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So far… 
• Michelson IFO with Fabry-Perot arms 

– Fabry-Perot arms amplify the phase 
change due to arm length changes 

• Mirrors are “floating” 
– Isolated from the ground, freely 

responding to GW radiation 
– “Free-falling mirrors” 
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• Strategy 
– Amplify signal 
– Decrease and/or control noise contribution 

• Noise sources: in general two categories 
– Displacement noise 

• Ground seismic excitation 
• Thermal excitation of optical elements and suspensions 
• Radiation pressure  

– Phase noise 
• Amplitude and frequency fluctuations of the incoming 

laser beam 
• Shot-noise, the quantum limit to the counting of 

photons 
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Addressing phase noise… 
• Shot-noise 

– The fundamental limit to the interferometer 
sensitivity 

– Caused by the inevitable fluctuations in the 
number of photons in the laser beam 

– Follows Poisson statistics 
– Phase noise  

𝛿𝜑𝑠𝑠𝑠𝑠 ∝
1
𝑃𝑙𝑙𝑙𝑙𝑙

 

– Need to use the most light power possible to 
lower this noise contribution! 
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Laser power and Power 
Recycling 
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 laser in 

 no light out 

 no light out 

 no light out 

 all light 
reflected back 

to laser!! 



Laser power and Power 
Recycling 
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 Power 
recycling mirror 

 Light is recycled and 
sent back to the IFO 

 Power recycling cavity 
• Light resonates 
• Power buildup 
• Brighter ‘dark’ fringe 
• Decrease of shot noise 



• Strategy 
– Amplify signal 
– Decrease and/or control noise contribution 

• Noise sources: in general two categories 
– Displacement noise 

• Ground seismic excitation 
• Thermal excitation of optical elements and suspensions 
• Radiation pressure  

– Phase noise 
• Amplitude and frequency fluctuations of the incoming 

laser beam 
• Shot-noise, the quantum limit to the counting of 

photons 
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Need to ground IFO 

• Inevitable coupling to ground 
– displacement noise due to seismic excitation 

• To limit the coupling 
– Mirrors are suspended like pendula 
– High-frequency 

• Mirrors are isolated from the ground 

– Low-frequency 
• Mirrors are inevitably coupled to the ground 

– Let’s have a closer look 
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Equation of motion 
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• Suspension point position 𝑥0 
• Mirror position 𝑥 
• Pendulum length 𝐿 
• Small angle: 𝜃 ≪ 1 
• No losses 
• Force due to gravity 𝐹𝑔 
• Tension force 𝐹𝑇 
• Mass 𝑚 

𝑥0 𝑥 

𝜃 
𝐿 

𝐹𝑔 

𝐹𝑇 
𝑚 
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Equation of motion 

�
𝑦:  −𝐹𝑔 + 𝐹𝑇 cos𝜃 = 0
𝑥:       −𝐹𝑇 sin𝜃 = 𝑚 𝑎 
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𝑥0 𝑥 

𝜃 
𝐿 

𝐹𝑔 = 𝑚𝑚 

𝐹𝑇 

𝑚 

𝐹𝑇 ≃ 𝑚 𝑔 

−𝐹𝑇 sin𝜃 = −𝑚 𝑔 
𝑥 − 𝑥0
𝐿

= 𝑚 𝑥̈ 

−
𝑔
𝐿
𝑥 − 𝑥0 = 𝑥̈ 

Time domain: solve for differential equation 

𝑥 

𝑦 

 



Laplace Transforms 

• A technique to facilitate the solution of 
ordinary differential equations. 

• Transformation from the time-domain to the 
frequency-domain. 

