

Approximation Methods for Bayesian Detection Statistics

in a Targeted Search for Continuous Gravitational Waves

John T. Whelan¹ and Reinhard Prix²

¹CCRG, Rochester Institute of Technology, Rochester, NY, USA; ²Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Hannover, Germany john.whelan@astro.rit.edu,reinhard.prix@aei.mpg.de

Signal Model for Continuous GWs

Signal received at a detector from a nearly periodic source (e.g., spinning neutron star, white dwarf binary):

$$h(t) = F_+A_+ \cos[\phi(t) + \phi_0] + F_\times A_\times \sin[\phi(t) + \phi_0]$$
(1)

Orientation of angular momentum of system described by angles ι (inclination to line of sight) and ψ (angle on sky of projected angular momentum). Polarization amplitudes

New Coordinates on Amplitude Parameter Space
--

[1] introduce functions $\{\mathcal{A}^{\mu}(h_0, \chi, \psi, \phi_0) | \mu = 1, \dots 4\}$ so that

 $h(t) = \mathcal{A}^{\mu} h_{\mu}(t; \lambda) \quad (\text{implicit } \sum_{\mu=1}^{4})$ (7)

and $\Lambda(x; \mathcal{A}, \lambda)$ is quadratic in $\{\mathcal{A}^{\mu}\}$, allowing analytic maximization. We define a different set of such coordinates $\{\mathcal{A}^{\hat{\mu}}\}$ which are closer to the physical parameters:

 $\mathcal{A}^{\hat{1}} = \mathcal{P}^{1} = p \cos \theta_{D}$ and $\mathcal{A}^{2} = \mathcal{P}^{2} = p \sin \theta_{D}$ (8a)

Given an unphysical prior $P(\{A^{\hat{\mu}}\}|\mathcal{H}_{s}(\lambda_{s})) = \text{const}$, the \mathcal{B} -statistic is equivalent to the \mathcal{F} -statistic [2] $\mathcal{B}_{unphys}(x;\lambda_{s}) \propto \int \exp[\Lambda(x;\mathcal{A},\lambda_{s})] d\mathcal{P}^{1} d\mathcal{P}^{2} d\mathcal{Q}^{1} d\mathcal{Q}^{2} \propto e^{\mathcal{F}(x;\lambda_{s})}$ (11) because the Gaussian integral picks out the maximum likelihood point $\mathcal{A} = \widehat{\mathcal{A}}$. On the other hand, the physical

Failure of the Gaussian Approximation

from signal amplitude h_0 & inclination ι :

$$\begin{aligned} A_{+} &= \frac{h_{0}}{2} (1 + \cos^{2} \iota) = h_{0} \frac{1 + \chi^{2}}{2} \\ A_{\times} &= h_{0} \cos \iota = h_{0} \chi \end{aligned}$$

(2a)

(2b)

Antenna patterns $F_{+,\times}$ determined by polarization angle ψ & amplitude modulation coefficients *a* & *b* (which come from detector geometry & sky position as shown in figure 1):

Figure 2: Correspondence between radial polar coordi-

(isotropic) prior is uniform in χ , $\phi_0 \& \psi$. For simplicity assume it's also uniform in h_0 . Coordinate transforms show

$$dp \, dq = h_0 \frac{1-\chi^2}{4} \, dh_0 \, d\chi$$
 and $d\theta_p \, d\theta_q = 4 \, d\psi \, d\phi_0$ (12) so

$$d\mathcal{P}^{1} d\mathcal{P}^{2} d\mathcal{Q}^{1} d\mathcal{Q}^{2} = 4 \left(h_{0} \frac{1 - \chi^{2}}{4} \right)^{3} dh_{0} d\chi d\psi d\phi \quad (13)$$

where we use $pq = \left(h_0 \frac{1-\chi^2}{4}\right)^2$. This means, if we use isotropic priors, we get

$$\mathcal{B}_{\text{phys}}(x;\lambda_{s}) \propto \int \exp[\Lambda(x;\mathcal{A},\lambda_{s})] dh_{0} d\chi d\psi d\phi_{0}$$

$$\propto \int \frac{\exp[\Lambda(x;\mathcal{A},\lambda_{s})]}{\mathcal{J}(\mathcal{A})} d\mathcal{P}^{1} d\mathcal{P}^{2} d\mathcal{Q}^{1} d\mathcal{Q}^{2}$$
(14)

with Jacobian $\mathcal{J} \propto (pq)^{3/2}$. It's tempting to Taylor expand $\alpha(\mathcal{A}) = -\ln \mathcal{J}(\mathcal{A})$ about the maximum likelihood point:

$$\alpha(\mathcal{A}) = \widehat{\alpha} + \widehat{\alpha}_{\hat{\mu}} \Delta \mathcal{A}^{\hat{\mu}} + \frac{1}{2} \widehat{\alpha}_{\hat{\mu}\hat{\nu}} \Delta \mathcal{A}^{\hat{\mu}} \Delta \mathcal{A}^{\hat{\nu}} + \mathcal{O}([\Delta \mathcal{A}]^3)$$
(15)

