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So far...

=== . Michelson IFO with Fabry-Perot arms

— Fabry-Perot arms amplify the phase
change due to arm length changes

 Mirrors are “floating”

— |solated from the ground, freely
responding to GW radiation

— “Free-falling mirrors”
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e Strategy
— Amplify signal
— Decrease and/or control noise contribution

 Noise sources: in general two categories

— Displacement noise
e Ground seismic excitation
 Thermal excitation of optical elements and suspensions
e Radiation pressure

— Phase noise

e Amplitude and frequency fluctuations of the incoming
laser beam

e Shot-noise, the quantum limit to the counting of
photons



= Addressing phase noise... @E

e Shot-noise

— The fundamental limit to the interferometer
sensitivity

— Caused by the inevitable fluctuations in the
number of photons in the laser beam
— Follows Poisson statistics

— Phase noise
1

5§05h0t X
oY, P laser

— Need to use the most light power possible to
lower this noise contribution!




Laser power and Power GE

Recycling
no light out K\
all light
reflected back
to laser!!
laser in no light out

*M no light out




Power
recycling mirror

Laser power and Power GE

Recycling

Power recycling cavity

* Light resonates

e Power buildup

* Brighter dark’ fringe
 Decrease of shot noise

Light is recycled and
sent back to the IFO
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e Strategy
— Amplify signal
— Decrease and/or control noise contribution

 Noise sources: in general two categories

— Displacement noise
e Ground seismic excitation
 Thermal excitation of optical elements and suspensions
e Radiation pressure

— Phase noise

e Amplitude and frequency fluctuations of the incoming
laser beam

e Shot-noise, the quantum limit to the counting of
photons



Need to ground IFO @E

* |nevitable coupling to ground

— displacement noise due to seismic excitation

e To limit the coupling

— Mirrors are suspended like pendula
— High-frequency
e Mirrors are isolated from the ground

— Low-frequency
e Mirrors are inevitably coupled to the ground

— Let’s have a closer look
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Equation of motion

e Suspension point position x
* Mirror position x

e Pendulum length L

e Smallangle: 0 <1

 No losses

* Force due to gravity F;

e Tension force Fr

* Massm




Equation of motion

~

o ) Fr=mg {y: —F, 4+ Frcosf =0

x: —Frsinf =ma
. X — Xo )
—Frsinf =—-mg =mx

L
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Laplace Transforms @E

* A technique to facilitate the solution of
ordinary differential equations.

e Transformation from the time-domain to the
frequency-domain.

 Functions are complex, often described in
terms of magnitude and phase - Transfer
Functions



LSC

Time domain <= Laplace domain™

t
M) dey/dI_

f(t)
s

Yy B3

Transform variable s = j w (complex frequency)
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=3 Laplace transform properties @a

* Linearity
Llcyf1(t) + c2f2(0)] = c1F1(s) + ¢, Fz(s)
* Derivatives

— First-order: £ [d];it)] = sF(s)

2
— Second-order: £ [dd’;f)] = s%F(s)

e Integral

L t d —1
[ fo () t] = <F(s)



Equation of motion

g .
. ) L(x Xg) = X
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Sample Laplace transform pairs @
I Y O O

Unit step u(t) 1/
Unit ramp t 1/ 2
s
Exponential et 1/( )
s—a
[Sinusoid sin(wgt) (‘)/(Sz + wo2) J
0
(1/0)(A = &™) 1/3(5 + a)
V1 — §2 %2 4+ 28wg s + wy?

x sin(v/1 — 62 wyt)
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m— Seismic Attenuation @g

Mirror
position
w Suspension
X = 0 Attenuation point
SZ ~+ (J)O

— Xo for high frequency s > wy

\ X for low frequency s < wy

L No attenuation —
mirror follows ground
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C)
Simple Harmonic Motion (SHM)@E

* Including damping terms
(wo)z

(SZ T 250)0 'S + ((1)0)2)

G(s) =

e With quality factor



qbde plot: G(s) = (wo)"
' (52+26w0-s+(w0)2)
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qbde plot: G(s) = (Wo)"
' (52428 wg's+(wg)?)
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IFO as a reference

e At high frequencies (s > wy)
— IFO is very stable

* used as a reference ETMY
RM | 2 -‘._

e At low frequencies (s < wg)~

— Masses are “free-falling”
— Decoupled from the ground

— Seismic noise creeps in * PO

— Cavities will not hold resonance
unless there is control



e Strategy
— Amplify signal
— Decrease and/or control noise contribution

 Noise sources: in general two categories

— Displacement noise
e Ground seismic excitation
 Thermal excitation of optical elements and suspensions
e Radiation pressure

— Phase noise

e Amplitude and frequency fluctuations of the incoming
laser beam

e Shot-noise, the quantum limit to the counting of
photons



- Holding the cavity on resonance @E

e Mirrors are in motion

— Low-quality factors (Q < 10, with local controls)
and low frequency (~1 Hz) resonances

— Test mass residual motion of ~ 1 um RMS
 Compare with 4/, FSR

e Several fringe crossings

— “Narrow” optical resonance

CWHM — FSR 1/2
 F 450

* How to keep light resonating in cavity?

