



# An Overview of Advanced LIGO Interferometry

Luca Matone Columbia Experimental Gravity group (GECo)

> Jul 16-20, 2012 LIGO-G1200743



#### So far...



- Michelson IFO with Fabry-Perot arms
  - Fabry-Perot arms amplify the phase change due to arm length changes
  - Mirrors are "floating"
    - Isolated from the ground, freely responding to GW radiation
    - "Free-falling mirrors"





- Strategy
  - Amplify signal
  - Decrease and/or control noise contribution
- Noise sources: in general two categories
  - Displacement noise
    - Ground seismic excitation
    - Thermal excitation of optical elements and suspensions
    - Radiation pressure
  - Phase noise
    - Amplitude and frequency fluctuations of the incoming laser beam
    - Shot-noise, the quantum limit to the *counting* of photons



# Addressing phase noise...



- Shot-noise
  - The fundamental limit to the interferometer sensitivity
  - Caused by the inevitable fluctuations in the number of photons in the laser beam
  - Follows Poisson statistics
  - Phase noise

$$\delta \varphi_{shot} \propto \frac{1}{\sqrt{P_{laser}}}$$

 Need to use the most light power possible to lower this noise contribution!





#### Laser power and Power Recycling









- Strategy
  - Amplify signal
  - Decrease and/or control noise contribution
- Noise sources: in general two categories
  - Displacement noise
    - Ground seismic excitation
    - Thermal excitation of optical elements and suspensions
    - Radiation pressure
  - Phase noise
    - Amplitude and frequency fluctuations of the incoming laser beam
    - Shot-noise, the quantum limit to the *counting* of photons





# Need to ground IFO

- Inevitable coupling to ground
  - displacement noise due to seismic excitation
- To limit the coupling
  - Mirrors are suspended like pendula
  - High-frequency
    - Mirrors are isolated from the ground
  - Low-frequency
    - Mirrors are inevitably coupled to the ground
  - Let's have a closer look



ETMY

## Equation of motion

- Suspension point position  $x_0$
- Mirror position *x*
- Pendulum length *L*
- Small angle:  $\theta \ll 1$
- No losses
- Force due to gravity  $F_g$
- Tension force  $F_T$
- Mass m









## Equation of motion









### Laplace Transforms

- A technique to facilitate the solution of ordinary differential equations.
- Transformation from the <u>time-domain</u> to the <u>frequency-domain</u>.
- Functions are complex, often described in terms of magnitude and phase → Transfer Functions





### Time domain $\leftrightarrow$ Laplace domain



#### Transform variable $s = j \omega$ (complex frequency)





- Linearity  $\mathcal{L}[c_1f_1(t) + c_2f_2(t)] = c_1F_1(s) + c_2F_2(s)$
- Derivatives

- First-order: 
$$\mathcal{L}\left[\frac{df(t)}{dt}\right] = sF(s)$$
  
- Second-order:  $\mathcal{L}\left[\frac{d^2f(t)}{dt^2}\right] = s^2F(s)$ 

Integral

$$\mathcal{L}\left[\int_0^t f(t)dt\right] = \frac{1}{s}F(s)$$



## Equation of motion





# Sample Laplace transform pairs



|             | f(t)                                                              | F(s)                                                     |
|-------------|-------------------------------------------------------------------|----------------------------------------------------------|
| Unit step   | u(t)                                                              | $1/_{S}$                                                 |
| Unit ramp   | t                                                                 | $\frac{1}{s^2}$                                          |
| Exponential | $e^{at}$                                                          | $\frac{1}{(s-a)}$                                        |
| Sinusoid    | $sin(\omega_0 t)$                                                 | $\omega/(s^2 + \omega_0^2)$                              |
|             | $(1/a)(1-e^{-at})$                                                | $\frac{1}{s(s+a)}$                                       |
| SHO         | $\frac{\omega_0}{\sqrt{1-\delta^2}} e^{-\delta\omega_0 t} \times$ | $\frac{{\omega_0}^2}{s^2+2\delta\omega_0s+{\omega_0}^2}$ |
|             | $\times \sin(\sqrt{1-\delta^2} \omega_0 t)$                       |                                                          |







# Simple Harmonic Motion (SHM)

• Including damping terms

$$G(s) = \frac{(\omega_0)^2}{(s^2 + 2\delta\omega_0 \cdot s + (\omega_0)^2)}$$

• With quality factor

$$Q = \frac{1}{2\delta}$$









# IFO as a reference



- At high frequencies ( $s \gg \omega_0$ )
  - IFO is very stable
    - used as a reference
  - Masses are "free-falling"
  - Decoupled from the ground
- At low frequencies ( $s \leq \omega_0$ )
  - Seismic noise creeps in
  - Cavities will not hold resonance unless there is control







- Strategy
  - Amplify signal
  - Decrease and/or control noise contribution
- Noise sources: in general two categories
  - Displacement noise
    - Ground seismic excitation
    - Thermal excitation of optical elements and suspensions
    - Radiation pressure
  - Phase noise
    - Amplitude and frequency fluctuations of the incoming laser beam
    - Shot-noise, the quantum limit to the *counting* of photons

# Holding the cavity on resonance

- Mirrors are in motion
  - Low-quality factors ( $Q \leq 10$ , with local controls) and low frequency ( $\sim 1 Hz$ ) resonances
  - Test mass residual motion of  $\sim 1\,\mu m$  RMS
    - Compare with  $^{\lambda}/_{2}$  FSR
    - Several fringe crossings
  - "Narrow" optical resonance

$$FWHM = \frac{FSR}{\mathcal{F}} = \frac{\lambda/2}{450} \simeq 1 nm$$

How to keep light resonating in cavity?



