

Advanced LIGO: A second-generation gravitational-wave detector

McGill University 16 April 2013

David Shoemaker MIT

LIGO Laboratory: two Observatories and Caltech, MIT campuses

 Mission: to develop gravitational-wave detectors, and to operate them as astrophysical observatories

 Jointly managed by Caltech and MIT; responsible for operating LIGO Hanford and Livingston Observatories

Requires instrument science at the frontiers of physics fundamental limits

2

Gravitational Waves – Einstein, 1916

- Gravitational waves are propagating dynamic fluctuations in the curvature of space-time ('ripples' in space-time)
- Emitted from accelerating mass distributions
 - » Generated by the time-dependence of the quadrupole mass moment
 - » Practically, need stellar-mass objects moving at speeds approaching the speed of light to make measurable signals

- Are physically manifested as strains (longer antenna makes bigger signals)
- A unique means to observe the most violent events in the universe
- ...but small signals: coalescing neutron stars in Virgo cluster lead to a strain on earth:

$$h \approx \frac{4\pi^2 GMR^2 f_{orb}^2}{c^4 r} \qquad \Rightarrow \qquad$$

Standard Candle: Compact binary inspiral, merger, ringdown

- This source has the best understood waveform and rate
- There's a lot of physics and astrophysics in the waveforms!
- Waveform reconstruction (often buried in detector noise).

Searches for Binary Mergers

The problem is that non-astrophysical sources also produces signals (false positives)

Astrophysical Sources of Gravitational Waves

Credit: AEI, CCT, LSU

- Coalescing
 Compact Binary
 Systems: Neutron
 Star-NS, Black
 Hole-NS, BH-BH
- Strong emitters, well-modeled,
 - (effectively) transient

- Asymmetric Core
 Collapse
 Supernovae
- Weak emitters, not well-modeled ('bursts'), transient
- Cosmic strings, soft gamma repeaters, pulsar glitches also in 'burst' class

Casey Reed, Penn State LIGO-G1300455-v3

Spinning neutron stars with a mountain

- (effectively) monotonic waveform
 - Long duration

NASA/WMAP Science Team

Cosmic Gravitationalwave Background

- Residue of the Big Bang, long duration
- Long duration, stochastic background

Insights into astrophysics inaccessible to photon and neutrino astronomy, and provides unique test of extreme relativity

How to detect these waves?

- Rai Weiss of MIT was teaching a course on GR in the late '60s
- Wanted a good homework problem for the students
- Why not ask them to work out how to use laser interferometry to detect gravitational waves?
- Weiss wrote the instruction book we have been following ever since

QUARTERLY PROGRESS REPORT

No. 105

APRIL 15, 1972

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

RESEARCH LABORATORY OF ELECTRONICS

CAMBRIDGE, MASSACHUSETTS 02139

- (V. GRAVITATION RESEARCH)
- B. ELECTROMAGNETICALLY COUPLED BROADBAND GRAVITATIONAL ANTENNA
- 1. Introduction

The prediction of gravitational radiation that travels at the speed of light has bee

... led to LIGO: 1989 Proposal to the US NSF

PREFACE

This proposal requests support for the design and construction of a novel scientific facility—a gravitational-wave observatory—that will open a new observational window on the universe.

The scale of this endeavor is indicated by the frontispiece illustration, which shows a perspective of one of the two proposed detector installations. Each installation includes two arms, and each arm is 4 km in length.

LIGO: Today, Washington state...

...LIGO in Louisiana

Interferometric Gravitational-wave Detectors

- Enhanced Michelson interferometers
 - » LIGO, Virgo, and GEO600 use variations
- Passing GWs modulate the distance between the end test mass and the beam splitter
- The interferometer acts as a transducer, turning GWs into photocurrent proportional to the strain amplitude
- Arms are short compared to GW wavelengths, so longer arms make bigger signals
 - → multi-km installations
- Length limited by taxpayer noise....

