OMC optical design

The previous version of the slides were presented in the ISC meeting on Oct. 18, 2012
The parameters and plots in this slides have been updated to accommodate the update after the presentation and keep the consistency with the design document T1000276-v5

Mission of the OMC:

- Transmit TEMOO mode
- Filter higher order modes
- Filter RF sidebands

Previous design progress (by Sam W)

- two choices (bowtie \& no BS)
- RoC of the curved mirror ~2.5m
- Roundtrip length of the cavity $1.1 \sim 1.3 m$
$==>$ The mirrors have been ordered and delivered
Precise design based on the delivered optics
- Using actual Rs\&Ts, RoC

OMC optical design

Bowtie or No-BS?: TEM00 Transmission

$526.1992 \mu \mathrm{~m} \omega 0 \mathrm{y}=526.8864 \mu \mathrm{~m}$

	AOI	Request	Data sheet	
A) IO coupler	4deg(P)	T~8300ppm	T=7931ppm	L(roundtrip):
B) Beam splitter	45deg(P)	T~50\%	T=50.385\%	$1.132[\mathrm{~m}]$ for bowtie
C) High Reflector	4deg(P)	T~50ppm	T=51.48 or 46.40 ppm	$1.175[\mathrm{~m}]$ for no-bs
D) Output mirror	4deg(P)	T~4150ppm	T=4089ppm	RoC=2.575[m]
E) Leaky HR	45deg(P)	T~7500ppm	T=7400ppm	AR loss ignored
				Loss(roundtrip)=40ppm

OMC optical design

Bowtie or No-BS?: Filtering Performance

How to guess the amount of HOMs? ==> eLIGO OMC scan data
Note:
aLIGO may have better beam quality at the dark port owing to the better optics. But it is unknown for now.
=> The same analysis should be redone once the results of the aLIGO simulation or actual measurement are taken place.

OMC optical design

Power-law modeling of the mode scan data

HOM Model

OMC output: Calibrated with the sideband power Carrier:
How much carrier higher-order modes leak out from the IFO when the carrier of 1 W is hitting on the BS 0 for TEMOO
7e-5 [W/W] for the 1st order
$1.8 \mathrm{e}-3 \times 10^{\wedge}(-n / 4.8)$ for the order $n>2$
(total of modes in an order)
No correction for SR (No mode healing)
PRG of aLIGO: ~45

Sidebands:

Thru-put from incident to the dark port
For 45 MHz sidebands
1 for TEMOO
0.17 for the 1st order
$7.0 \mathrm{e}-1 \times 10^{\wedge}(-n / 6)$ for the order $n>2$
For 9 MHz sidebands
$1 / 1000$ of 45 MHz sidebands
(T070247-01 P.9, Fig.4)

OMC optical design

Bowtie or No-BS?: Filtering Performance
 $$
\mathrm{RoC}=2.575 \mathrm{~m}
$$

Excess transmitted power to the DCPD
in relative to the incident laser power to the IFO

These two cases have very similar mode structure except that No-BS tends to have a slightly longer cavity length for a same spot

OMC optical design

Bowtie or No-BS?: HOM structure

The mode structure is very similar for both cases.

Bowtie (L=1.147)

NoBS (L=1.280)

OMC optical design

Bowtie or No-BS:

- No-BS has slightly higher TEM00 transmission (98.2% vs 98.7%, for loss of 10 ppm per bounce)
- They have equivalent filtering performances once the cavity parameters are optimized
- "No-BS" tends to have slightly ($\sim 4 \%$) longer optimum length
- Intuition:
"The beams for the PDs should be common as far as possible"
For the first OMC for LLO, $\underline{\underline{I}}$ decided to adopt "Bowtie" design

OMC optical design

Koji Arai / Jan. 25, 2013
LIGO-G1201111-v2 8/14

OMC optical design

Curvature radius tolerance of the curved mirrors

 $\mathrm{L}=2.575+/-0.015$ [m]RoC=2.575 m

OMC optical design

Cavity length tolerance: L=1.132+/-0.005 [m]

OMC optical design

Mirror curvature meaurement

- The optimum length of the OMC: really depends on the mirror RoC.
- The vender did not provide an absolute RoC spec
(only the phase map results relative to a reference sphere)

OMC optical design

Gallery

1/2" curved mirror

lat mirror "tombstone"
bands seen on the edge of the coating!?

OMC optical design

Measurement example

C1: RoC measurement (2012/11/16)

== Yaw Misalign $26 \mathrm{MHz}==$
Peak1: $26.2249+/-0.00035971 \mathrm{MHz}$
FWHM: $63.8807+/-0.36584 \mathrm{kHz}$
== Yaw Misalign $57 \mathrm{MHz}==$
Peak1: $57.1457+/-0.00054872 \mathrm{MHz}$
FWHM: $69.0865+/-0.55881 \mathrm{kHz}$
== Yaw Misalign $109.5 \mathrm{MHz}==$
Peak1: $109.602+/-0.00041511 \mathrm{MHz}$
FWHM: $66.3678+/-0.42243 \mathrm{kHz}$
== Yaw Misalign Summary $==$
FSR: $83.3771+/-0.00054928 \mathrm{MHz}$
Cavity length: $1.7978+/-1.1844 \mathrm{e}-05 \mathrm{~m}$
Lock offset: $3.2642+/-0.49773 \mathrm{kHz}$
RoC: $2.578450+/-0.000042[\mathrm{~m}]$

OMC optical design

RoC measurement of the 9 OMC curved mirrors \#1: RoC: $2.57845+/-4 \times 10^{-5} \mathrm{~m}$
\#2: RoC: $2.54363+/-5 \times 10^{-5} \mathrm{~m}$
\#3: RoC: $2.57130+/-6 \times 10^{-5} \mathrm{~m}$
\#4: RoC: 2.58176 +/- $7 \times 10^{-5} \mathrm{~m}$
\#5: RoC: $2.57369+/-9 \times 10^{-5} \mathrm{~m}$
\#6: RoC: $2.57321+/-4 \times 10^{-5} \mathrm{~m}$
\#7: RoC: $2.56244+/-4 \times 10^{-5} \mathrm{~m}$
\#8: RoC: $2.56291+/-5 \times 10^{-5} \mathrm{~m}$
\#9: RoC: $2.57051+/-7 \times 10^{-5} \mathrm{~m}$
==> 2.575 +/- 0.005 [m] (\#2, \#7, \#8 excluded)

