LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO -CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Technical Note

LIGO-T1300155-v1

2013/05/11

Alignment sensing control signals of DRMI

K Kokeyama, A Effler, and L Barsotti

Distribution of this document: LIGO Science Collaboration

California Institute of Technology LIGO Project, MS 100-36 Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory PO Box 159 Richland, WA 99352 Phone (509) 372-8106 Fax (509) 372-8137 E-mail: info@ligo.caltech.edu Massachusetts Institute of Technology LIGO Project, NW22-295 Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

> LIGO Livingston Observatory 19100 LIGO Lane Livingston, LA 70754 Phone (225) 686-3100 Fax (225) 686-7189 E-mail: info@ligo.caltech.edu

Contents

1	Introduction	1
2	In-vacuum AS path	1
3	In-vacuum REFL path	3
4	In-air REFL	4
5	In-air AS	6
6	POP DC QPD signal	7
7	Next steps	7

1 Introduction

This document shows the alignment signal matrix for dual-recycling Michelson Interferometer (DRMI) for Advanced LIGO (aLIGO) Livingston corner Michelson commissioning. The calculations are done by the simulation software Finesse. All the scripts can be found MIT CVS iscmodeling/Finesse/L1/ASC.

There are several wave front sensors (WFS) available for the corner Michelson commissioning, as listed in Table. 1. There are four sets of WFS; in-vacuum or in-air AS path and in-vacuum or in-air REFL path, and there is a set of DC QPDs in POP path. The path including Gouy phase telescopes are shown in Fig. 1. Each path has WFSA and WFSB which are 90 $^{\circ}$ separated in the accumulated Gouy phase. In the simulation, any fraction of the pick-off optics are taken out, except there is a 50 % pick-off beamsplitter to send the REFL beam to the in-vac or in-air REFL sensors. Table. 2 shows the DC power at each detection port, when the input beam power is 2 W.

The configuration of the corner Michelson interferometer in the simulation is DRMI with carrier fields locked both on PRC and SRC. Note that the DRMI model in the simulation has astigmatisms due to the foldings of PRC and SRC.

2 In-vacuum AS path

The Gouy phase telescope design and the beam parameters for in-vacuum (in-vac) AS path are shown in the left panel of Fig. 1 and in [1]. After transmitting SRM, the laser field passes through the tip-tilt M1 (Rc = 4.6 m) and M2 (Rc = 1.7 m), a flat steering beamsplitter M3, and a lens L101 (f = 0.334 m). In the simulation, the two tip-tilt mirrors (M1 and M2)

LIGO-T1300155-v1

Path	Mode	Location
In-vacuum AS	Science mode	HAM6
In-vacuum REFL	Science mode	HAM1
In-air AS	Acquisition mode	ISCT6
In-air REFL	Acquisition mode	ISCT1
In-vacuum POP (DC QPD)	Science mode	HAM2

Table 1: WFS path list for the corner part of the interferometer. Some of them might not be used for the DRMI commissioning time. Each WFS path has WFSA and WFSB which are 90 $^{\circ}$ separated in the accumulated Gouy phase.

Path	Power
In-vacuum AS	$3.1 \ \mu W$
In-vacuum REFL	$0.057 \mathrm{~W}$
In-air AS	$3.1 \ \mu W$
In-air REFL	$0.057 \mathrm{~W}$
In-vacuum POP (DC QPD)	$0.013 \mathrm{W}$

Table 2: DC power at each detection port, in the simulation. No fraction of the pick-off optics are considered, except there is a 50 % pick-off beamsplitter to send the REFL beam to the in-vac or in-air REFL sensors.

Figure 1: In-vacuum AS, In-vacuum REFL, In-air AS path. Node names used in the simulation are shown as well.

LIGO-T1300155-v1

Label	z [m]	beam radius $[mm](x, y)$	Gouy phase from SRM [deg] (x,y)
SRM	0	(2.00, 2.12)	(0, 0)
WFSA	6.46	(0.32, 0.31)	(242, 239)
WFSB	6.743	(0.301, 0.309)	(328, 331)

Table 3: Beam size and accumulated Gouy phases in in-vac AS path obtained by the simulation.

are approximated as lenses with the focal lengths of the half radius of curvature, and tip-tilt M3 is abbreviated so that we don't take into account any additional astigmatism due to the incident angle of the telescopes, and also the pick-off factors at the WFS path.