Then

$$\Lambda(x; \mathcal{A}, \lambda_{s}) + \alpha(\mathcal{A}) \approx -\frac{1}{2} \mathcal{N}_{\hat{\mu}\hat{\nu}}(x; \lambda_{s}) \Delta \mathcal{A}^{\hat{\mu}} \Delta \mathcal{A}^{\hat{\nu}} + \widehat{\alpha}_{\hat{\mu}} \Delta \mathcal{A}^{\hat{\mu}} + \widehat{\alpha} + \mathcal{F}(x)$$
(16)

and we can approximate the $\{\mathcal{A}^{\mu}\}$ integral as Gaussian. But this only works if $\mathcal{N}_{\hat{\mu}\hat{\nu}}(x;\lambda_s) = \mathcal{M}_{\hat{\mu}\hat{\nu}}(\lambda_s) - \widehat{\alpha}_{\hat{\mu}\hat{\nu}}(x;\lambda_s)$ is

Figure 1: Basis vectors which determine AM coefficients & antenna patterns from detector geometry tensor \vec{d} . Given sky position \Rightarrow propagation direction \vec{k} , can define $\vec{i} \ll \vec{j}$ pointing "West & North on the sky" & construct basis tensors $\vec{e}_+ = \vec{i} \otimes \vec{i} - \vec{j} \otimes \vec{j} \ll \vec{e}_{\times} = \vec{i} \otimes \vec{j} + \vec{j} \otimes \vec{i}$. AM coefficients are $a = \vec{d} : \vec{e}_+ \& b = \vec{d} : \vec{e}_{\times}$. Preferred polarization basis aligns \vec{l} or \vec{m} along projected angular momentum of source (chosen so $-\pi/4 \le \psi \le \pi/4$) and defines $\vec{e}_+ = \vec{l} \otimes \vec{l} - \vec{m} \otimes \vec{m}$ $\& \vec{e}_{\times} = \vec{l} \otimes \vec{m} + \vec{m} \otimes \vec{l}$. Antenna patterns are $F_{+,\times} = \vec{d} : \vec{e}_{+,\times}$.

Divide signal parameters into

- Amplitude parameters $\mathcal{A} \equiv \{h_0, \chi = \cos \iota, \psi, \phi_0\}$
- Phase parameters $\lambda \equiv \{\alpha, \delta, f_0, f_1, ...\}$ which determine (Doppler modulated) $\phi(t)$

Detection Statistics: *F***-stat &** *B***-stat**

• Signal hypothesis $\mathcal{H}_{\mathcal{S}}(\mathcal{A}_{\mathcal{S}}, \lambda_{\mathcal{S}})$: $x(t) = n(t) + h(t; \mathcal{A}, \lambda)$

• Noise hypothesis \mathcal{H}_n : x(t) = n(t)

If signal parameters $\{A_s, \lambda_s\}$ known, optimal detection statistic is likelihood ratio

nates p & q and physical amp params $h_0 \& \chi = \cos \iota$. We plot lines of constant $h_0 \in [0, \infty) \& \chi \in [-1, 1]$, drawn in first quadrant of the $\{p, q\}$ plane. (The red shaded represents unphysical coordinate values.) Circular polarization, $\chi = \pm 1$, corresponds to q = 0 or p = 0.

Figure 3: Correspondence between angular polar coordinates $\theta_p \& \theta_q$ and physical amp params $\phi_0 \& \psi$. The principal region of polarization $\psi \in (-\pi/4, \pi/4]$ and phase

positive definite. In these coordinates, it's easy to calculate

If ML params are close to circular polarization (\hat{p} or \hat{q} small), two of eigenvalues of $\mathcal{N}_{\hat{\mu}\hat{\nu}}(x;\lambda_s)$ will be $\pm \frac{3}{2p^2} \Longrightarrow$ not positive definite. A has a saddle point, not a \approx Gaussian peak.

