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Summary 
• Automatic Alignment and Wavefront sensors 

– The amount of first-order TEMs (01 or 10) provides 
alignment information 

• Input Mode Cleaner 
– Suspended triangular cavity 
– Spatially filters incoming laser beam (non-TEM00 modes 

rejected) 
– Provides additional frequency noise and beam jitter 

suppression 
• Output Mode Cleaner 

– Four-mirror bow tie configuration 
– Sidebands are rejected along with non-TEM00 modes 

• Thermal Compensation System (TCS) 
– Compensates for thermal induced deformations 

(~800 𝑘𝑘 stored in arms) 
– Optimizes IFO coupling to TEM00 (light that carries GW 

information)  
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Noise budgeting 
• Amplitude Spectral Density and Power Spectral 

Density  
• Linear system can be described in terms of a TF 
• TF poles dictate time-response of system 
• Control System 

– Manages and regulates a set of variables in a system 
– A quantity is measured then controlled 

• General stability criteria 
• Noise propagation throughout control system 
• eLIGO noise budget sample 
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Power Spectral Density (PSD) 
• Need to work in 

frequency space 
• PSD: a graphical 

representation to easily 
determine the power of a 
signal over a particular 
frequency band. 

• Uses the fft algorithm 

spectraldensity_exam
ple.m
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Power Spectral Density (PSD) 
• In this example, power is 

computed using 
– w=hamming(length(x)) 
– [Pxx,f]=periodogram(

x,wi,'onesided',NFFT
,Fs) 

• Data windowing 
– In the fft process, power in 

one frequency bin “leaks” to 
nearby bins. 

– Filter (with a window filter) 
the input data stream 

• The (running) RMS computed 
using the PSD (and shown in 
red) 

𝑅𝑅𝑅 = �𝑃𝑥𝑥 ∙ ∆𝑓 

spectraldensity_exam
ple.m
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Amplitude Spectral Density (ASD) 

• Plotting the amplitude:  
– simply the square root 

of the power spectral 
density 𝑃𝑥𝑥 

 

spectraldensity_exam
ple.m
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Noise budget 

• Need to measure the Amplitude Spectral 
Density of various noise terms 

• Project them onto the sensitivity curve 
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Time domain ↔ Laplace domain 

𝑓 = 𝑑𝑑
𝑑𝑑�  

y(𝑑) f(𝑑) 

𝐺(𝑠) 
𝑌(𝑠) F(𝑠) 
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t 

O
ut
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t 
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Transform variable 𝑠 = 𝑗 𝜔 
(complex frequency) 

A linear system can 
be represented as 
a Transfer Function 



Transfer function, poles and zeros 

• Convenient to express G(s) in terms of its 
poles and zeros: 
– Roots of the numerator (zeros) and denominator 

(poles) 

𝐺 𝑠 =
𝑄(𝑠)
𝑃(𝑠)

= 𝑘 ∙
𝑠 − 𝑧1 ∙ 𝑠 − 𝑧2 … 𝑠 − 𝑧𝑚
𝑠 − 𝑝1 ∙ 𝑠 − 𝑝2 … 𝑠 − 𝑝𝑛

 

– where k is the gain of the transfer function 
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Summary of pole characteristics 

• Real distinct poles (often negative) 
𝑐𝑖

𝑠 − 𝑝𝑖
     ↔      𝑐𝑖 𝑒𝑝𝑖𝑡 

• Real poles, repeated m times (often negative) 
 

𝑐𝑖,1
𝑠 − 𝑝𝑖,1

+
𝑐𝑖,2

𝑠 − 𝑝𝑖,2
2 + ⋯+

𝑐𝑖,3
𝑠 − 𝑝𝑖,3

3 +
𝑐𝑖,𝑚

𝑠 − 𝑝𝑖,𝑚
𝑚  

↕ 

𝑐𝑖,1 + 𝑐𝑖,2𝑑 +
1
2!
𝑐𝑖,3𝑑2 + ⋯+

𝑐𝑖,𝑚
𝑚 − 1 !

𝑑𝑚−1 ∙ 𝑒𝑝𝑖𝑡 
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Summary of pole characteristics 
• Complex-conjugate poles 

𝑐𝑖
𝑠 − 𝑝𝑖

 +
𝑐𝑖 ∗

𝑠 − 𝑝𝑖 ∗       ↔      𝑐𝑖 𝑒𝑝𝑖𝑡 + 𝑐𝑖 ∗𝑒 𝑝𝑖 ∗𝑡 

   often re-written as a second-order term 
𝜔2

𝑠2 + 2𝛿𝜔 𝑠 + 𝜔2   ↔   ~ 𝑒𝛼𝑡 ∙ sin 𝛽𝑑 + 𝜑  

• Poles on imaginary axis 
– Sinusoid 
– Pole at zero: step function 

• Poles with a positive real part 
– Unstable time-domain solution 
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Time domain 
response 
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𝒄𝒊
𝒔 − 𝒑𝒊

