

Nanometer - Layered SiO₂::TiO₂ Mixtures For High Reflectance /Low Noise Coatings Status Update

Innocenzo M. Pinto Riccardo DeSalvo Shiuh Chao

Rationale

Prototypes

Measurements

Future Work

Low mechanical loss-angle per unit thickness (b) Depends **both** on complex Young modulus $Y = Y(1 - i\phi)$, **and** refractive index $n_{_H}$;

High dielectric contrast (n_H/n_L) helps *reducing the number of layers* (coating thickness) needed for a prescribed coating transmittance;

Low dielectric losses (*Im*[*n*_{*H*}]) *increases power-handling* capability.

Coating Materials ((O)) VIRGO

Several candidate materials scrutinized so far, e.g, [R. Flaminio et al., CQG 27 (2010) 084030]

	SiO ₂	Al_2O_3	Ti:Ta ₂ O ₅	TiO_2	Nb_2O_5	ZrO_2
Mechanical losses	0.5×10^{-4}	2.4×10^{-4}	2 × 10 ⁻⁴	6.3×10^{-3} ?	4.6×10^{-4}	2.3×10^{-4}
Density (kg m ⁻³)	2200	3700	6425	4230	4590	6000
Thermal conductivity	0.5	3.3	0.6	0.45	1	1.09
$(W m^{-1} K^{-1})$						
Specific heat	746	310	269	130	590	26
(J K ⁻¹ kg ⁻¹)						
Expansion	$0.5 imes 10^{-6}$	$8.4 imes 10^{-6}$	$3.6 imes 10^{-6}$	$0.5 imes 10^{-6}$	$5.8 imes 10^{-6}$	10^{-5}
coefficient (K ⁻¹)						
Thermo-optic	8×10^{-6}	$1.3 imes 10^{-6}$	14×10^{-6}	-1.8×10^{-4}	1.43×10^{-5}	10^{-4}
coefficient (K ⁻¹)						
Young modulus	60	210	140	290 ?	80	200
(GPa)						
Poisson coefficient	0.17	0.22	0.28	0.28	0.2	0.27
Refraction index	1.45	1.63	2.07	2.3	2.21	2.1

- W.H. Wang and S. Chao, Opt. Lett. 23 (1998) 1417. S. Chao et al., JOSA A16 (1999) 1477
- S. Chao, W.H. Wang, C.C. Lee, Appl. Opt 40(2001) 2177.

•*Thick* TiO_2 *crystallizes* upon annealing above ~ 200°C, signaled by blowup of optical extinction coefficient;

- *Mechanical losses* blow up in parallel;
- Can be mitigated doping SiO₂ w. SiO₂ (cosputtered);
- Related to *growth of crystallites* formed during deposition...

Extinction coefficient , K Absorption coefficient , α_a Scattering coefficient , α_s

Annealing Temp.

R.P. Netterfield and M. Gross, "Investigation of Ion Beam Sputtered Silica Titania Mixtures for Use in GW Interferometer Optics," Optical Interference Coatings (OIC) Conference, Tucson AZ, USA, 2007, paper Thd2.

The maximum annealing temperature above which TiO_2 crystallizes increases by increasing SiO_2 content (co-sputtered SiO_2 :: TiO_2 mixtures) and/or decreasing TiO_2 thickness (layered SiO2::TiO2 mixtures).

Annealing Silica

Loss angle of *un-annealed* Silica *decreases* with *decreasing* thickness Loss angle of *annealed* Silica *increases* with *decreasing* thickness

Slope of loss angle vs annealing T decreases with decreasing thickness

Lower annealing T needed for Silica-Titania nanometer layered materials ?

[S. Penn et al., LIGO-G1000932]

nm-Layered SiO₂ TiO₂ Films (IO)/VIRGO

Cosputtered vs nm-Layered

Layered SiO2::TiO2 mixture "bertter" than isotropic mixture at all stoichiometries

nanometer **may** subwavelengh thick

$$n_f = \left[r_H n_H^2 + (1 - r_H) n_L^2 \right]^{1/2}$$

$$Y_f^{\perp} = [r_H/Y_H + (1 - r_H)/Y_L]^{-1}$$
 , r_H^{\perp}

$$Y_f^{||} = r_H Y_H + (1 - r_H) Y_L$$

 $r_H = \frac{z_H}{z_L + z_H}$

 $z_{L,H}$ = physical thickness of L/H index material

$$\phi_f = \frac{\left(\frac{Y_s}{Y_H} + \frac{Y_H}{Y_s}\right) r_H \phi_H + \left(\frac{Y_s}{Y_L} + \frac{Y_L}{Y_s}\right) (1 - r_H) \phi_L}{Y_s \left[r_H / Y_H + (1 - r_H) / Y_L\right] + Y_s^{-1} \left[r_H / Y_H + (1 - r_H) / Y_L\right]^{-1}}$$