• Functions are complex, often described in 
terms of magnitude and phase → Transfer 
Functions 
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Time domain ↔ Laplace domain 

𝑓 = 𝑑𝑑
𝑑𝑑�  

y(𝑡) f(𝑡) 

𝐺(𝑠) 
𝑌(𝑠) F(𝑠) 

In
pu

t 

O
ut

pu
t 
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Transform variable 𝑠 = 𝑗 𝜔 (complex frequency) 

Transfer 
Function 



Laplace transform properties 
• Linearity 

L 𝑐1𝑓1 𝑡 + 𝑐2𝑓2 𝑡 = 𝑐1𝐹1 𝑠 + 𝑐2𝐹2 𝑠  
• Derivatives 

– First-order: L 𝑑𝑑(𝑡)
𝑑𝑑

= 𝑠𝑠(𝑠) 

– Second-order: L 𝑑2𝑓(𝑡)
𝑑𝑑2

= 𝑠2𝐹(𝑠) 

• Integral 

L � 𝑓 𝑡 𝑑𝑑
𝑡

0
=

1
𝑠
𝐹(𝑠) 
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Equation of motion 

LIGO-G1200743 Matone: An Overview of Advanced LIGO Interferometry (2) 14 

𝑥0 𝑥 

𝜃 
𝐿 

𝐹𝑔 

𝐹𝑇 

𝑚 

−
𝑔
𝐿
𝑥 − 𝑥0 = 𝑥̈ 

𝑥 =
𝜔0

2

𝑠2 + 𝜔0
2  𝑥0 

𝜔0
2 =

𝑔
𝐿

 



Sample Laplace transform pairs 
𝒇(𝒕) 𝑭(𝒔) 

Unit step 𝑢(𝑡) 1 𝑠�  
Unit ramp 𝑡 1

𝑠2�  

Exponential 𝑒𝑎𝑎 1
𝑠 − 𝑎�  

Sinusoid sin (𝜔0𝑡) 𝜔
𝑠2 + 𝜔0

2�  

1/𝑎 1 − 𝑒−𝑎𝑎  1
𝑠 𝑠 + 𝑎�  

SHO 𝜔0

1 − 𝛿2
 𝑒−𝛿𝜔0𝑡 × 

      × sin( 1 − 𝛿2 𝜔0𝑡) 

𝜔0
2

𝑠2 + 2𝛿𝜔0 𝑠 + 𝜔0
2 
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Seismic Attenuation 
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𝑥 =
𝜔0

2

𝑠2 + 𝜔0
2  𝑥0

≃ �
 
1
𝑠2

 𝑥0      for high frequency    𝑠 ≫ 𝜔0
 

𝑥0             for low frequency    𝑠 ≪ 𝜔0

 

Attenuation 

No attenuation – 
mirror follows ground 

𝑥 𝑠  =  𝐺 𝑠   𝑥0 𝑠  

Suspension 
point  

Mirror 
position 



Simple Harmonic Motion (SHM) 

• Including damping terms 

𝐺 𝑠 =
𝜔0

2

(𝑠2 + 2𝛿𝜔0 ∙ 𝑠 + 𝜔0
2)

 

 
• With quality factor 

𝑄 =
1

2𝛿
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Bode plot: 𝐺 𝑠 = 𝜔0
2

(𝑠2+2𝛿𝜔0∙𝑠+ 𝜔0 2)
 

bodeexam
ples.m

 

𝜔 ≪ 𝜔0 → 𝐺 𝑗𝜔 ≈ 1 

𝜔 ≪ 𝜔0 → ∠𝐺 𝑗𝜔 ≈ 0 

𝜔0
2𝜋� = 1 Hz, δ = 0.1 
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Bode plot: 𝐺 𝑠 = 𝜔0
2

(𝑠2+2𝛿𝜔0∙𝑠+ 𝜔0 2)
 

bodeexam
ples.m

 

𝜔 ≫ 𝜔0 → 𝐺 𝑗𝜔 ≈ 𝜔0
2

𝜔2�  

𝜔 ≫ 𝜔0 → ∠𝐺 𝑗𝜔 ≈ −𝜋 

𝜔0
2𝜋� = 1 Hz, δ = 0.1 
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Bode plot: 𝐺 𝑠 = 𝜔0
2

(𝑠2+2𝛿𝜔0∙𝑠+ 𝜔0 2)
 

bodeexam
ples.m

 

𝜔 = 𝜔0 → 𝐺 𝑗𝜔 = 1
2𝛿�  

𝜔 = 𝜔0 → ∠𝐺 𝑗𝜔 = −𝜋 2�  

𝜔0
2𝜋� = 1 Hz, δ = 0.1 
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IFO as a reference 
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• At high frequencies (𝑠 ≫ 𝜔0) 
– IFO is very stable  

