Quantum noise reduction using squeezed states in LIGO

LIGO interferometers, quantum light and quantum noise Generation and detection of squeezing Squeezing in Enhanced LIGO Environmental noise couplings Limits to the level of squeezing Losses Squeezing angle fluctuations Potential benefit for Advanced LIGO and beyond

Michelson interferometer

Michelson interferometer

Michelson interferometer

LIGO interferometers

Need to reduce quantum noise

Quantum noise in an interferometer

Quantum Light

$$\hat{E} = \varepsilon \left(\hat{X}_1 \cos \omega t + \hat{X}_2 \sin \omega t \right)$$

The uncertainty principle

 $\Delta X_1 \Delta X_2 \ge 1$

Quantum Light

$$\hat{E} = \varepsilon \left(\hat{X}_1 \cos \omega t + \hat{X}_2 \sin \omega t \right)$$

The uncertainty principle

 $\Delta X_1 \Delta X_2 \ge 1$

Sqaeeze & watuations

Squeezing in an interferometer

LIGO interferometers, quantum light and quantum noise Generation and detection of squeezing Squeezing in Enhanced LIGO Environmental noise couplings Limits to the level of squeezing Losses Squeezing angle fluctuations Potential benefit for Advanced LIGO and beyond

Vacuum and coherent states are sums of uncorrelated sidebands

Squeezer: Optical parametric oscillator

Classical OPO: Phase sensitive amplifier

Quantum OPO: Turns a vacuum state into squeezed vacuum

A squeezed state is a sum of correlated sidebands

15

A squeezer table

Homodyne Detector

Interferometer Dark Port

Balanced Homodyne Detection

•Noise of local oscillator is subtracted

Balanced Homodyne Detection

Unbalanced Homodyne Detection

High reflectivity
beam splitter
Requires low noise
local oscillator

Unbalanced Homodyne Detection

High reflectivity
beam splitter
Requires low noise
local oscillator

LIGO interferometers, quantum light and quantum noise Generation and detection of squeezing Squeezing in Enhanced LIGO Environmental noise couplings Limits to the level of squeezing Losses Squeezing angle fluctuations Potential benefit for Advanced LIGO and beyond

H1 squeezing experiment

- Demonstrate that squeezing does not add noise in the LIGO band
- Study environmental noise couplings
- Understand limits to measured squeezing in order to plan for aLIGO+ squeezing

Experiment Layout

Squeezing in Enhanced LIGO

Best broadband sensitivity to date

Squeezing in Enhanced LIGO

LIGO interferometers, quantum light and quantum noise Generation and detection of squeezing Squeezing in Enhanced LIGO Environmental noise couplings Limits to the level of squeezing Losses Squeezing angle fluctuations Potential benefit for Advanced LIGO and beyond

Backscatter noise

- Light from interferometer is sent towards OPO
- A second scattering event in OPO sends light back towards IFO
- Spurious interferometer adds noise

Noise Coupling

Around 100 fW of backscattered power at detector

Backscatter in Advanced LIGO

<u>Better</u>

Acoustic enclosure (factor of 10 above 100 Hz)
Lower OPO finesse (needed anyway)
Good Faraday performance in vacuum

<u>Worse</u>

More power
6 dB of squeezing
Better detection

efficiency

Possibly better matching

of scattered beam into
OPO

Backscatter noise 40-80x below shot noise above 100 Hz.

Out of vacuum OPO is compatible with Advanced LIGO sensitivity, in vacuum OPO probably needed for a third generation interferometer.

LIGO interferometers, quantum light and quantum noise Generation and detection of squeezing Squeezing in Enhanced LIGO Environmental noise couplings Limits to the level of squeezing Losses Squeezing angle fluctuations Potential benefit for Advanced LIGO and beyond

Losses destroy squeezing

•Every loss can be seen as a beamsplitter with power transmission η_{loss}

Losses destroy squeezing

•Every loss can be seen as a beamsplitter with power transmission η_{loss}

•A loss allows vacuum state to "leak" into the beam

Losses destroy squeezing

Losses limit squeezing

Loss budget and goals

	Enhanced LIGO	Advanced LIGO
	squeezing	assumptions
3 faraday passes	5% each	3% each
Mode matching	30%	4%
Output mode cleaner	19%	3%
Total losses	55-60%	20-25%

Based on a tally of 11 different loss sources

Losses degrade the purity of the squeezed state

Squeezing with a radiation pressure limited interferometer

LIGO interferometers, quantum light and quantum noise Generation and detection of squeezing Squeezing in Enhanced LIGO Environmental noise couplings Limits to the level of squeezing Losses Squeezing angle fluctuations Potential benefit for Advanced LIGO and beyond

Squeezing Angle Fluctuations

Squeezing Angle Fluctuations

Squeezing angle fluctuations

Measurement of squeezing angle fluctuations and losses

Squeezing angle fluctuations

LIGO interferometers, quantum light and quantum noise Generation and detection of squeezing Squeezing in Enhanced LIGO Environmental noise couplings Limits to the level of squeezing Losses Squeezing angle fluctuations Potential benefit for Advanced LIGO and beyond

An alternative to high power operation in Advanced LIGO

Squeezing in Advanced LIGO

Squeezing with full power

Frequency Dependent Squeezing

Paths to better squeezing

Non linear gain optimized for shot noise limited interferometer, maximum pump power 80% of threshold

Summary

- 2dB of squeezing in Enhanced LIGO
- Squeezing compatible with low frequency sensitivity
- Backscatter should not be a problem for aLIGO
- To get higher levels of squeezing we will need to reduce interferometer losses and squeezing angle fluctuations

Squeezing will soon be the simplest way to improve LIGO's sensitivity

Thank you!

- My committee
- Mentors: Nergis Mavalvala, Lisa Barsotti, Daniel Sigg
- LIGO Lab at MIT, staff at Hanford, and all the squeezers

Coherent locking of squeezing angle inject frequency shifted sideband with coherent amplitude

Squeezing angle error signal

IFO carrier

SQZ sideband

Squeezing angle error signal

Squeezing angle error signal

- Static misalignments will cause a change in the demodulation phase needed to detect the maximum squeezing
- Beam jitter will add phase noise, especially when beating against a static misalignment.