The obtained beam parameters are listed in Table. 3, showing a good agreement with the design values in [1].

The calculated ASC matrices in in-vac AS are shown from Table. 4 to Table. 7. They are shown in [W/rad], and any pick-offs at the detection port is taken out, i.e., WFS senses all the power at AS port. In this detection port, because f_1 sideband does not leak to the AS port, signals are obtained only by f_2 demodulation. The strongest ITM and BS signals at in-vac AS port are plotted in Fig. ?? as a function of the accumulated Gouy phase (i.e., the WFS position).

WFSA, Demod by 36 MHz [W/rad]				
	yaw	pitch		
ITMy	-0.811	-0.839		
ITMx	0.785	-0.818		
BS	-0.760	1.13		
PRM	-0.000935	0.000941		
PR2	0.00307	-0.00303		
PR3	0.0267	0.0263		
SRM	-0.000759	0.000646		
SR2	-0.00927	-0.00837		
SR3	-0.0607	0.0548		

WFSA, Demod by 45 MHz [W/rad]				
	yaw	pitch		
ITMx	2260	-2140		
ITMy	-2260	-2140		
BS	-2190	2980		
PRM	-0.0301	0.0263		
PR2	0.151	-0.132		
PR3	1.31	1.14		
SRM	0.000408	-0.000403		
SR2	0.00307	0.00303		
SR3	0.0205	-0.0201		

Table 4: In-vacuum AS WFSA, demodulated Table 5: In-vacuum AS WFSA, demodulated by 36 MHz. Demodulation phases are opti- by 45 MHz. Demodulation phases are opti- mzed so that each signal is maximum.

3 In-vacuum REFL path

The Gouy phase telescope design and the beam parameters for in-vacuum REFL path are shown in the middle panel of Fig. 1. There are seven telescopes, pre-mode-matching telescope 1 (PMMT1, Rc = -6.24 m), PMMT2 (Rc = 12.8 m), tip-tilt M1 (Rc = 1.7 m), M2 (Rc = -0.6 m), M3 (Rc = 1.7m), and two lenses, L1f (f = 0.333 m) and L2f (f = -0.167 m). Please

WFSB, Demod by 36 MHz [W/rad]				
	yaw	pitch		
ITMy	0.578	0.626		
ITMx	-0.600	0.645		
BS	0.554	-0.860		
PRM	0.000972	-0.000968		
PR2	-0.00495	0.00489		
PR3	-0.0430	-0.0426		
SRM	0.000631	-0.000559		
SR2	0.00418	0.00374		
SR3	0.0275	-0.0245		

WFSB, Demod by 45 MHz [W/rad]				
	yaw	pitch		
ITMx	2580	-2270		
ITMy	-2580	-2260		
BS	-2500	3160		
PRM	-0.0366	0.0284		
PR2	0.191	-0.148		
PR3	1.66	1.29		
SRM	0.00115	-0.000831		
SR2	0.00864	0.00625		
SR3	0.0560	-0.0405		

Table 6: In-vacuum AS WFSB, demodulated Table 7: In-vacuum AS WFSB, demodulatedby 36 MHz.by 45 MHz.

Label	z [m]	beam radius [mm] (x, y)	Gouy phase from PRM $[deg](x,y)$
Telescope M1	0	(2.01, 2.04)	(26.1, 24.8)
WFSA	3.26	(0.330, 0.331)	(223, 221)
WFSB	3.63	(0.378, 0.378)	(314, 315)

Table 8: Beam parameters in in-vac REFL path obtained by the simulation.

see [2] for the spacial parameters. Similarly to the in-vac AS path case, all the telescopes are included as lenses in the simulation. The obtained beam size and the accumulated Gouy phase are listed in Table. 8.

The calculated ASC matrices in in-vac REFL are shown from Table. 9 to Table. 12. They are shown in [W/rad], and any pick-offs at the detection port is taken out, i.e., WFS senses all the power at REFL port. In this detection port, PR3 misalignment signals are the strongest of all the signals. The second strongest signals are the ITM and BS signals.