• used as a reference 

– Masses are “free-falling”  
– Decoupled from the ground 

• At low frequencies (𝑠 ≲ 𝜔0) 
– Seismic noise creeps in 
– Cavities will not hold resonance 

unless there is control 

 



• Strategy 
– Amplify signal 
– Decrease and/or control noise contribution 

• Noise sources: in general two categories 
– Displacement noise 

• Ground seismic excitation 
• Thermal excitation of optical elements and suspensions 
• Radiation pressure  

– Phase noise 
• Amplitude and frequency fluctuations of the incoming 

laser beam 
• Shot-noise, the quantum limit to the counting of 

photons 
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Holding the cavity on resonance 
• Mirrors are in motion 

– Low-quality factors (𝑄 ≲ 10, with local controls) 
and low frequency (~1 𝐻𝐻) resonances 

– Test mass residual motion of ∼ 1 𝜇𝜇 RMS 
• Compare with 𝜆 2⁄  FSR 
• Several fringe crossings 

– “Narrow” optical resonance 

𝐹𝐹𝐹𝐹 =
𝐹𝐹𝐹
ℱ

=
𝜆 2⁄
450

≃ 1 𝑛𝑛  

• How to keep light resonating in cavity? 
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The Pound-Drever-Hall (PDH) 
Locking Scheme 

• Two options 
1. Force the laser frequency 𝜈 

to track the cavity length 𝐿 
• Freely moving mirrors with 

adjustments to the laser 
frequency: light on resonance 

2. Force the cavity length 𝐿 to 
track the laser frequency 𝜈 
• Laser frequency 𝜈 is 

uncontrolled but mirrors are 
driven: light on resonance  
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The Pound-Drever-Hall (PDH) 
Locking Scheme 

LIGO-G1200743 Matone: An Overview of Advanced LIGO Interferometry (2) 25 

~ 
Phase 

modulator 

Input laser 
field 𝜓0 

Local 
oscillator 

𝜓0 = 𝐴 𝑒𝑖 𝜔0𝑡 
 

𝜓𝑖𝑖 ≃ 𝐴 𝑒𝑖 𝜔0𝑡 𝐽0 + 𝐽1𝑒𝑖 Ω𝑡 − 𝐽1𝑒−𝑖 Ω𝑡  

Carrier 

Upper and lower 
sidebands, modulated at Ω  



The Pound-Drever-Hall (PDH) 
Locking Scheme 
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𝜓𝑅 ≃ 𝐽0 𝜓𝑅,0 + 𝐽1 𝜓𝑅,+ 𝑒𝑖 Ω𝑡 − 𝐽1𝜓𝑅,− 𝑒−𝑖 Ω𝑡 

𝜓𝑅 2 ≃ 𝐽0𝜓𝑅,0
2 + 𝐽1𝜓𝑅,+

2 + 𝐽1𝜓𝑅,−
2

+ 2𝐽0𝐽1ℜ 𝜓𝑅,+𝜓𝑅,0
∗ + 𝜓𝑅,0𝜓𝑅,−

∗ cosΩ𝑡
− 2𝐽0𝐽1ℑ 𝜓𝑅,+𝜓𝑅,0

∗ + 𝜓𝑅,0𝜓𝑅,−
∗ sinΩ𝑡 

DC power 

Modulated 
components 
• The beat 

between 
the carrier 
and the 
sidebands 

• Contains 
the PDH 
error signal 

~ 



DC power 

• Sweeping cavity 
length 𝐿 (but keeping 
laser frequency 𝜈 
fixed)  

• When carrier 
resonates, sidebands 
anti-resonate  
– completely reflected 
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Carrier 

Sideband 

Run_fp3.m 



𝜓𝑅 2 ≃ 𝐽0𝜓𝑅,0
2 + 𝐽1𝜓𝑅,+

2 + 𝐽1𝜓𝑅,−
2

+ 2𝐽0𝐽1ℜ 𝜓𝑅,+𝜓𝑅,0
∗ + 𝜓𝑅,0𝜓𝑅,−

∗ cosΩ𝑡
− 2𝐽0𝐽1ℑ 𝜓𝑅,+𝜓𝑅,0

∗ + 𝜓𝑅,0𝜓𝑅,−
∗ sinΩ𝑡 
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Run_fp3.m
 