1 nm



B3 1. pound-Drever-Hall (PDH) @E

Locking Scheme

* Two options

1. Force the laser frequency v
to track the cavity length L

* Freely moving mirrors with
adjustments to the laser
frequency: light on resonance

2. Force the cavity length L to
track the laser frequency v

e Laser frequency v is
uncontrolled but mirrors are
driven: light on resonance
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Locking Scheme

o —

\ v <(
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The Pound-Drever-Hall (PDH)

DC power\Locking Scheme

Modulated—+—

components

e The beat \

between
the carrier

and the

sidebands
e (Contains
the PDH
error signal .7._ H_. ;
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DC power @E

Reflected field (Pin=1 W, finesse =54, @ /2xr =13 v fsr)
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Conceptualizing

Reflected field: sideband and carrier.
Q) component: beat between the carrier leaking
through and the sidebands - PDH error signal

Carrier
resonates
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Carrier field
enters cavity




LSC . .
=3 Measuring the error signals

[rl* = |101/JR,0|2 + |]11/JR,+|2 + |]11/)R,—|2
B - 21o] Rls o " + s aths "lcos Ot

= 2]0]13[1/JR,+1/)R,0* + 1/JR,01/JR,—*] sin (Ut

shifter
——

Optical isolator: T
transmission of light
only in one direction
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LSC
Locking the arm to the laser @

J\/Wb% Amplification and filtering\
f )

" Cavity tracks

e Q) laser

frequency

!
r—ﬁ—- | H &
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LSC
Locking the laser to the arm @

3JV\kﬁf Laser

¢+ frequency
=1 tracks cavity

shifter

L4
-
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e Strategy
— Amplify signal
— Decrease and/or control noise contribution

 Noise sources: in general two categories

— Displacement noise
e Ground seismic excitation
 Thermal excitation of optical elements and suspensions
e Radiation pressure

— Phase noise

e Amplitude and frequency fluctuations of the incoming
laser beam

e Shot-noise, the quantum limit to the counting of
photons



As of now ... @a

 Power Recycled Michelson IFO with Fabry-Perot arms
— Fabry-Perot arms amplify the phase change due to AL

— Power Recycling mirror re-injects light back into IFO, generating
power build-up and lowering phase noise due to shot noise

* Displacement noise
— Mirrors are suspended to isolate IFO from the ground

— At high frequencies (s > wy)

e [FOis very stable, Test Masses are “free-falling”, decoupled from the
ground

— At low frequencies (s < wy)

e Seismic noise creeps in, cavities will not hold resonance unless there is
control

 Pound-Drever-Hall Locking technique
— Phase modulate laser beam to create sidebands
— Requiring the sidebands not to resonate in cavity

— Demodulating reflected signal to retrieve signal for longitudinal
locking



Group Activities @E

Form groups of two or three

Using Matlab, write a function that calculates the
reflected EM field from an arbitrary Fabry-Perot

Use this function to plot the demodulated signals —
also using arbitrary settings

2]0]1m[¢R,+¢R,0* + l/JR,ol/JR,—*] cos ()t

— 2Jo/13|[Vr+¥r0™ + YroYr "] sin Qt

Generate the corresponding plots for the
demodulated signal using the specifications in Table 2
of T1000298 (AdvLIGO LSC final design document)

. Just for fun — let a single mirror move sinusoidally

around its equilibrium position with an amplitude of
2 um. Plot the demodulated signals.



From “The AdvLIGO Length Sensing and Control

Final Design” T1000298

Table 2: Basic interferometer parameters for both folded and non-folded case.

LIGO-G1200743

Cluantity Non-Folded IFOs  Folded IFO
Finesse 446 446
ITM transmission 0.014 0.014
PRM transmission 0.030) 0.030
SREM transmission 0.200) 0.200
Schnupp asymmetry (0.050 0.050
ETM radius of curvature 2245 m 2245 m
ITM radius of curvature 1934 m 1934 m
lpre BT.655T7 m 60.4112 m
lspe H6.0084 m 62.1372 m
Ipge (round trip) 32,9461 m 345207 m
lEx 399450 m 3996.00 m
Iy 3994.50 m 3996.00 m

Free Spectral Range (FSR)
Transverse mode spacing
Lower mod. frequency
Upper mod. frequency

37.526 kHz
32.453 kHz
9'099°471 Hz
45'497°355 Hz

37.512 kH=
32.462 kH=z
B'684°428 Hz

43'422'140 Hz
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Read the following papers

— K. A. Strain et al., “Sensing and control in dual-recycling laser
interferometer gravitational-wave detectors,” Appl. Opt. 42,
1244-1256 (2003)

— Rollins J. et al., “Multi-color Cavity Metrology” P1200019-v5

— Mullavey A. J. et al, “Arm-length stabilization for interferometric
gravitational-wave detectors using frequency-doubled auxiliary

lasers,” Optics Express, 20, 81-89 (2011)
Prepare questions to post on board
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