4 In-air REFL

There is the in-air REFL path on ISCT1. The detailed parameters are to be determined. The following matrices are example using Kiwamu's solution (C). The estimated q parameter at the edge of ISCT1 is q = 1.13 + 13i (z = 0). There are two lenses, f0_airREFL (f = 0.6785 m at z = 0.677 m) and f1_airREFL (f = -0.5727 m at z = 1.0323 m). The beam waist after these lenses are about 250 μ m. The ASC matrices at in-air REFL port are shown in Table. 13 to Table. 16

WFSA, Demod by 9 MHz [W/rad]				
	yaw	pitch		
ITMx	11400	-11000		
ITMy	11400	10900		
BS	11300	-14500		
PRM	-59.6	58.2		
PR2	3950	-3810		
PR3	26100	26400		
SRM	-0.000764	0.000774		
SR2	-0.00575	-0.00583		
SR3	-0.0377	0.0382		

WFSA, Demod by 45 MHz [W/rad]		
	yaw	pitch
ITMx	11500	-11000
ITMy	11400	11000
BS	11300	-14500
PRM	-59.6	58.2
PR2	3950	-3810
PR3	26100	26400
SRM	0.0638	-0.0557
SR2	0.480	0.419
SR3	3.03	-2.67

Table 9: In-vacuum REFL WFSA, demodu-
Table 10: In-vacuum REFL WFSA, demodu-
lated by 9 MHz.In-vacuum REFL WFSA, demodu-
lated by 45 MHz.

WFSB, Demod by 9 MHz [W/rad]				
	yaw	pitch		
ITMx	13900	-12800		
ITMy	13900	12800		
BS	13400	-18200		
PRM	-1280	1200		
PR2	4210	-4030		
PR3	41700	39400		
SRM	-0.000803	0.000790		
SR2	-0.00604	-0.00594		
SR3	-0.0395	0.0388		

WFSB, Demod by 45 MHz $[W/rad]$				
	yaw	pitch		
ITMx	13900	-12800		
ITMy	13900	12800		
BS	13400	-18200		
PRM	-1280	1200		
PR2	4210	-4040		
PR3	41700	39400		
SRM	0.0463	-0.0402		
SR2	0.348	0.303		
SR3	2.30	-2.00		

Table 11: In-vacuum REFL WFSB, demodu-
lated by 9 MHz.Table 12: In-vacuum REFL WFSB, demodu-
lated by 45 MHz.

WFSA, Demod by 9 MHz [W/rad]				
	yaw	pitch		
ITMx	-16700	15300		
ITMy	-16700	-15300		
BS	-16200	21300		
PRM	540	-500		
PR2	-5270	4970		
PR3	-46000	-43500		
SRM	0.000957	-0.000936		
SR2	0.00720	0.00704		
SR3	0.04702	-0.0460		

WFSA, Demod by 45 MHz [W/rac					
	yaw	pitch			
ITMx	-16700	15300			
ITMy	-16700	-15300			
BS	-16200	21300			
PRM	540	-500			
PR2	-5270	4970			
PR3	-46100	-43500			
SRM	-0.0767	0.0655			
SR2	-0.577	-0.493			
SR3	-3.77	3.22			

Table 13: In-air REFL WFSA, demodulated Table 14: In-air REFL WFSA, demodulated by 9 MHz. by 45 MHz.

WFSA	WFSA, Demod by 9 MHz [W/rad]				
	yaw	pitch			
ITMx	-7830	7400			
ITMy	-7820	-7410			
BS	-7590	10300			
PRM	1160	-1120			
PR2	-2470	2410			
PR3	-21600	-21100			
SRM	0.000572	-0.000581			
SR2	0.00430	0.00437			
SR3	0.0281	-0.0286			

WFSA, Demod by 45 MHz $[W/rad]$					
	yaw	pitch			
ITMx	-7840	7420			
ITMy	-7820	-7410			
BS	-7590	10300			
PRM	1170	-1120			
PR2	-2470	2410			
PR3	-21600	-21100			
SRM	-0.0200	0.0176			
SR2	-0.150	-0.133			
SR3	-0.983	0.867			

Table 15:In-air REFL WFSB, demodulated Table 16:In-air REFL WFSB, demodulatedby 9 MHz.by 45 MHz.