Reflected 
field 



Conceptualizing 
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Laser in 

Sidebands are 
completely 
reflected 

Carrier field 
enters cavity 

Carrier 
resonates 

Reflected field: sideband and carrier. 
Ω component: beat between the carrier leaking 
through and the sidebands → PDH error signal 



𝜓𝑅 2 ≃ 𝐽0𝜓𝑅,0
2 + 𝐽1𝜓𝑅,+

2 + 𝐽1𝜓𝑅,−
2

+ 2𝐽0𝐽1ℜ 𝜓𝑅,+𝜓𝑅,0
∗ + 𝜓𝑅,0𝜓𝑅,−

∗ cosΩ𝑡
− 2𝐽0𝐽1ℑ 𝜓𝑅,+𝜓𝑅,0

∗ + 𝜓𝑅,0𝜓𝑅,−
∗ sinΩ𝑡 

Optical isolator: 
transmission of light 
only in one direction 

Measuring the error signals 
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~ 

Phase 
shifter 

Mixer 

Photodiode 



Locking the arm to the laser 
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~ 

Phase 
shifter 

Amplification and filtering 



Locking the laser to the arm 
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~ 

Phase 
shifter 

Am
pl

ifi
ca

tio
n 

an
d 

fil
te

rin
g 



• Strategy 
– Amplify signal 
– Decrease and/or control noise contribution 

• Noise sources: in general two categories 
– Displacement noise 

• Ground seismic excitation 
• Thermal excitation of optical elements and suspensions 
• Radiation pressure  

– Phase noise 
• Amplitude and frequency fluctuations of the incoming 

laser beam 
• Shot-noise, the quantum limit to the counting of 

photons 
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As of now … 
• Power Recycled Michelson IFO with Fabry-Perot arms 

– Fabry-Perot arms amplify the phase change due to Δ𝐿 
– Power Recycling mirror re-injects light back into IFO, generating 

power build-up and lowering phase noise due to shot noise 
• Displacement noise 

– Mirrors are suspended to isolate IFO from the ground 
– At high frequencies (𝑠 ≫ 𝜔0) 

• IFO is very stable, Test Masses are “free-falling”, decoupled from the 
ground 

– At low frequencies (𝑠 ≲ 𝜔0) 
• Seismic noise creeps in, cavities will not hold resonance unless there is 

control 
• Pound-Drever-Hall Locking technique 

– Phase modulate laser beam to create sidebands 
– Requiring the sidebands not to resonate in cavity 
– Demodulating reflected signal to retrieve signal for longitudinal 

locking 
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Group Activities 
1. Form groups of two or three 
2. Using Matlab, write a function that calculates the 

reflected EM field from an arbitrary Fabry-Perot 
3. Use this function to plot the demodulated signals – 

also using arbitrary settings 
2𝐽0𝐽1ℜ 𝜓𝑅,+𝜓𝑅,0

∗ + 𝜓𝑅,0𝜓𝑅,−
∗ cosΩ𝑡

− 2𝐽0𝐽1ℑ 𝜓𝑅,+𝜓𝑅,0
∗ + 𝜓𝑅,0𝜓𝑅,−

∗ sinΩ𝑡 
3. Generate the corresponding plots for the 

demodulated signal using the specifications in Table 2 
of T1000298 (AdvLIGO LSC final design document) 

4. Just for fun – let a single mirror move sinusoidally 
around its equilibrium position with an amplitude of 
2 𝜇𝜇. Plot the demodulated signals. 
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Preparation for tomorrow 
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Read the following papers 
– K. A. Strain et al., “Sensing and control in dual-recycling laser 

interferometer gravitational-wave detectors,” Appl. Opt. 42, 
1244-1256 (2003) 

– Rollins J. et al., “Multi-color Cavity Metrology” P1200019-v5 
– Mullavey A. J. et al, “Arm-length stabilization for interferometric 

gravitational-wave detectors using frequency-doubled auxiliary 
lasers,” Optics Express, 20, 81-89 (2011) 

Prepare questions to post on board 
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