Addressing limits to performance

 Shot noise – ability to resolve a fringe shift due to a GW (counting statistics)

 Fringe Resolution at high frequencies improves as as (laser power)^{1/2}

 Point of diminishing returns when buffeting of test mass by photons increases low-frequency noise – use heavy test masses!

'Standard Quantum Limit'

 Advanced LIGO reaches this limit with its 200W laser source,10⁻²⁴
 40 kg test masses

Addressing limits to performance

 Thermal noise – kT of energy per mechanical mode

 Wish to keep the motion of components due to thermal energy below the level which masks GW

■ Low mechanical loss materials gather this motion into a narrow peak at resonant frequencies of system

Realized in aLIGO with an all fused-silica test mass suspension – Q of order 109

 Test mass internal modes,
 Mirror coatings engineered for low mechanical loss

Addressing limits to performance

 Seismic noise – must prevent masking of GWs, enable practical control systems

 Motion from waves on coasts... and people moving around

 GW band: 10 Hz and above – direct effect of masking

 Control Band: below 10 Hz – forces needed to hold optics on resonance and aligned

 aLIGO uses active servocontrolled platforms, multiple pendulums

Ultimate limit on the ground:
 Newtownian background –
 wandering net gravity vector; a
 limit in the 10-20 Hz band

The Design: Optical Configuration

15 LIGO-G1300455-v3

Key Interferometer Features

Laser light source

- High power to reduce the photon shot noise – 200 W, CW Nd:YAG 1.06 μm
- Frequency stabilized to a 15-meter triangular reference cavity which also stabilizes the pointing of the light

 Mode-matched from mm-size beam to the 4km arm cavities

Key Interferometer Features

4km Arm cavity design

- Stores light for longer interaction with GWs, increases phase shift on reflection
 - » Very low optical loss, \mathcal{F} = 450
 - » Light stored for ~4 msec
- Beam sizes: 6.2 cm on far mirror,5.3 cm on near mirror
 - » Diffraction limited beam size for 1.06 micron laser light
- Requires extremely well-figured mirrors, held in alignment and position with control systems

Near-confocal design

$$R_{ITM}$$
, $R_{ETM} \approx L$

» Gives better angular stability than the near flat-flat case (torques from off-center beams)

 Signal recycling mirror similarly forms cavity for gravitationally-induced sidebands on the light – allows tuning of instrument response

LIGO-G1300455-v3

Resulting flexibility in the instrument response Initial LIGO curves for comparison

A look at the hardware

LIGO-G1300455-v3

4km Beam Tubes

- Light must travel in an excellent vacuum
 - » A single molecule traversing the optical path makes a detectable change in path length, masking GWs!
 - » 1.2 m diameter avoid scattering against walls
- Cover over the tube hunters' bullets and the stray car
- Tube is straight to a fraction of a cm...not like the earth's curved surface

LIGO Vacuum Equipment – designed for several generations of instruments

200W Nd:YAG laser, stabilized in power and frequency

- Designed and contributed by Max Planck Albert Einstein Institute
- Uses a monolithic master oscillator followed by injection-locked rod amplifier

LIGO-G1300455-v3 23

Test Masses

- Requires the state of the art in substrates and polishing
- Pushes the art for coating!

- Both the physical test mass, a free point in space-time, and a crucial optical element
- Mechanical requirements: bulk and coating thermal noise, high resonant frequency
- Optical requirements: figure, scatter, homogeneity, bulk and coating absorption

Test Mass Polishing, Coating

- Heraeus substrates: low absorption, excellent homogeneity, stability under annealing
- Superpolished; then, cycle of precision metrology and ion-beam milling to correct errors; surface is flat to < 1/10 nm RMS over 300 mm aperture (Tinsley)
- Ion-beam assisted sputtered coatings, ~0.6 ppm/bounce absorption, and showing
 0.31 nm RMS over 300 mm aperture (LMA Lyon)
- Meets requirements of projected 75 ppm round-trip loss in 4km cavity

