Global longitudinal quad
damping vs. local damping



Summary

Background: local vs global damping

Simulation: enhanced isolation of damping noise
by damping global rather than local coordinates.

Designing cavity length control loops that
simultaneously apply damping.

Reference Material
— Jeff K.”s IFO control diagram: G1200632
— Supporting math



Usual Local Damping
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DARM is non-negligible for these
loops.
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Common Mode Damping is Isolated
from DARM
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* The common mode damping
injects the same sensor noise into
both pendulums

* Since both pendulums are the
same, this noise enters the test

masses along only the common
mode

* Thus, no damping noise to
DARM from this loop!

* Warning: If one pendulum get’s
bumped, the other will in part
feel it too since both pendulums
receive the same damping signal.
Note that similar coupling already
exists through DARM control.




Cavity Control Influence on Damping

- Case 3: Cavity control split evenly between both pendulums

ETMX

0.5 +

ETMY

0.5

* Common
top to
common
top transfer
function

Control Law

.I G1200774-v8

*

Magnitude (m/N)

'(I)'op Mass Force to Displacement Transfer Function

10 ;
longitudinal |
10
] -l
10
10°
10™ 10° 10’
Frequency (Hz)

* The common top mass
longitudinal DOF behaves just like
a free quad.

* Assumes identical quads (ours
are pretty darn close).

* See Supporting Math slides.



Cavity Control Influence on Damping

- Case 3: Cavity control split evenly between both pendulums
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* The differential top mass

U 4 | , longitudinal DOF behaves just like
a cavity-controlled quad.

* Assumes identical quads (ours
are pretty darn close).

ﬁ Control Law b * See ‘Supporting Math’ slides.
G1200774-v8 6




Comments up to this point

* The common and differential top TFs are not actually so surprising;

the DOF that has the cavity control is the one that gets altered
dynamics.

e So, if we rotate the quad longitudinal damping from local damping
of each quad to global common and differential damping...

 Then, common mode damping noise is effectively eliminated since

it is independent from the differential mode (where we measure
GWs...).

— Assumption: quads are identical.

— Real life: noise is suppressed by how well the quads match. Ours are really
close. See ‘Supporting Math’ slides. Residual differences might be tuned away
by locally scaling the top mass damping for frequencies we care about.



Simulated Damping Noise to DARM
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Realistic quads - errors on the
simulated as-built parameters
are:

* Masses: £ 20 grams

*d’s (dn, d1, d3,d4): £+ 1 mm
* Rotational inertia: £ 3%

* Wire lengths: £ 0.25 mm

 Vertical stiffness: + 3%




Simulated Damping Noise to DARM

Noisy Longitudinal Damping Fllter: zpk(0,-2"pi*16"[1;1],500000)"bump(0.44,10,3)
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Simulated Damping Noise to DARM
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Displacement (arbitrary units)

Displacement (arbitrary units)

Local longitudinal damping or common damping from an ISI stage 2 impulse
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Where does the lonely differential
long. mode come from?

'.!'op Mass Force to Displacement Transfer Function
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Remaining top mass differential
longitudinal mode.

If we understand how the
hierarchical control produces this
mode, might we be able to design
a hierarchical controller that also
damps it?

If so, then we can eliminate
differential mode damping noise
by turning this damping off.

Since common mode damping
couples weakly to DARM, virtually
all longitudinal damping noise
from these two quads would be
gone from DARM.




Where does the lonely differential
long. mode come from?

Pendulum 1 UIM to Test Mass Longitudinal TF: x
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* The new top mass modes come from the zeros of the TF between the highest stage with
large cavity UGF and the test mass. See more detailed discussion in the ‘Supporting
Math’ section.

* This result can be generalized to the zeros in the cavity loop gain transfer functions
(based on observations, no hard math yet). G1200774-v8



Where does the lonely differential
long. mode come from?

Quad Hierarchical Control Loop Gain Transfer Functions
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Where does the lonely differential
long. mode come from?
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Where does the lonely differential
long. mode come from?

Differential Top Mass to Top Mass Longitudinal TF
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Displacement (arbitrary units)

Where does the lonely differential
long. mode come from?