Isorefractive Collaboration Isorefractive nm-Layered Films

Number of nanolayers

K			
N TiO2	Thickness TiO2 [nm]	N SiO2	Thickness SiO2[nm
2	42.56	1	42.15
3	28.37	2	21.07
4	21.28	3	14.05
5	17.02	4	10.54
6	14.19	5	8.43
7	12.16	6	7.02
8	10.64	7	6.02
9	9.46	8	5.27
10	8.51	9	4.68

All designs have the same refractive index (2.09), the same physical thickness (127.27 nm) and he same optical thickness (QWL at 1064nm)

Prototype Fabrication

at NTHU

Full details in S. Chao et al., LIGO-G1200849

Prototype Characterization at NTHU

LSC 15-lavers nano-laver								-	
TiO2					Deposition rate: TiO ₂ 3.40 nm/min SiO ₂ 7.79 nm/min				
SiO ₂ TiO2 SiO ₂ TiO2 SiO	layı	yer Des thic	signed ckness	Deposition time	Measured thickness (TEM)	Thickness error	Measured thickness (Ellipsometry)	Thickness error	
TiO2	15	15 10.	.64nm	3′8″	11.30 nm	6.2%			
TiO2	14	14 6.0	02nm	46"	5.60 nm	7.0%			
SiO ₂	13	L3 10.	.64nm	3'8"	11.10 nm	4.3%			
sio ₂	12	12 6.0	02nm	46″	5.80 nm	3.8%			
SiO,	11	11 10.	.64nm	3'8"	10.60 nm	0.4%			
TIO2	10	10 6.0	02nm	46″	5.80 nm	3.7%			
Thermal Oxide 3 28m	9	9 10.	.64nm	3'8"	11.20nm	5.3%	Not avai	lable	
Silicon water	8	8 6.0	02nm	46"	5.60nm	7.0%			
	7	7 10.	.64nm	3′8″	11.80nm	11%			
45 m	6	6 6.0	02nm	46"	5.60 nm	7.0%			
5.6 nm	5	5 10.	.64nm	3'8"	12.10 nm	13.7%			
5.6 mm 12.6 mm	4	4 6.0	02nm	46"	5.60nm	7.0%			
5.6 mm 12.1 mm	3	3 10.	.64nm	3'8"	12.60 nm	18.4%			
<u>5.8 mm</u>	2	2 6.0	02nm	46″	5.60 nm	7.0%			
5.6 mm	1	1 10.	.64nm	3'8"	11.80 nm	10.9%			
20 mm 11.3 mm 11.1 mm LIGO-G120084	9 LVC meeting, Rome, Italy Sep.10,2012	Tio ₂ SiO	2 average	thickness for lathickness for l	ayer1 : 12.06 ayer 2 : 5.24 i	nm Standard nm Standard	deviation : 0.14 deviation : 0.20	nm	

Full details in S. Chao et al., LIGO-G1200849

Prototype Loss Angle Measurement ollaboration at NTHU

IGO

Scientific

• Errors from background noise and re-clamping fully analyzed and well understood;

*(O)*VIRG

 Background noise statistics estimated;

 Negligible effect of re-clamping scratches were found;

• 29 ring-down measurements (from 5 re-clampings) for each prototype taken.

Full details in S. Chao et al., LIGO-G1200849

Measured Nano Films Loss Angle

TiO₂::Ta₂O₅ film prototypes (LMA "formula 5") and related stresses

LIGO TIO₂::SiO₂ vs TiO₂::Ta₂O₅ ((O))/VRGO (un-annealed)

Un-annealed $TiO_2::Ta_2O_5$ film prototypes (LMA "formula 5") and related stresses ... uncertainty strip of 19-nanolayers isorefractive TiO2::SiO2 film prototype

LIGO-Virgo Collaboration Meeting, Bethesda MD, March 18-23 2013

Cryogenic Peak Free Mixtures ?

Fiducially, both TiO2 and HfO2 (while amorphous) are cryogenic - peak free

Nanometer layered $HfO_2::TiO_2$ mixtures may have any refraction index between 1.9 (pure Hafnia) and 2.3 (pure Titania). The dielectric contrast between (ideal) HfO_2 buffered TiO_2 and TiO_2 buffered HfO_2 can be ~ 1.2 (vs ~ 1.4 for Tantala/Silica)

Encouraging results from NTHU measurement of loss angle in nm-layered Silica-Titania films;

Future Work (((O))/VIRGD

Amorphous un-annealed Titania loss angle found to be of the order of 10⁻⁴, thickness dependent;

Amorphous un-annealed Titania Young modulus found to be roughly 165 Gpa;

Annealing is bein planned. Preliminary Results may be hopefully available for the next LVC