Effect of the inclusion of sub-dominant modes of gravitational-waves emitted from binary black hole mergers - measured by a gravitational-wave burst search algorithm

Amaldi 10

Warszawa 2013

Satya Mohapatra[§], James Clark[¶], Laura Cadonati[¶]

GR 20

Sub-Dominant Modes of Binary Black Hole Merger Signal

- Gravitational waves are expressed in the basis of spin weighted spherical harmonics,
- SY_{fm} , with spin weight s = -2.
- For the gravitational wave from the merger a binary black hole, the dominant contributions come from the modes: (l, m): (2 ± 2) .
- Until now gravitational-wave searches, have only utilized the dominant modes for the full Inspiral-Merger-Ringdown waveform model, such as the Effective One Body tuned to Numerical Relativity (EOBNRv2 - Buonanno et al. 2009) waveform.
- * Recently an analytical model extension of EOBNRv2 with the inclusion sub-dominant modes (up to l = 5) has become available – **EOBNRv2HM** (Pan et al. 2012).
- Sub-dominant modes contribute towards the luminosity of the emitted gravitational wave - hence a gravitational-wave burst search can be sensitive to the inclusion of sub-dominant modes in addition to the dominant modes.
- ❖ In this poster we show the effect of the inclusion of sub-dominant modes in addition to the dominant modes in a gravitational-wave burst search for binary black holes. We utilize a burst search which uses sine-Gaussian basis to filter and then finds statistically significant excess energy in the time-frequency representation of the strain data.

Inclination Angle and Mass Asymmetry

(l, m): (2 ± 2) : Dominant Modes Other Modes: Sub-dominant Modes EOBNRv2HM analytical waveform

basis, super-imposed with the

black hole merger with both dominant

and sub-dominant modes.

Inclination angle (ι) is the angle between the line of sight and the orbital angular momentum of a binary black hole system. In this diagram, examples are shown of observation made at different inclination angles.

The amplitude of gravitational-wave strain is maximum when observed at the face-on direction. The strain amplitude decreases as the point of observation moves towards the edge-on direction.

Examples of peak SNR difference (scatter points), measured by the above mentioned burst search, between binary black hole merger gravitational-wave signal with dominant modes only and signal with both dominant modes and subdominant modes, added to the 5th Science run of LIGO Hanford (H1) noise, at different inclination angles.

Detection Efficiency: Mass Ratio

Measured detection efficiency (estimated by counting missed and found signals at a distance), averaged over inclination angle and total mass, of a burst search with simulation that includes sub-dominant modes compared with signal that includes dominant modes only. 2 months of the 5th science run of LIGO Hanford (H1) noise is used. A single detector SNR threshold of 5.5 is the criterion for found signal in this study.

$D_{-a}^{50\%}$ (Mpc) Mass ratio: 1 -

Detection Efficiency: Total Mass

Measured detection efficiency for the above set of signals but averaged over mass ratios and inclination angles.

	$(2, \pm 2)$	$(2, \pm 2)$	ℓ up to 5	ℓ up to 5
Set	$D_{\text{eff}}^{50\%}$ (Mpc)	$D_{\text{eff}}^{90\%} \text{ (Mpc)}$	$D_{\text{eff}}^{50\%}$ (Mpc)	$D_{\text{eff}}^{90\%} \text{ (Mpc)}$
$2 - 25 M_{\odot}$	45	7	47 († 4%)	7 (0%)
$25 - 100 M_{\odot}$	307	93	321 († 5%)	97 († 4%)
$100 - 350 M_{\odot}$	292	57	375 († 28%)	110 († 92%)

The inclusion of sub-dominant modes in the signal brings additional modulation in the strain. This effect is visible on the time-frequency profile as measured by a burst search. The measured peak frequency by a burst search is pushed up to a higher value at the edge-on orientation compared to the face-on orientation.

edge-on

Implications

- The contributions from the sub-dominant modes increase with the inclination angle. No effect of the sub-dominant modes measured at the face-on direction.
- The maximum contribution as measured by a burst search need not occur right at the edge-on but near the edge-on direction.
- ❖ For asymmetric mass binary black hole system, sub-dominant modes are more important than symmetric mass binary black hole system.
- ❖ Sub-dominant mode effect is negligible for stellar mass binary black holes. But it is important for intermediate mass binary black holes measured in a burst search.
- ❖ Any burst search upper limits drawn on dominant mode models are possibly under
- * Time frequency properties measured by a burst search change with the inclusion of the sub-dominant modes. Measured signal energy is pushed up to higher frequency when observed away from the face-on orientation.