \lambda) \quad \text { (implicit } \sum_{\mu=1}^{4}\right) \tag{7}
\end{equation*}
$$

and $\Lambda(x ; \mathcal{A}, \lambda)$ is quadratic in $\left\{\mathcal{A}^{\mu}\right\}$ ，allowing analytic max－ imization．We define a different set of such coordinates $\left\{\mathcal{A}^{\hat{\mu}}\right\}$ which are closer to the physical parameters：

$$
\mathcal{A}^{\hat{1}}=\mathcal{P}^{1}=p \cos \theta_{p} \quad \text { and } \quad \mathcal{A}^{\hat{2}}=\mathcal{P}^{2}=p \sin \theta p
$$

$$
\mathcal{A}^{\hat{3}}=\mathcal{Q}^{1}=q \cos \theta_{q} \quad \text { and } \quad \mathcal{A}^{\hat{4}}=\mathcal{Q}^{2}=q \sin \theta_{q} ; \quad(8 \mathrm{~b})
$$ with

$$
\begin{aligned}
& p=\frac{A_{+}+A_{\times}}{2}=h_{0}\left(\frac{1+\chi}{2}\right)^{2} \quad \text { and } \quad \theta_{p}=2 \psi+\phi_{0} ; \\
& q=\frac{A_{+}-A_{\times}}{2}=h_{0}\left(\frac{1-\chi}{2}\right)^{2} \quad \text { and } \quad \theta_{q}=2 \psi-\phi_{0}
\end{aligned}
$$

Figure 2：Correspondence between radial polar coordi－ nates $p \& q$ and physical amp params $h_{0} \& \chi=\cos \iota$ ．We plot lines of constant $h_{0} \in[0, \infty) \& x \in[-1,1]$ ，drawn in first quadrant of the $\{p, q\}$ plane．（The red shaded repre－ sents unphysical coordinate values．）Circular polarization， $\chi= \pm 1$ ，corresponds to $q=0$ or $p=0$ ．

Figure 3：Correspondence between angular polar coordi－ nates $\theta_{p} \& \theta_{q}$ and physical amp params $\phi_{0} \& \psi$ ．The principal region of polarization $\psi \in(-\pi / 4, \pi / 4]$ and phase $\phi_{0} \in[0,2 \pi)$ is shown in the $\left\{\theta_{p}, \theta_{q}\right\}$ plane；θ_{p} and θ_{q} are each periodically identified，with period 2π ．Note that since the transformation $\left\{\psi, \phi_{0}\right\} \rightarrow\left\{\psi+\pi / 2, \phi_{0}+\pi\right\}$ leaves the waveform unchanged，the edge $\psi=-\pi / 4, \phi_{0} \in[0, \pi)$ is ac－ tually identified with $\psi=\pi / 4, \phi_{0} \in[\pi, 2 \pi)$ ，while $\psi=-\pi / 4$ ， $\phi_{0} \in[\pi, 2 \pi)$ is identified with $\psi=\pi / 4, \phi_{0} \in[0, \pi)$ ．These pe riodic identifications show that the principal $\left\{\psi, \phi_{0}\right\}$ region is equivalent to the region $\theta_{p} \in[0,2 \pi), \theta_{q} \in[0,2 \pi)$ ．

In these coordinates，the log－likelihood is
$\Lambda(x ; \mathcal{A}, \lambda)=\mathcal{A}^{\hat{\mu}} x_{\hat{\mu}}(\lambda)-\frac{1}{2} \mathcal{A}^{\hat{\mu}} \mathcal{M}_{\hat{\mu} \hat{\nu}}(\lambda) \mathcal{A}^{\hat{\nu}}$

$$
=p\left(x_{\hat{1}} \cos \theta_{p}+x_{\hat{2}} \sin \theta_{p}\right)+q\left(x_{\hat{3}} \cos \theta_{q}+x_{\hat{4}} \sin \theta_{q}\right)
$$

$\frac{1}{2} I p^{2}-\frac{1}{2} J q^{2}-p q\left[K \sin \left(\theta_{p}+\theta_{q}\right)+L \cos \left(\theta_{p}+\theta_{q}\right)\right]$（10）
where $I=J$ in the long－wavelength limit．