Ringdown of the top mass differential longitudinal mode
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Conclusions

Overall, OSEM sensor noise injection is minimized in 2 ways:
— 1:some damping loops are removed entirely

— 2:the remaining damping loops are applied to DOFs that couple weakly to
DARM.

1) For the quads participating in DARM control (ETMs), you can
design DARM to simultaneously damp the differential
longitudinal modes. This removes the need for 1 out of 4
damping loops.

2) Quad common mode motion couples very weakly to DARM,
so we can damp this separately from differential mode motion.

If DARM control is extended to include all 4 quads, in principal
we could isolate virtually ALL longitudinal damping noise from
DARM.



Conclusions cont.

* |f DARM control cannot be extended to all 4 quads, we
could still do common-differential mode damping
between the ITMs. That would leave us with just 1 out
of 4 longitudinal loops coupling to DARM, the
differential mode ITM loop.

* Might design the damping of other DOFs and/or other
cavities to include at least a subset of the 2 points
above. E.g. Quad pitch damping, IMC length, etc.

* ESD not important to diff. damping ringdown for high
UIM ugf. Noise, performance may not matter either...
more analysis to be done on that point.



1.

2.

Supporting Math

Dynamics of common and differential modes

a. Rotating the pendulum state space equations from local to
global coordinates

b. Noise coupling from common damping to DARM
c. Double pendulum example

Change in top mass modes from cavity control — simple
two mass system example.

G1200774-v8
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DYNAMICS OF COMMON AND
DIFFERENTIAL MODES



Rotating all ETMX and ETMY local long.
DOFs into global diff. and comm. DOFs

Local ETMX Longitudinal Plant Local ETMY Longitudinal Plant

x=A x+B u, y=Ay+Bu R = sensing matrix

x, =Rx+n_ Y, =Ry+n, N = sensor noise
Local to global transformations:

d=(x-y)/2 Differential displacement signals == q [ Ax-Ay+Bu -Bu]/2

c=(x+y)/2 Common displacement signals == ¢-[A x+A y+Bu +Bu.]/2
X y XX yoy

u,=(u,-u))/2 Differential control signals

u.=(u,+u )/2 Common control signals

Idealcase:A, =A =A, B =B =B Combined Differential/ Common system matrix

d = Ad+Bu, global differential plant [d] [A ()Hd] [B OHud]

¢=Ac+Bu, global common plant 0 A ¥ 0 B

Real case: A = (A, -A))/2, B= (B.-B,)/2

C C u

Cc

~ ~ Combined Differential/ Common system matrix
A =A+A, A =A-A , ~ ~
d=Ad+Bu, + Ac+B ! S o i o P i

= Ad+Bu, + Ac+Bu,_ é i allelTB Bl

¢=Ac+Bu_+Ae+Bu,



Rotating all ETMX and ETMY local long.
DOFs into global diff. and comm. DOFs

Determining the coupling of common mode damping to DARM

3 y G, = damping control
d = 1} A d ]? B Ha } R, iy = damping sensor matrix
¢ A A ¢ B B te R, sy = damping actuation matrix
u, =0, ingoring the cavity control for now n_= ETMX top mass long. sensor noise
u =-R_,..Gim (RS, dampC TN 2+n, ] 2) n, = ETMY top mass long. sensor noise

* Now, substitute in the feedback and transform to Laplace space:

SId _ A A - BRa,damdeampRs,damp d + _BRa,damdeamp (n +n ) / 2
SIC ‘& A - BRa,damdeampRs,damp ¢ _BRasdamP damp i '
* Grouping like terms:
SI - A _(A - 1Ngl{a,damp(}dampl{s,damp) d _ﬁRa,damdeamp —
_‘& SI - (A - BRa,damdeampRs,damp) ¢ _BRa,damdeamp

n=(n,+n,)/2



Rotating all ETMX and ETMY local long.
DOFs into global diff. and comm. DOFs

* Solvingcintermsofdand :

