### **Cryogenic Silicon Fabry-Perot Cavities:** Laser Stabilization with sub-Hertz Linewidth



Matthew Arran, University of Cambridge

Mentors: Rana Adhikari, David Yeaton-Massey





- Introduction
- Methodology
- Prior progress
- Analysis
- Results

Introduction

# Background

- Laser frequency noise
- External reference cavities
- Noise sources:
  - Seismic noise
  - Shot noise
  - Thermal noise
    - Brownian
    - Thermoelastic
    - Thermorefractive

#### Work with silicon cavity at cryogenic temperatures

Aim

- Reduce Brownian noise:
  - By fluctuation-dissipation theorem<sup>[1]</sup>:
- Reduce seismic noise:
  - Require high quality factor Q at low temperature
  - Silicon has Q ~ 10<sup>8</sup> at around 100K
- Control thermoelastic noise:
  - CTE of Silicon has zeros at 18K & 123K<sup>[2]</sup>



[2] P. B. Karlmann, K. J. Klein, P. G. Halverson, R. D. Peters, M. B. Levine et al.

*"Linear Thermal Expansion Measurements of Single Crystal Silicon for Validation of Interferometer Based Cryogenic Dilatometer"* AIP Conf. Proc. 824, 35 (2006)

Introduction



 $S_{x}(f) = -\frac{4k_{b}T}{\omega}\Im[H(\omega)]$ 

#### Introduction

# Applications

- Precision of atomic clocks
  - NIST-F1 uncertainty 3×10<sup>-16</sup>
  - Optical atomic clocks promise O(10<sup>-17</sup>)
- Gravitational wave observation
  - Thermal noise limiting after standard quantum limit<sup>[4]</sup>





[3] NIST "The Advanced LIGO Gravitational Wave Detector"

[4] S. J. Waldman "The Advanced LIGO Gravitational Wave Detector"

# **Optical system**

- Laser PDH locked to reference cavity
- Initially single cavity
  - Use spectrum analyzer for initial result
- Later work possible with two cavities
  - Measure beat frequency to analyse noise



Methodology

#### Methodology

### **Thermal system**

- Experimental chamber evacuated to 10<sup>-5</sup> torr
- Cavity cooled to 123K
- Use of radiation shields
- Fine temperature control
  - High precision sensors
  - Resistive heaters
  - Temperature controller



#### **Experimental Chamber**

#### **Prior progress**

# **Prior progress**

- Optical system
  - Tabletop optics in place
- Cryostat
  - Designed
  - Manufactured
  - Pressure tested
- Experimental chamber
  - Parts manufactured
  - Attachments designed
  - Assembly tested





#### Prior progress

## **Project aims**

- Test cryostat cooldown
  - Prepare cryostat
- Analyse thermal system
  - Propagation of temperature perturbations
  - Effect of heaters
  - Communication with control system

### System schematic





Analysis

# **Analytic approach**

Construct differential equations

$$\frac{d}{dt}(C_{1}\theta_{1}) = \alpha_{1}(\theta_{0} - \theta_{1}) + \beta_{1}(\theta_{0}^{4} - \theta_{1}^{4}) + \alpha_{2}(\theta_{2} - \theta_{1}) + \beta_{2}(\theta_{2}^{4} - \theta_{1}^{4}) + P_{1}$$

$$\frac{d}{dt}(C_{2}\theta_{2}) = \alpha_{2}(\theta_{1} - \theta_{2}) + \beta_{2}(\theta_{1}^{4} - \theta_{2}^{4}) + \alpha_{3}(\theta_{3} - \theta_{2}) + \beta_{3}(\theta_{3}^{4} - \theta_{2}^{4}) + P_{3}$$

$$\frac{d}{dt}(C_{3}\theta_{3}) = \alpha_{3}(\theta_{2} - \theta_{3}) + \beta_{3}(\theta_{2}^{4} - \theta_{3}^{4}) + P_{3}$$