     ↔      𝒄𝒊 𝒆𝒑𝒊𝒕 



Comments 

𝐹 𝑠 = �
𝛼𝑖

𝑠 + 𝑎𝑖𝑖

                   𝑓 𝑑 = �𝛼𝑖  𝑒−𝑎𝑖𝑡
𝑛

𝑖=0

 

1. Poles of F(s) determine the time evolution of 
f(t) 

2. Zeros of F(s) affect coefficients 
3. Poles closer to origin → larger time constants 
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Negative feedback 

c 

r 
G(s) 

e 
- 

+ 

H(s) 

𝑒 =
1

1 + 𝐺𝐺
 𝑟 

Open loop gain 𝐺𝑂𝑂 

Closed loop gain 𝐺𝐶𝑂 

Stability: the poles’ 
real part of 𝐺𝐶𝑂 must 
be negative  
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General Stability 
Criterion 

The feedback control system is 
stable if and only if all the poles 
of the closed loop transfer 
function 𝐺𝐶𝑂 have a negative 
real part. Otherwise the system 
is unstable. 
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Loop stability and design 
• If the system is unstable,  

• We can’t change 𝐺 𝑠  but 
• We can design a different controller 𝐺 so as to make the 

system stable 

• But how should we change H? Let’s look closely at 
the root of the problem 

c 

r 
G(s) 

e 
- 

+ 

H(s) 
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The problem 

 
 
 

 

c 

r 
G(s) 

e 
- 

+ 

H(s) 

𝑒
𝑟

=
1

1 + 𝐺𝐺
=

1
1 + 𝐺𝑂𝑂

 

If 𝐺𝑂𝑂 becomes −1 then system is unstable 
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The general shape of 𝐺𝑂𝑂 

c 

r 
G(s) 

e 
- 

+ 

H(s) 

𝑒
𝑟

=
1

1 + 𝐺𝑂𝑂
 

𝐺𝑂𝑂 has a limited bandwidth. 

Within bandwidth:  
𝐺𝑂𝑂 ≫ 1 

𝑒
𝑟
≅ 0 

Outside bandwidth:  
𝐺𝑂𝑂 ≪ 1 

𝑒
𝑟
≅ 1 
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The general shape of 𝐺𝑂𝑂 

Log(f) 

Log(f) 

−𝜋 

𝐺𝑂𝑂  

∠𝐺𝑂𝑂 

100 

“Bandwidth” 

Unity gain 

Unity Gain Frequency 
(UGF): 𝐺𝑂𝑂 = 1 

−1800 
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DC 
gain 
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Stability Criteria 
A closed loop system is 
stable if the unity gain 
frequency is lower than 
the −1800 crossing. 

Log(f) 

Log(f) 

−𝜋 

𝐺𝑂𝑂  

∠𝐺𝑂𝑂 

100 
UGF 

−1800 crossing 

Matone: An Overview of Advanced LIGO Interferometry (5) 20 LIGO-G1200743 

 



Stability Criteria: 
Rule of Thumb 

The system is (almost always) 
stable if 𝐺𝑂𝑂 ∝ 1

𝑓
 at the unity 

gain frequency.  

Log(f) 

Log(f) 

−𝜋 

𝐺𝑂𝑂  

∠𝐺𝑂𝑂 

100 Slope at UGF: 1
𝑓
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Performance to noise input d:  
with feedback 

c r 
G1 

d 

+ 
+ e 

- 
+ G2 

H 

𝑒 =
1

1 + 𝐺𝑂𝑂
𝑟 +

𝐺𝐺2
1 + 𝐺𝑂𝑂

𝑑 

𝑐 =
𝐺1𝐺2

1 + 𝐺𝑂𝑂
𝑟 +

𝐺2
1 + 𝐺𝑂𝑂

𝑑 Controlled signal 

Suppression factor 

Noise contribution 
to signal c 
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The general shape of 
1 1 + 𝐺𝑂𝑂⁄  

Log(f) 

1
1 + 𝐺𝑂𝑂

 

100 
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Toy example:  
Locking FP arm to laser frequency 

Reference: laser 
frequency fluctuations 

𝛿𝛿 𝐺𝑧  

- 
+ Plant 

P 
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Sensor 
Se 

Corrector 
H 

Actuator 
A 

∑ 
Const. 

K 

Equivalent cavity 
length fluctuation  
𝛿𝐿𝑙𝑎𝑙𝑙𝑙  𝑚  

Residual cavity 
length fluctuation  

𝛿𝐿 𝑚  

𝛿𝐿
𝐿

=
𝛿𝛿
𝛿

  ⇒ 𝛿𝐿 =
𝐿
𝛿

 𝛿𝛿 ⇛ 𝑲 =
𝑳
𝝂

 



IFO optical 
response 
P 𝑘 𝑚⁄  

- 
+ Plant 

P 
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Sensor 
Se 

Corrector 
H 

Actuator 
A 

∑ 
Const. 