G,

damp

G ton )

damp

(sI—A+BR G, R )c=Ad-BR

a,damp ™= damp=" s, damp

Gt R, sury) (Ad-BR

a,damp = damp

a,damp

c=(sI—A+BR

a,damp

* Plugging cin to d equation:
(s1-A)d-(A-BR,,,,G R, ., |c=-BR

a,damp ™= damp= " s,damp

G, R )(sI—A+BR

a,damp ™= damp~™" s ,damp

G, 7

damp

G R )_1(Ad—BR

a,damp ™= damp=™" s ,damp

a,damp

~

G ﬁ)=—BR

(SI - A) d- (A - ER a,damp ™= damp a,damdeampﬁ

* Defining intermediate variables to keep things tidy:
D-sI-A-(A-BR,,,,G R, ., |(sT-A+BR

a,damp ™= damp

G R, o) A

a,damp ™= damp=" s,damp

N - [(A-ER G R. 4, )(sT-A+BR

a,damp = damp

G, R

-1 ~
a,damp ™= damp s,damp) B + B] R G

a,damp ™= damp

e Then d can be written as a function of n:
Dd =-Nn
d=-D'Nn



Rotating all ETMX and ETMY local long.
DOFs into global diff. and comm. DOFs

Then the transfer function from common mode sensor noise to DARM is:

d, =Rg ,..,d, DARM cavity error

d

—=-R, Caw.tyD'lN , | TF between commom mode top mass sensor noise and DARM error
n

As the plant differences go to zero, N goes to zero, and thus the coupling of common
mode damping noise to DARM goes to zero.



Simple Common to Diff. Coupling Ex.

To show what the matrices on the previous slides look like.

ETMX Common ETMY
damping \
u k
kxl vi vl
My, myl
kx2 kV2
m m
x2 d2 y2
DARM Error
G
¢,
c1=RS’dampc=[ 1000 ] |
G
¢, 1
- l Ra,damp=|: O ]
dl
d2
d2=Rw.,yd=[ 010 o] .
: d
d, G1200774-v8

System state space in diff-comm coordinates

~

A
A

A

~

A

d
c

d u,

C

B B
B B

+

u

c

u, =0, ingoring the cavity control for now

w, =R, 1, G o (R g€+ 1, /240, 12)

a,damp damp( s,damp

p

amp = damping control filter

sdamp = damping sensor matrix

= damping actuation matrix

a,damp

scaviy = CaVity sensor matrix
differential DOFs

common DOFs

. = ETMX top mass long. sensor noise

, = ETMY top mass long. sensor noise
26



ETMX A Matrix ETMY A Matrix

0 0 10| 0 0
0 0 0 1 0 0
—(k  +k -k, +k
Ax — ( x1 + x2) = 0 O Ay _ ( vl y2) .
mxl l/l’ly1
k., k2 g I Ky
m,, y2 my2

Common A Matrix

0 0
0 0
—(k +k,)m —k, +k,)m,
A=(A,+A,)/2= U ) =l ks kot ky,
m.m,
k + k - x2my2 - kyme2
x2 y2 mxzmyz
Differential A Matrix
0 0
0 0
-k, +k,)m +\k, +k ,|m
A=(Ax_Ay)/2= ( x1 x2) vyl ( vyl yZ) x1 kxz—kyz
mxlmyl
k ) —k 5 _kx2my2 +ky2mx2
’ memyZ

G1200774-v8




Simple Common to Diff. Coupling Ex

ETMX B Matrix

0 0
0 0
s _| L o0
* mxl
0 1
me

0 0
0 0
1
| — 0
B, =| o
0
m,

Common B Matrix

B=(B,+B)/2=

m,+m,

memyZ

Differential B Matrix

B=(B,-B,)/2=

0
0

mxl - myl

mxlmyl

0

0
0

m,—-m,

X

m.,m,

/2

/2



Simple Common to Diff. Coupling Ex

D-sI-A-(A-BR,G,,R,,)(sI-A+BR], G, R,,) A

damp ™ damp damp ™ damp
N = [(A - ﬁRgamdeamdeamp ) (SI - A + BRgamdeamdeamp )—1 B + 1’-’g]l{gamp(}damp
d, =Rg ,.,d, DARM cavity error
% = —Rs,caw.zyD‘lN, TF between commom mode top mass sensor noise and DARM error
n

Plugging in sus parameters for N:

0 0 1 0 0 0
0 0 0 1 0 0
—(ky+k,)m, +(k, +k,)m, m,—m,
l ( x1 xz) y1 ( vl ,_) x1 kz_kyg 00 _l 1 y1 0 1 Gdum][ 100 0
2 mm,, 201 mMamy, 0 F
k., -k _k,thyZ + k,\-zm\z 0 0 0 m,, —my,
m.,m, m,my,
-1
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
—(k, +k,)m, -k, +k,)m, mg+m, m.,+m m.,—m
sI—l ( x1 xz) 1 ( vl )_) x1 k,v2+ky2 0 0 +l x1 1 0 1 Gd [ 100 0 l x1 yl 0 +l 1 y1 0
mym,, 2 mmy, o | “ v 2| MaMmy, 2 mm,
—km,—k,m me,+m, mg,+m, M, —m,
k, +k,, 2z 2200 0 —=__2 0 X2 T2 0 2 y2
’ my,m,, m,m,, m,m,, m,my,

O =

..



CHANGE IN TOP MASS MODES FROM
CAVITY CONTROL - SIMPLE TWO MASS
SYSTEM EXAMPLE.



Change in top mass modes from cavity
control — simple two mass ex.

Question: What happens to x, response when we control x, with f,?

Mass Matrix Stiffness Matrix

V| ™m0 | ktk —k,
0 m, —k, K

Equation of Motion

ml O _.X:-l kl + k2 —l{2 'xl 0 " x, 1o x, TF with no x,, contro
oo + =
0 m2 xz _kZ k2 x2 Jg %100 - = ¥ -

Magi

When f, =0,

-90

Phase (det

the x; to x; TF has two modes

180t
10

10
Frequency (Hz)
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Change in top mass modes from cavity
control — simple two mass ex.

If we feedback x, to f, with control C

m, O
0 m,

This is equivalent to

f, =-Cx,

ko+k, -k,
+
k, Kk +C

X

Xy 0

X, ] [ 0 ] The x, to x; TF has one mode.
The frequency of this mode
happens to be the zero in the
TF from f, to x,.

tox i

Xy

G1200774-v8 32




Change in top mass modes from cavity

control — simple two mass ex.

Discussion of why the single x, mode frequency
coincides with the f, to x, TF zero:

The f, to x, zero occurs at the frequency
where the k, spring force exactly balances f,.
At this frequency any energy transferred
from f, to x, gets sucked out by x; until x,
comes to rest. Thus, there must be some x;
resonance to absorb this energy until x,
comes to rest. However, we do not see x,
‘blow up’ from an f, drive at this frequency
because once x, is not moving, it is no longer
transferring energy. Once we physically lock,
or control, x, to decouple it from x; this
resonance becomes visible with an x, drive.

G1200774-v8

fytox TF

10° 10’
Frequency (Hz)

The zero in the TF from f, to
X,. It coincides with the x, to
X, TF mode when x, is locked.

33



Backups



Advanced LIGO
Interferometric Control Scheme

J. Kissel, for the ISC Group TMSY
G1200632-v3

~40 kHz ~100 Hz
CARM
Input MCPY
Mod
MC3 Cle?—,\n?er ~1 Hz
MC2

v

o >
Ii—p PR2
PRM Power
Recycling
Cavity SR2
High Bandwidth Cavity ¢
> Length Control Signal |
? MICH — signal
-—y High Bandwidth Cavity - Recycling
Angular Control Signal 20 Hz Cavity
PRCL
~20 Hz
Test Mass Quad Sus (QUAD) SR3
~10 Hz

Beam Spilitter / Fold Mirror Triple Sus (BSFM) v
HAM Large Triple Sus (HLTS)

HAM Small Triple Sus (HSTS) Nggglg —>
Transmission Monitor Double Sus (TMTS)

Output Mode Cleaner Double Sus (OMCS)

Faraday Single Sus (OFIS) ?Algzgt
HAM Auxiliary Single Sus (HAUX) 612007749/9 ner

HAM Tip-Tilt Single Sus (HTTS)

SRM

CommHard,
DiffHard,
CommSoft,
DiffSoft,

~10 Hz



Cavity Control Influence on Damping

- Case 1: All cavity control on Pendulum 2

ETMX ETMY

'(I)'op Mass Force to Displacement Transfer Function
10

*

t 3
Top to longitudinal
top mass z
transfer E10
. ()
function =
= a4 -
S 10 \
3 ' Y ~
= Ny
10°
10™ 10° 10’
Frequency (Hz)

* What you would expect — the
quad is just hanging free.