Integration in physical parameter space

Examination of (10) shows that, since $p, q \propto h_0$ and $\theta_p + \theta_q = 4\psi$, the log-likelihood has tractable h_0 and ϕ_0 dependence:

$$\Lambda(x;\mathcal{A}) = h_0 \,\omega(x;\chi,\psi) \cos[\phi_0 - \varphi_0(x;\chi,\psi)] - \frac{1}{2} h_0^2 [\gamma(\chi,\psi)]^2$$
(18)

the $h_0 \& \phi_0$ can be done analytically to give

$$\mathcal{B} \propto \int_{-1}^{1} d\chi \int_{-\pi/4}^{\pi/4} d\psi \frac{I_0(\xi(x;\chi,\psi)) e^{\xi(x;\chi,\psi)}}{\gamma(\chi,\psi)}$$
(19)

where

$$\xi(x;\chi,\psi) = \frac{[\omega(x;\chi,\psi)]^2}{4[\gamma(\chi,\psi)]^2}$$
(20)

Which leaves a 2D numerical integral. Since the ψ depen-

$$\frac{P(x|\mathcal{H}_{\mathcal{S}}(\mathcal{A}_{\mathcal{S}}, \boldsymbol{\lambda}_{\mathcal{S}}))}{P(x|\mathcal{H}_{\mathcal{N}})} = \exp[\Lambda(x; \mathcal{A}_{\mathcal{S}}, \boldsymbol{\lambda}_{\mathcal{S}})]$$
(4)

For targeted search, phase params λ_s (sky position, frequency, spindowns) known, but amp params \mathcal{A}_s unknown. \mathcal{F} -statistic method [1] defines maximized log-likelihood ratio

 $\mathcal{F}(x) = \max_{\mathcal{A}} \ln \frac{P(x | \mathcal{H}_{\mathcal{S}}(\mathcal{A}, \lambda_{\mathcal{S}}))}{P(x | \mathcal{H}_{n})} = \max_{\mathcal{A}} \Lambda(x; \mathcal{A}, \lambda_{\mathcal{S}}) \quad (5)$

Optimal statistic is actually \mathcal{B} -statistic [2] (Bayes factor; marginalized, not maximized)

 $\phi_0 \in [0, 2\pi)$ is shown in the $\{\theta_p, \theta_q\}$ plane; θ_p and θ_q are each periodically identified, with period 2π . Note that since the transformation $\{\psi, \phi_0\} \rightarrow \{\psi + \pi/2, \phi_0 + \pi\}$ leaves the waveform unchanged, the edge $\psi = -\pi/4, \phi_0 \in [0, \pi)$ is actually identified with $\psi = \pi/4, \phi_0 \in [\pi, 2\pi)$, while $\psi = -\pi/4, \phi_0 \in [\pi, 2\pi)$ is identified with $\psi = \pi/4, \phi_0 \in [0, \pi)$. These periodic identifications show that the principal $\{\psi, \phi_0\}$ region is equivalent to the region $\theta_p \in [0, 2\pi), \theta_q \in [0, 2\pi)$.

In these coordinates, the log-likelihood is

$$\begin{split} \Lambda(x;\mathcal{A},\lambda) &= \mathcal{A}^{\hat{\mu}} x_{\hat{\mu}}(\lambda) - \frac{1}{2} \mathcal{A}^{\hat{\mu}} \mathcal{M}_{\hat{\mu}\hat{\nu}}(\lambda) \mathcal{A}^{\hat{\nu}} \\ &= p \left(x_{\hat{1}} \cos \theta_p + x_{\hat{2}} \sin \theta_p \right) + q \left(x_{\hat{3}} \cos \theta_q + x_{\hat{4}} \sin \theta_q \right) \\ &- \frac{1}{2} I p^2 - \frac{1}{2} J q^2 - p q \left[K \sin(\theta_p + \theta_q) + L \cos(\theta_p + \theta_q) \right] (10) \\ \text{where } I = J \text{ in the long-wavelength limit.} \end{split}$$

dence is mostly oscillatory, we replace parts of the integrand with ψ -averaged versions:

$$\mathcal{B} \sim \int_{-1}^{1} d\chi \, \frac{I_0(\bar{\bar{\xi}}(x;\chi)) \, e^{\bar{\bar{\xi}}(x;\chi)}}{\bar{\gamma}(\chi)} \tag{21}$$

where $\overline{f} = \frac{2}{\pi} \int_{-\pi/4}^{\pi/4} d\psi f(\psi)$ and $\overline{\xi}(x;\chi) = \frac{[\overline{\omega}(x;\chi)]^2}{4[\overline{\gamma}(\chi)]^2}$; we then only have to integrate numerically over χ . This statistic is still more powerful than the \mathcal{F} -statistic, but quicker to calculate than the exact \mathcal{B} -statistic. [3]

References

[1] Jaranowski, Królak & Schutz, *PRD* 58, 063001 (1998)
[2] Prix & Krishnan, *CQG* 26, 204013 (2009)
[3] Prix, Whelan & Cutler in progress