Failure of the Gaussian Approximation

Given an unphysical prior $P\left(\left\{A^{\hat{\mu}}\right\} \mid \mathcal{H}_{s}\left(\lambda_{s}\right)\right)=$ const，the \mathcal{B} statistic is equivalent to the \mathcal{F}－statistic［2］
$\mathcal{B}_{\text {unphys }}\left(x ; \lambda_{s}\right) \propto \int \exp \left[\Lambda\left(x ; \mathcal{A}, \lambda_{s}\right)\right] d \mathcal{P}^{1} d \mathcal{P}^{2} d \mathcal{Q}^{1} d \mathcal{Q}^{2} \propto e^{\mathcal{F}\left(x ; \lambda_{s}\right)}$
because the Gaussian integral picks out the maximum like lihood point $\mathcal{A}=\widehat{\mathcal{A}}$ ．On the other hand，the physical （isotropic）prior is uniform in $\chi, \phi_{0} \& \psi$ ．For simplicity as－ sume it＇s also uniform in h_{0} ．Coordinate transforms show

$$
\begin{equation*}
d p d q=h_{0} \frac{1-\chi^{2}}{4} d h_{0} d \chi \quad \text { and } \quad d \theta_{p} d \theta_{q}=4 d \psi d \phi_{0} \tag{12}
\end{equation*}
$$

so

$d \mathcal{P}^{1} d \mathcal{P}^{2} d \mathcal{Q}^{1} d \mathcal{Q}^{2}=4\left(h_{0} \frac{1-\chi^{2}}{4}\right)^{3} d h_{0} d \chi d \psi d \phi$
where we use $p q=\left(h_{0} \frac{1-\chi^{2}}{4}\right)^{2}$ ．This means，if we use isotropic priors，we get

$$
\begin{align*}
\mathcal{B}_{\text {phys }}\left(x ; \lambda_{s}\right) & \propto \int \exp \left[\Lambda\left(x ; \mathcal{A}, \lambda_{s}\right)\right] d h_{0} d \chi d \psi d \phi_{0} \\
& \propto \int \frac{\exp \left[\Lambda\left(x ; \mathcal{A}, \lambda_{s}\right)\right]}{\mathcal{J}(\mathcal{A})} d \mathcal{P}^{1} d \mathcal{P}^{2} d \mathcal{Q}^{1} d \mathcal{Q}^{2} \tag{14}
\end{align*}
$$

with Jacobian $\mathcal{J} \propto(p q)^{3 / 2}$ ．It＇s tempting to Taylor expand $\alpha(\mathcal{A})=-\ln \mathcal{J}(\mathcal{A})$ about the maximum likelihood point：
$\alpha(\mathcal{A})=\widehat{\alpha}+\widehat{\alpha}_{\hat{\mu}} \Delta \mathcal{A}^{\hat{\mu}}+\frac{1}{2} \widehat{\alpha}_{\hat{\mu} \hat{\nu}} \Delta \mathcal{A}^{\hat{\mu}} \Delta \mathcal{A}^{\hat{\nu}}+\mathcal{O}\left([\Delta \mathcal{A}]^{3}\right)$ Then
$\Lambda\left(x ; \mathcal{A}, \lambda_{S}\right)+\alpha(\mathcal{A}) \approx-\frac{1}{2} \mathcal{N}_{\hat{\mu} \hat{\nu}}\left(x ; \lambda_{S}\right) \Delta \mathcal{A}^{\hat{\mu}} \Delta \mathcal{A}^{\hat{\nu}}+\widehat{\alpha}_{\hat{\mu}} \Delta \mathcal{A}^{\hat{\mu}}+\widehat{\alpha}+\mathcal{F}(x)$
and we can approximate the $\left\{\mathcal{A}^{\hat{\mu}}\right\}$ integral as Gaussian But this only works if $\mathcal{N}_{\hat{\mu} \hat{\nu}}\left(x ; \lambda_{S}\right)=\mathcal{M}_{\hat{\mu} \hat{\nu}}\left(\lambda_{S}\right)-\widehat{\alpha}_{\hat{\mu} \hat{\nu}}\left(x ; \lambda_{S}\right)$ is positive definite．In these coordinates，it＇s easy to calculate