* Note: both pendulums are
identical in this simulation.

Control Law
G1200774-v8 36




Cavity Control Influence on Damping

- Case 2: All cavity control on Pendulum 1

ETMX ETMY
% 'A’op Mass Force to Displacement Transfer Function
10
*
Top to longitudinal
top mass =
= -2
transfer E10
. ()
function 9
c 10'4d
(@)
\
CEU ~~~.
10°
10" 10° 10'

Frequency (Hz)

* The top mass of pendulum 1
behaves like the UIM is clamped
to gnd when its ugf is high.

* Since the cavity control
influences modes, you can use

Control Law the same effect to apply damping
G1200774-v8 (more on this later) 37




Cavity Control Influence on Damping

- Case 3: Cavity control split evenly between both pendulums

ETMX ETMY

'A’op Mass Force to Displacement Transfer Function
10

*

t 3
Top to longitudinal
top mass =
= -2
transfer E10
. [0}
function S
< 10™
©
=
107
10™ 10° 10’
Frequency (Hz)

* The top mass response is now
an average of the previous two
cases -> 5 resonances to damp.
* Control up to the PUM, rather
than the UIM, would yield 6

ﬁ Control Law b resonances.
G1200774-v8 * aLIGO will likely behave like this. 32




Scratch



0 0
0 0
_(kxl +kx2)myl +(kyl +ky2)mxl _(mxl _myl)Gdump k k
= x2 y2
mxlmyl
k, -k, _k.XZmyZ + kyzmxz
’ memyZ
2s 0 -1
0 2s 0
(kg +ky)my, +(ky, +k, )m, +(m, +m )G,
1 2 )1 ( y1 ;2) 1 ( 1 ,1) damp _kx‘Z_kyZ 2
mxlmyl
k- kyZ k,thy2 + kyme2 0
‘ memyZ
ko,m,+k,m,
22"y v2'" 2 k)[2+ky2
memVZ
L'= ’
k (kxl + kXZ)myl + (k_vl + kyZ)mxl + (mxl + myl )Gdamp
ot ky2

mxlmyl

- -1
10 ’s . L
01 o 0 1o
ke + ko Ymy, +(kyy + Ky, )m, G
0 0 ( a x2)m)1+( "1+ }2)m11+(mkl+m,‘l) damp —k,xz—kvz 2s 0 B+I~; Gdamp
mxlmyl E 0
k k
00 -k, -k, KMy ¥ Koo 0 5
) m,,m,,
0
-1
o |_|J K
L M
2s

mx]mylmxzmyZ

[k(zmy2 + kyzmrxz][(kx1 +ky,)m,

G1200774-v8

p
1 T (kvl + kyZ)mxl + (mxl +my, )Gdamp ] —mymy,m,m, (kx2 + kyZ)
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Scratch: Rotating all ETMX and ETMY
local long. DOFs into global diff. and
comm. DOFs

d A A d B B u, Gcav,-,y = cavity control
C 1& A C ]~3 B u, Gdamp = damping control
R, .., = cavity sensing matrix, R, . = cavity actuation matrix
Ud = —Ra,cavitchavizy (Rs,cavizyd + nx /2 = I’ly /2) Rs,damp = damplng sensor matrix, Ra,damp — damplng actuation matri;
u. = _Ra,damdeamp (Rs,dampc +n, /2 + ny /2)

Now, substitute in the feedback and transform to Laplace space:

A 5 PR’
SId A - BRa,cavilchavityRs,cavity A - Ra,dampBGdampRs,damp d + _BRa,cavitchavity _BRdamdeamp nx - ny / 2
N 5 T
SIC A - BRa,cavity cavity™ " s,cavity A - Ra,dampBGdampRs,damp ¢ _BRa,cavitchavity _BRdamdeamp nx + ny

For DARM we measure the test masses with the global cavity readout, no local sensors are
involved. The cavity readout must also have very low noise to measure GWs. So make the
assumption that n,-n =0 for cavity control and simplify to:

A D >3 Y4
SId A - BRa,cavitchavityRs,cavity A - BRs,damdeampRs,damp d + _BRdamdeamp ( + ) / 2
= n n
SIC A - BRa,cavitchavityRs,caviZy A - BRs,damdeampRs,damp ¢ _BRdamdeamp