K 

Power fluctuation  
𝛿𝑃 𝑘  

Residual cavity 
length fluctuation  

𝛿𝐿 𝑚  



LIGO-G1200743 Matone: An Overview of Advanced LIGO Interferometry (5) 26 

Photodiode  
response 
Se 𝑉 𝑘⁄  

- 
+ Plant 

P 
Sensor 

Se 

Corrector 
H 

Actuator 
A 

∑ 
Const. 

K 

Power fluctuations  
𝛿𝑃 𝑘  

Error signal   
𝑒 𝑉  
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- 
+ Plant 

P 
Sensor 

Se 

Corrector 
H 

Actuator 
A 

∑ 
Const. 

K 

Length correction   
𝛿𝐿𝑐𝑐𝑙𝑙 𝑚  

Error signal   
𝑒 𝑉  



Toy example:  
Locking FP arm to laser frequency 

- 
+ Plant 

P 
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Sensor 
Se 

Corrector 
H 

Actuator 
A 

∑ 
Const. 

K 

𝛿𝐿𝑐𝑐𝑙𝑙 𝑚  

𝑒 𝑉  𝛿𝛿 𝐺𝑧  𝛿𝐿 𝑚  

𝛿𝐿 =
1

1 + 𝐴 ∙ 𝐺 ∙ 𝑅𝑒 ∙ 𝑃
 𝐾 𝛿𝛿 
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𝐴 ∙ 𝐺 ∙ 𝑅𝑒 ∙ 𝑃 
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1
1 + 𝐴 ∙ 𝐺 ∙ 𝑅𝑒 ∙ 𝑃

  



Noise budget 
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𝛿𝐿 = 𝑇𝐹 ∙ 𝛿𝛿 

Measure noise 
contribution 

 
Amplitude Spectral 

Density [Hz/rHz] 

Project noise 
contribution  

 
Amplitude Spectral 

Density [m/rHz] 

Measure 
Transfer Function 

TF relating the 
two signals 

Measure signal  
 

Amplitude Spectral 
Density [m/rHz] 

BU
DG

ET
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𝛿𝐿 =
1

1 + 𝐴 ∙ 𝐺 ∙ 𝑅𝑒 ∙ 𝑃
 𝐾 𝛿𝛿 



- 
+ Plant 

P 
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Sensor 
Se 

Corrector 
H 

Actuator 
A 

∑ 
Const. 

K 

𝛿𝐿 =
1

1 + 𝐴 ∙ 𝐺 ∙ 𝑅𝑒 ∙ 𝑃
 𝑅 𝛿𝛿 + 𝐾 𝛿𝛿 − 𝐴 ∙ 𝐺 ∙ 𝛿𝑠  

+ 
𝛿𝛿 𝐺𝑧  

Suspension 
S 

+ 
+ ∑ 

Seisimic, ground 𝛿𝛿 𝑚  

+ 
∑ 

Shotnoise 𝛿𝑠 𝑉  
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𝛿𝐿 =
1

1 + 𝐴 ∙ 𝐺 ∙ 𝑅𝑒 ∙ 𝑃
 𝑅 𝛿𝛿 + 𝐾 𝛿𝛿 − 𝐴 ∙ 𝐺 ∙ 𝛿𝑠  

N
oisebudget_exam

ple1.m
 



Noise budgeting 
• Noise term (for example 𝛿𝛿) is measured/estimated in 

frequency space (ASD)  
• To project this noise term, need to 

measure/model/estimate the system’s TFs 
• Noise budgeting 

– Noise projection: multiply noise term (in this case 𝛿𝛿) by 
the TF  

𝛿𝐿𝑙𝑥𝑝𝑙𝑐𝑡𝑙𝑒 = 𝑇𝐹 ∙ 𝛿𝛿 
– Compare (budget) projection 𝛿𝐿𝑙𝑥𝑝𝑙𝑐𝑡𝑙𝑒with measured 𝛿𝐿 

• If in agreement: sensitivity limited by that one noise term 
• If not in agreement: other noise terms are at play 

• eLIGO noise budget sample 
– Contribution sum of all noise terms: in quadrature 
– Quadrature sum of noise terms is compared to detector’s 

sensitivity 
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From
 T060156 



MISC 
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Advanced LIGO Reference Design 
M060056 

• Sensitivity and Reference Design Configuration 
– ℎ~10−22 RMS integrated over 100 𝐺𝑧 bandwidth 
– Tunings: 

• NS-NS: greatest ‘reach’, optimization at 100 𝐺𝑧 
• BH-BH: low frequency optimization 
• Pulsars: narrow-band tuning, SRM swap 
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Advanced LIGO Reference 
Design M060056 • Quantum noise 

limited IFO 
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