"Divided Function" Options for the KAGRA Cryogenic Suspension

Version 2, 9/13/12 – with revisions made after the talk

Warren Johnson, Louisiana State University

Disclaimer: the KAGRA collaboration has not yet reviewed these conceptual design options.

Requirements

Proposed Solutions

- Heat removal
- Suspension of load
- SEPARATE THE FUNCTIONS OF HEAT REMOVAL AND SUSPENSION
- Vibration isolation
- Low thermal noise
 - material and temp
 - 'clamping' loss
- High Q

- -> 1 thick sapphire ribbon
- -> 2 thin metal ribbons

- -> thinnest possible ribbons
- -> thinnest possible ribbons
- -> high Q at low temp
- -> threaded-pin clamp
- -> thin-film metal bonding

Heat Link – sapphire ribbon

Single ribbon attached to top-front mirror surface, so it's vertical motion controls pitch.

This link does NOT carry any load, simplifying its attachment. Flat ribbon naturally allows a thin bond to flat mirror face.

Conductivity of sapphire and metal

See viewgraphs below from Tomaru, et. al.

Heat Transfer of Several Materials at Cryogenic Temperature

High Energy Accelerator Research Organization^A
Institute for Cosmic Ray Research, University of Tokyo^B

T. Tomaru^A, K. Kasahara^B, T. Shintomi^A, T. Suzuki^A, N. Sato^A, T. Haruyama^A, A. Yamamoto^A

. Measurement Method of Thermal Conductivity

Longitudinal Heat Flow Method

- L: Length between thermometers
- S: Cross section of sample

3. Thermal Conductivity of Sapphire Fiber

- Size Effect -

Produced by Photran LLC

Iono-crystalline sapphire FG method

160, ϕ 250, ϕ 390 μ m

- •Estimated maximum heat transfer for the LCGT configuration

 ⇒ 340mW
- •Estimated heat generation in the mirrors ⇒ a few W

It is important to reduce optical absorption in the mirrors
(For small pieces of sapphire, sufficient absorption level has been achieved.)

Size effect $\kappa = \frac{1}{3} C_{v} v l$ $C_{v} \propto T^{3}$ $v \approx Const.$ $\kappa \propto C_{v} \propto T^{3}$ @ < 40K $l \approx Const.$

Possibility to enhance thermal conductivity Phonon Reflection Effect -

Φ 250 μ m Sample

Original Surface

Scratched Surface

#8000 Diamond paste

Thermal conductivity of crystalline fiber can be enhanced at cryogenic temperature by increasing its surface quality.

[VC Rome 9/10/12]

8

. Thermal Conductivity of Pure Al and Cu

Requirement for the heat link:

- Large thermal conductivity
- •Small spring constant to make mechanically weak heat link

Sey point

• Whether the size effect exists or not in metals.

Sample

•Al: 99.999% purity

 ϕ 2mm, ϕ 1.5mm, ϕ 1mm,

 ϕ 0.5mm, ϕ 0.2mm

•Cu: 99.9999% purity

 ϕ 1mm, ϕ 0.2mm

Measured Results

$$RRR = \frac{R_{300K}}{R_{4.2K}}$$

Sample	Aluminum				Copper	
	ф0.20mm	ф0.50mm	φ1.00mm	φ1.99mm	ф0.20mm	φ1.00mm
RRR	2900	4800	5500	6200	960	4100

$$\kappa^{(Al)} = \frac{1}{1.8 \times 10^{-7} \ T^2 + 1.1/RRR/T}$$

$$\kappa^{(Cu)} = \frac{1}{6.2 \times 10^{-8} \ T^{2.4} + 0.53/RRR/T}$$

It is effective to **use many thin wires** as keeping total cross section to make mechanically weak heat link,

Calculated heat transfer

Heat transfer \dot{Q} and cross-section ${\it A}$ are constant along heat link, but conductivity varies

SO

$$\dot{Q} = \kappa A \frac{dT}{dx}$$

becomes

$$\dot{Q} = \frac{A}{L} \int_{T_0}^{T_L} \kappa(T) dT$$

Tomaru results, scaled by size effect

$$\dot{Q} = \left(\frac{1.5}{0.39}\right) \frac{1.5 \text{mm} \cdot 4 \text{mm}}{250 \text{mm}} \int_{10}^{20} \kappa(T) dT = 1.06 \text{ W}$$

So these dimensions, 1.5x4x250 mm, meet the heat extraction requirement.

Thermal noise from thick ribbon

- Calculate Im(Y) for flexing-beam-equation under <u>no</u> tension [Gonzalez, Saulson, Levin, et.al.), use FD theorem.
- Assume $Q = 2 \times 10^6$ T = 20 K m = 22 kg

result

- Using this low value of sapphire Q and high value of thickness, leads to thermal noise from the heat link to be larger than optical noise ("~BRSE") below 50 Hz
- The size of the peak at 250 Hz is partly due to the high mass of the thick and wide ribbon.
- So probably want sapphire fibers with higher Q, by a factor of 10, (see below) which other measurements indicate should be possible.

Description of load bearing parts

- 2 metal wires support the entire weight of mirror. Use Cu:Be for high yield strength (~1 GPa).
- Wires are actually ribbons (annealed to `soft', rolled, and heat-treated to `hard' (high Q))
- Two clamp blocks connect a ribbon to the mirror.

rationale

- Metal is more "robust" than crystals (compare the fracture toughness)
- Mechanical loss can be quite small (at cryogenic temperatures) for the right metals.
- clamping ribbons (instead of round wires) can avoid stress concentrations. (=> Lower clamping loss?)
- Thin metal films can be used to "weld" ribbons to sapphire clamp-blocks.

Here is metal with high Q (and high strength).

William Duffy, Jr.

2485

FIG. 2. Acoustic quality factor vs temperature of C17 500 Cu−Be−Co alloy, also commonly known as Alloy 10. Data shown are for as-machined material (■), heat-treated material (●), and doubly heat-treated material (▲).

Configuration - Side View

Two support metal `wires'.

One heat link ribbon (no load)

with a `blade spring' to

soften the connection to

the stage above (the "marrionetta")

2 clamp blocks

floating block

Cross-section in horizontal plane

dimensions in mm

single-threaded-pin clamp block

Further Options

- sapphire ribbon fabrication:
 - EGF rod or ribbon, then lapped and polished (I have found commercial fabricators in US of such ribbons)
- metal thin-film bonds for joining sapphire to sapphire
 - thin metal film deposition is an industry.
 - Compress and heat two coated sapphire pieces to form molecular bonds.

- A speed-up for cooling in a vacuum (suggested by DeSalvo, Tanner)
 - Grind and polish a flat surface on bottom of mirror, coat with "black",
 - make a movable cold-black surface for low-load touch
- Use (Cu:Be) blade springs to make vertical springs
 - Special consideration : Colder → stiffer → Lift
 - Solution: Adjust height with a lighter load, tuned for the room temperature.
- Differential thermal contraction
 - Use to increase or adjust clamping force at low temp