Analysis

• Linearise about equilibrium, with  $\theta_i = \hat{\theta}_i + \delta_i$ ,  $P_i = \hat{P}_i + \pi_i$ 

$$\begin{split} \dot{\delta}_{i} &= \frac{1}{\Gamma_{i}} \Big[ J_{i-1} \delta_{i-1} - (I_{i} + J_{i}) \delta_{i} + I_{i+1} \delta_{i+1} + \pi_{i} + O(\delta^{2}) \Big] \\ \text{for} \\ I_{i} &= \hat{\alpha}_{i} + a_{i} \Big( \hat{\theta}_{i} - \hat{\theta}_{i-1} \Big) + 4 \hat{\beta}_{i} \hat{\theta}_{i}^{3} + b_{i} \Big( \hat{\theta}_{i}^{4} - \hat{\theta}_{i-1}^{4} \Big) \\ J_{i} &= \hat{\alpha}_{i+1} + a'_{i+1} \Big( \hat{\theta}_{i} - \hat{\theta}_{i+1} \Big) + 4 \hat{\beta}_{i+1} \hat{\theta}_{i}^{3} + b'_{i+1} \Big( \hat{\theta}_{i}^{4} - \hat{\theta}_{i+1}^{4} \Big) \\ \Gamma_{i} &= \hat{C}_{i} + c_{i} \hat{\theta}_{i} \end{split}$$

- Derive small-perturbation transfer functions
- Determine and substitute in parameter values
  - Two methods used

# 1. Fit D.E.s to cooldown

- Cool cold plate to 77.4K
- Use known heat capacities
- Assume  $\alpha_i$ ,  $\beta_i$  constant
- Choose values to best fit D.E. solution to data



Analysis

# Analysis **2. Fit T.F.s to step responses**

 Analytically-derived transfer functions have form:

$$\frac{\tilde{\delta}_{2}(s)}{\tilde{\delta}_{0}(s)} = \frac{a(s+b)}{(s-\mu_{1})(s-\mu_{2})} = \frac{A}{s-\mu_{1}} + \frac{B}{s-\mu_{2}}$$
$$\frac{\tilde{\delta}_{3}(s)}{\tilde{\delta}_{0}(s)} = \frac{C}{(s-\mu_{1})(s-\mu_{2})} = \frac{C}{s-\mu_{1}} - \frac{C}{s-\mu_{2}}$$

- Step outer shield temperature
- Choose values A, B, C, μ<sub>1</sub>, μ<sub>2</sub> to best fit step responses to data



### **Predictive ability**



Error in predictions by method 1.

Error in predictions by method 2.

Results

#### Results Estimated transfer functions



### Poles and zeros

|        | Cold plate to<br>Outer radiation<br>shield | Outer shield to<br>Inner shield |                        |        | Outer shield to<br>Dummy cavity |                        |        |
|--------|--------------------------------------------|---------------------------------|------------------------|--------|---------------------------------|------------------------|--------|
|        |                                            | 1 <sup>st</sup> method          | 2 <sup>nd</sup> method | % diff | 1 <sup>st</sup> method          | 2 <sup>nd</sup> method | % diff |
| Poles: | -2.5×10 <sup>-5</sup>                      | -1.4×10 <sup>-5</sup>           | -1.2×10⁻⁵              | 14%    | -1.4×10 <sup>-5</sup>           | -1.2×10 <sup>-5</sup>  | 14%    |
|        | -7.0×10 <sup>-6</sup>                      | -1.9×10 <sup>-6</sup>           | -1.4×10 <sup>-6</sup>  | 26%    | -1.9×10 <sup>-6</sup>           | -1.4×10 <sup>-6</sup>  | 26%    |
|        | -1.4×10 <sup>-6</sup>                      |                                 |                        |        |                                 |                        |        |
| Zeros: | -1.4×10 <sup>-5</sup>                      | -2.5×10 <sup>-6</sup>           | -1.6×10 <sup>-6</sup>  | 36%    |                                 |                        |        |
|        | -1.9×10 <sup>-6</sup>                      |                                 |                        |        |                                 |                        |        |

### Acknowledgements

David Yeaton-Massey Rana Adhikari LIGO SFP, FASA offices NSF