5 In-air AS

There will be in-air AS path on ISCT6. The two solutions of the beam parameters are summarized in [1]. Here, we used the first solution for the ASC matrix calculation, and its setup is shown in the right panel of Fig. 1. The beam transmits a curved mirror M1 (common as in-vacuum AS path), then two lenses AIR_L1_AS (f = 1.146m), AIR_L2_AS (f = 0.556m). Then there is a lens AIR_L3_AS (f = -0.0556m) before in-air AS WFSA, and AIR_L4_AS (f = -0.111m) before in-air WFSB.

Table.	17	and	Table.	20	are	the	sensing	matrix	at	in-air	AS	QPDs.
--------	----	-----	--------	----	-----	-----	---------	-------------------------	----	--------	----	-------

WFSA, Demod by 36 MHz [W/rad]				
	yaw	pitch		
ITMy	-0.257	-0.291		
ITMx	0.248	-0.283		
BS	-0.213	0.356		
PRM	-0.00109	0.00108		
PR2	0.00538	-0.00536		
PR3	0.0468	0.046717		
SRM	-0.000940	0.000868		
SR2	-0.00831	-0.00778		
SR3	-0.0545	0.051122		

WFSA, Demod by 45MHz [W/rad]				
	yaw	pitch		
ITMy	838	585		
ITMx	-838	586		
BS	813	-817		
PRM	0.01524	-0.0101		
PR2	-0.0865	-0.0607		
PR3	-0.756	0.531		
SRM	-0.000710	0.000452		
SR2	-0.00534	-0.00340		
SR3	-0.0343	0.0218		

Table 17: In-air AS WFSA, demodulated by Table 18: In-air AS WFSA, demodulated by36 MHz.45 MHz.

WFSB, Demod by 36 MHz [W/rad				
	yaw	pitch		
ITMy	0.949	0.956		
ITMx	-0.951	0.958		
BS	0.907	-1.31		
PRM	0.000791	-0.000829		
PR2	-0.00265	0.00280		
PR3	-0.0230	-0.0242		
SRM	-6.25e-05	7.11e-05		
SR2	0.00411	0.00416		
SR3	0.0268	-0.0271		

WFSB, Demod by 45MHz [W/rad]				
	yaw	pitch		
ITMy	-3460	-2990		
ITMx	3470	-2990		
BS	-3360	4170		
PRM	-0.0470	0.0366		
PR2	0.239	-0.186		
PR3	2.08	1.61		
SRM	0.00113	-0.000837		
SR2	0.00848	0.00630		
SR3	0.0554	-0.0412		

Table 19: In-air AS WFSB, demodulated by Table 20: In-air AS WFSB, demodulated by36 MHz.45 MHz.

6 POP DC QPD signal

There is a DC QPD in the POP path to monitor the beam pointing inside PRC [2]. After transmitting PR2, there are two lenses, POPL1 (f = 0.333 m) and POPL2 (f = -0.556 m). The ASC matrices at POP QPDs are shown in Table. 21 and 22. The POP signals will be used for the pointing control of the PRC and the signals will be fed back to the beam pointing actuators before PRM. Both POP1 and POP2 are most sensitive to PR3.

QPD1 [W/rad]					
	yaw	pitch			
ITMy	-4770	-4180			
ITMx	-4770	4190			
BS	-4630	5820			
PRM	378	-349			
PR2	-1510	1360			
PR3	-13200	-11900			
SRM	-7.44×10^{-6}	6.44×10^{-6}			
SR2	-5.60×10^{-5}	-4.85×10^{-5}			
SR3	-0.000366	0.000317			

Table 21: POP DC QPD1 signal.

QPD2 [W/rad]				
	yaw	pitch		
ITMy	5870	5230		
ITMx	5870	-5240		
BS	5700	-7290		
PRM	-211	179		
PR2	1850	-1700		
PR3	16200	14900		
SRM	-1.89×10^{-6}	1.15×10^{-6}		
SR2	-1.42×10^{-5}	-8.63×10^{-6}		
SR3	-9.29×10^{-5}	5.65×10^{-5}		

Table 22: POP DC QPD2 signal.

7 Next steps

Our next step is to create the model in Optickle and to double check the calculation. Also, the signals of the beam pointing towards PRM should be calculated.

For the full interferometer, the strategy for the SRC alignment control should be considered. In our signal extraction scheme, the SRC misalignment signal is difficult to be extracted.

References

- [1] LIGO-T1200410-v2, Lisa Barsotti
- [2] LIGO-T1000247-v3, Sam Waldman
- [3] Internal note by Kiwamu Izumi