Compensation of focus induced by laser-induced substrate heating

- Measure & Control thermal lens in the Input Test Mass
 - → 1 MW of light circulating in arm cavities....
- Control the Radius Of Curvature (ROC) in the Input and End Test Masses

Thermal lenses

» Provide 35 km ROC range

CO2 laser beam

Stray Light Control

- Ensure that phase noise due to scattered light does not compromise interferometer performance by scattering back in to the beam
- Baffles suspended to reduce motion
- All baffles & beam dumps are oxidized, polished stainless steel sheet

Arm cavity

Cryopump

27

Pre-Lock Arm Length Stabilization

- How to reliably bring a 4km Fabry-Perot cavity into resonance, and align it over 4km?
- Green light injected through End Test Mass
- Forms low-finesse 4km cavity, provides robust and independent locking signal for 4km cavities
- Sidesteps challenge seen in firstgeneration detectors
- Off-axis parabolic telescope to couple light in/out; in-vacuum and seismically isolated
- Just brought into operation on the first Advanced LIGO 4km arm

Seismic Isolation: Multi-Stage Solution

- Objectives:
 - » Render seismic noise a negligible limitation to GW searches
 - » Reduce actuation forces on test masses
- Both suspension and seismic isolation systems contribute to attenuation
- Choose an active isolation approach, 3 stages of 6 degrees-of-freedom :
 - » 1) Hydraulic External Pre-Isolation
 - » 2) Two Active Stages of Internal Seismic Isolation
- Servo control amplifiers take the lowest noise sensor and deliver signal to the optimal actuator as a function of frequency to hold platform still in inertial space

LIGO-G1300455-v3

Seismic Isolation: two models

- Sensors are capacitive for 'DC', and seismometers to sense acceleration
- Electromagnetic motors for actuation
- Control system is digital, and fully multiple- input multiple-output to optimize for complex figures of merit
- Type I: Single stage (6 DOF) isolator

- Type II: Two-stage system, each with 6 DOF measured and actuated upon 18 DOF including hydraulic pre-actuator!
- Suspensions, baffles, etc. hung from quiet optical table
- Part of a hierarchical control system, with distribution of forces for best performance
- Provides a quiet versatile optical table; can carry multiple suspensions, baffles, detectors, etc.

Optics suspensions: Pendulums

Test Mass Quadruple Pendulum suspension a UK contribution

- Choose quadruple pendulum suspensions for the main optics; second 'reaction' mass to give quiet point from which to push
- Create quasi-monolithic pendulums using fused silica fibers to suspend 40 kg test mass
 - » VERY Low thermal noise!
- Another element in hierarchical control system

Where are we?

- All designs are complete, all major items procured
- ~90% of the subsystem work is completed
- The installation phase is ~2/3 completed
 and parts so far all fit and work together, happily
- The 'integrated testing' of many components together is well underway
- First 4km aLIGO cavity locked, tested at Hanford
- First suspended mode cleaner, tested at Livingston

And after the Project: Tuning for Astrophysics, and Observation

- Transition from Project back to Lab/ collaboration after two-hour lock
 - ♦ Planned for 2014
- First work with low laser power
 - ♦ No heating problems
 - ♦ No optically-driven torques
 - → Focus on low frequencies
 - ♦ Probably no signal recycling
- Ideal for first astrophysics as well
 - Standard candles are binary neutron stars
 - Most SNR in the 20-200 Hz region
- Focus later on high power, high frequency range

Current guess for sensitivity evolution, observation

- Vertical scale is the number of binary inspirals detected
- Rates based on population synthesis, realistic but uncertain
- ♦ LIGO Scientific Collaboration (LSC) preparing for the data analysis challenge
- Early detection looks feasible
- arXiv:1304.0670,
 arXiv:1003.2480

The advanced GW detector network

The Last Page

 The next generation of gravitational-wave detectors will have the sensitivity to make frequent detections

- The Advanced LIGO detectors are coming along well, planned to complete in 2015
- The world-wide community is growing, and is working together toward the goal of gravitational-wave astronomy

Goal: 100 years after Einstein's theory