$$
\widehat{\alpha}_{\hat{\mu} \hat{\nu}}=\frac{3}{2}\left(\begin{array}{cccc}
\frac{\cos 2 \widehat{\theta}_{p}}{\widehat{p}^{2}} & \frac{\sin 2 \widehat{\theta}_{p}}{\hat{p}^{2}} & 0 & 0 \tag{17}\\
\frac{\sin 2 \widehat{\theta}_{p}}{\widehat{p}^{2}} & -\frac{\cos 2 \widehat{\theta}_{p}}{\widehat{p}^{2}} & 0 & 0 \\
0 & 0 & \frac{\cos 2 \widehat{\theta}_{q}}{\widehat{q}^{2}} & \frac{\sin 2 \widehat{\theta}_{q}}{\widehat{q}^{2}} \\
0 & 0 & \frac{\sin 2 \widehat{\theta}_{q}}{\hat{q}^{2}} & -\frac{\cos 2 \widehat{\theta}_{q}}{\hat{q}^{2}}
\end{array}\right)
$$

If ML params are close to circular polarization（ \hat{p} or \widehat{q} small）， two of eigenvalues of $\mathcal{N}_{\hat{\mu} \hat{\nu}}\left(x ; \lambda_{S}\right)$ will be $\pm \frac{3}{2 p^{2}} \Rightarrow$ not posi－ tive definite．Λ has a saddle point，not $\mathrm{a} \approx$ Gaussian peak．

Integration in physical parameter space

Examination of（10）shows that，since $p, q \propto h_{0}$ and $\theta_{p}+\theta_{q}=$ 4ψ ，the log－likelihood has tractable h_{0} and ϕ_{0} dependence
$\Lambda(x ; \mathcal{A})=h_{0} \omega(x ; \chi, \psi) \cos \left[\phi_{0}-\varphi_{0}(x ; \chi, \psi)\right]-\frac{1}{2} h_{0}^{2}[\gamma(\chi, \psi)]^{2}$ the $h_{0} \& \phi_{0}$ can be done analytically to give

$$
\begin{equation*}
\mathcal{B} \propto \int_{-1}^{1} d \chi \int_{-\pi / 4}^{\pi / 4} d \psi \frac{I_{0}(\xi(x ; \chi, \psi)) e^{\xi(x ; \chi, \psi)}}{\gamma(\chi, \psi)} \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
\xi(x ; \chi, \psi)=\frac{[\omega(x ; \chi, \psi)]^{2}}{4[\gamma(\chi, \psi)]^{2}} \tag{20}
\end{equation*}
$$

Which leaves a 2D numerical integral．Since the ψ depen dence is mostly oscillatory，we replace parts of the inte grand with ψ－averaged versions：

$$
\begin{equation*}
\mathcal{B} \sim \int_{-1}^{1} d \chi \frac{I_{0}(\overline{\bar{\xi}}(x ; \chi)) e^{\overline{\bar{\xi}}(x ; \chi)}}{\bar{\gamma}(\chi)} \tag{21}
\end{equation*}
$$

where $\bar{f}=\frac{2}{\pi} \int_{-\pi / 4}^{\pi / 4} d \psi f(\psi)$ and $\overline{\bar{\xi}}(x ; \chi)=\frac{[\bar{\omega}(x ; \chi)]^{2}}{4[\bar{z}(\chi)]^{2}}$ ；we then only have to integrate numerically over χ ．This statistic is still more powerful than the \mathcal{F}－statistic，but quicker to calcu－ late than the exact \mathcal{B}－statistic．［3］

References

［1］Jaranowski，Królak \＆Schutz，PRD 58， 063001 （1998） ［2］Prix \＆Krishnan，CQG 26， 204013 （2009）
［3］Prix，Whelan \＆Cutler in progress

