

Composite mirror suspensions development status

Riccardo DeSalvo For the ELiTES R&D group WP1 & 2

JGW-G1201265

 A fresh approach to the design of low thermal noise mirror suspensions for KAGRA and ET

- Composite structure
- Purely Compressive joints
- No shear noise
- No need for bonding
- Easy replacements
- Easily scalable to larger masses

- Silicon flexures
- Intrinsic Q-factor >10⁸
- Thermo-elastic >10⁶
- Diluted Q-factor >10⁹
- Before cryo gain !
- Many Machining options available

- Ultra-Sound Machined
 structure
- Etching of the flexure surface
- Sufficient 0.15 GPa b.p.
- Etching may increase the break point > 1GPa

- Flexure structure
- Thin, short, etched flexure
- Small flexure aspect ratio
- = > Large thermal conductance

4" un-doped double-side polished (001) silicon wafer, 500um thickness etched down to 92 and 52 μm

0.3 10⁻⁶ loss measured from residual gas

04

• @ 60 Hz 0.945 10⁻⁶ loss angle predicted (T.E.)

Thermo-elastic límit

- 1.3 10⁻⁶ measured (-) 0.3 10⁻⁶ residual gas
- 1. 10⁻⁶ loss angle measured
- => Thermoelastic dominated

Kenjí's Q-factor measurements

- Measurement on a mirror substrate
- 10⁸ lower limit

- Compression joint attachment
- Machined-polished Sapphire ribbons

(from bulk, not grown)

- High quality sapphire
- High quality surface finish (sub-phonon defect size)
- => High thermal conductivity !

- Mini-alcoves (low volume machining)
- Machining before coating deposition
- Minimize substrate induced stress
- Recessed attachment, Low vulnerability
- No bonding shear noise
- No flats on mirror barrel => 100% of mirror front surface available

- Purely compressive joints
- Direct silicon-sapphire contact
- => No energy loss for bending
- Problem: Lateral slippage between hard surfaces
- Sub-µm Indium or Gallium gasket
- Elimination of stick and slip noise (credit: Vladimir Braginsky)
- Perfect heat conductivity
- Easy replaceability

- Elimination of vertical suspension thermal noise (necessary due to KAGRA's tunnel tilt)
- Equalization of stress on wires
- Removal of bounce mode from sensitivity range

 With 0.15 GPa only deflection is limited to 4 mm

$$f = \frac{\sqrt{\frac{g}{h}}}{2\pi} \approx 8Hz$$

- Silicon springs
- 0.15 GPa break point
- Sufficient to equalize stress and shift bounce mode outside bucket
- Higher stress necessary to mitigate vertical thermal noise

- How much stress allowable?
- In etched MEMS 1.4 GPa OK
- Defects etched away
- Allowable surface stress may be > 1 GPa
- To be confirmed for this geometry

• Produce a number of samples

• Measure bending breaking point

Jena-Glasgow test

- Pull ribbons with different surface treatments to determine
- longitudinal stress breaking point

Why Gallíum

 Indium proved <u>extremely effective to</u> <u>eliminate friction noise</u> in compression joints (Vladimir Braginsky)

How it works? it impedes slippage between hard surfaces

- Problems:
- Melts at 160°C
- Requires heating of mirror at relatively high temperature for assembly and disassembly

Indíum vs. Gallíum

Property	Unit	Indium	Gallium	score	
Solid density (near r.t.)	g⋅cm ⁻³	7.31	5.91		
Liquid density @ m.p.	g⋅cm ⁻³	7.02	6.095		
Expansion at melting		1.041	0.9696	G	< 1
Melting point	°K	429.7485	302.9146	G	
Melting point	°C	156.60	29.77	G	
Wetting silicates		Yes	Yes	Х	
Boiling point	К	2345	2477	G	
Vapor pressure	Ра	1 @ 1196°K 📏	1@1310°K	G	
Vapor pressure	Ра	10@1325°K	10@1448°K	G	
Elec. resistivity (20 °C)	nΩ·m	83.7	270		
Thermal conductivity	$W \cdot m^{-1} \cdot K^{-1}$	81.8	40.6	Ι	
Therm. expansion (25 °C)	µm•m ⁻¹ •K ⁻¹	23.1	18.0	G	
Young's modulus	GPa	11	9.8	Х	
Poisson ratio			0.47		
Brinell hardness	MPa	8.83	60	G	
Atomic radius	pm	167	135		
Magnetic ordering		diamagnetic	diamagnetic	Х	

KAGRA Violin mode mitigation

- Fiber-fed
 Red-shifted
 Fabry-Perot
- Can cool
 violin modes and
 bounce modes
 to mK level

(Can we use the same idea for Parametric instabilities ?)

 Mechanical noise re-injection with two step heat link isolation

- The heat links are soft above 10 Hz
- At 100 mHz they are 10⁴ x stiffer !!!
- Microseismic peak noise reinjected into mirror actuators is a serious controls problem !
- Need a solution !

Geometry under study

- Suspended actuation platform
- Four step mechanical noise filtering
- Actuation platform slaved to mirror

KAGRA Filtering the heat pump noise

 The heat links are subjected to

4 filtering steps (2 extra)

 Both seismic and chiller noise are filtered way
 below the requirements in KAGRA's sensitivity
 band (> 10 Hz)

External lock acquisition controls

- Use Initial-LIGO-like controls for lock acquisition but from a suspended platform
- In this phase the optical bench actuators are used for viscous damping

In-lock controls

- Use Virgo-like marionetta controls during operation
- The mirror OSEM actuator are disconnected
- The OSEM sensors are used to slave the optical bench to the mirror Borrowing AEI technology
- The effects of microseismic noise on controls are neutralized

- KAGRA was said to be : (with some reason)
 Mission Impossible!
- Now it is just "difficult", but feasible!
- KAGRA will be a great 2nd-1/2 generation GW Observatory
- It will also serve as the test-bed for all technology needed for the low frequency interferometer in the ET xylophone and for all 3rd generation observatories