# The Pound-Drever-Hall (PDH) Locking Scheme



#### Two options

- 1. Force the laser frequency  $\nu$  to track the cavity length L
  - Freely moving mirrors with adjustments to the laser frequency: light on resonance
- 2. Force the cavity length L to track the laser frequency  $\nu$ 
  - Laser frequency v is uncontrolled but mirrors are driven: light on resonance







LIGO-G1200743



DC power





Matone: An Overview of Advanced LIGO Interferometry (2)

Run\_fp3.m





#### Conceptualizing





# Measuring the error signals









#### Locking the arm to the laser







#### Locking the laser to the arm





G E Co

- Strategy
  - Amplify signal
  - Decrease and/or control noise contribution
- Noise sources: in general two categories
  - Displacement noise
    - Ground seismic excitation
    - Thermal excitation of optical elements and suspensions
    - Radiation pressure
  - Phase noise
    - Amplitude and frequency fluctuations of the incoming laser beam
    - Shot-noise, the quantum limit to the *counting* of photons



## As of now ...



- Power Recycled Michelson IFO with Fabry-Perot arms
  - Fabry-Perot arms amplify the phase change due to  $\Delta L$
  - Power Recycling mirror re-injects light back into IFO, generating power build-up and lowering phase noise due to shot noise
- Displacement noise
  - Mirrors are suspended to isolate IFO from the ground
  - At high frequencies ( $s \gg \omega_0$ )
    - IFO is very stable, Test Masses are "free-falling", decoupled from the ground
  - At low frequencies ( $s \leq \omega_0$ )
    - Seismic noise creeps in, cavities will not hold resonance unless there is control
- Pound-Drever-Hall Locking technique
  - Phase modulate laser beam to create sidebands
  - Requiring the sidebands not to resonate in cavity
  - Demodulating reflected signal to retrieve signal for longitudinal locking



# **Group Activities**



- 1. Form groups of two or three
- 2. Using Matlab, write a *function* that calculates the reflected EM field from an arbitrary Fabry-Perot
- 3. Use this function to plot the demodulated signals also using arbitrary settings

$$2J_0 J_1 \Re [\psi_{R,+} \psi_{R,0}^* + \psi_{R,0} \psi_{R,-}^*] \cos \Omega t - 2J_0 J_1 \Im [\psi_{R,+} \psi_{R,0}^* + \psi_{R,0} \psi_{R,-}^*] \sin \Omega t$$

- Generate the corresponding plots for the demodulated signal using the specifications in Table 2 of T1000298 (AdvLIGO LSC final design document)
- 4. Just for fun let a single mirror move sinusoidally around its equilibrium position with an amplitude of  $2 \mu m$ . Plot the demodulated signals.





| Quantity                      | Non-Folded IFOs | Folded IFO    |
|-------------------------------|-----------------|---------------|
| Finesse                       | 446             | 446           |
| ITM transmission              | 0.014           | 0.014         |
| PRM transmission              | 0.030           | 0.030         |
| SRM transmission              | 0.200           | 0.200         |
| Schnupp asymmetry             | 0.050           | 0.050         |
| ETM radius of curvature       | 2245 m          | 2245 m        |
| ITM radius of curvature       | 1934 m          | 1934 m        |
| l <sub>PRC</sub>              | 57.6557  m      | 60.4112  m    |
| l <sub>SRC</sub>              | 56.0084 m       | 62.1372  m    |
| l <sub>IMC</sub> (round trip) | 32.9461 m       | 34.5207  m    |
| $l_{EX}$                      | 3994.50 m       | 3996.00 m     |
| $l_{EY}$                      | 3994.50 m       | 3996.00 m     |
| Free Spectral Range (FSR)     | 37.526 kHz      | 37.512 kHz    |
| Transverse mode spacing       | 32.453 kHz      | 32.462 kHz    |
| Lower mod. frequency          | 9'099'471 Hz    | 8'684'428 Hz  |
| Upper mod. frequency          | 45'497'355 Hz   | 43'422'140 Hz |

Table 2: Basic interferometer parameters for both folded and non-folded case.



# Preparation for tomorrow



Read the following papers

- K. A. Strain et al., "Sensing and control in dual-recycling laser interferometer gravitational-wave detectors," Appl. Opt. 42, 1244-1256 (2003)
- Rollins J. et al., "Multi-color Cavity Metrology" P1200019-v5
- Mullavey A. J. et al, "Arm-length stabilization for interferometric gravitational-wave detectors using frequency-doubled auxiliary lasers," Optics Express, 20, 81-89 (2011)

Prepare questions to post on board