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Day Topic References 

1 
Gravitational Waves, Michelson IFO, Fabry-Perot cavity, finesse, free-
spectral range (FSR), Michelson with Fabry-Perot arms. Group activity: 
single arm numerical calculations (MATLAB) and plots. 

• H. Kogelnik and T. Li, 
Appl. Opt. 5, 1550 
(1966) 

• K. A. Strain et al., 
Appl. Opt. 42, 1244-
1256 (2003) 

• Mullavey A. J. et al,  
Optics Express, 20, 
81-89 (2011) 

• Morrison E. et al., 
Appl. Opt. 33, 5037-
5040  (1994) 

• T970122 
• P1200019 
• G050091 
• T070247 
• T020020 
• T040156 
• G1101270 
• M060056 
• T1000298  

2 

Power recycled Michelson IFO, suspended TMs and equation of 
motion, Laplace transform, modeling of Pound-Drever-Hall locking 
scheme. Group activity: numerical calculations (MATLAB) of single arm 
cavity w/o sidebands w/o seismic noise.  

3 

Initial LIGO: Schnupp asymmetry, degrees of freedom to sense and 
control, output ports. Advanced LIGO: Resonant Sideband Extraction 
(RSE), output ports, degrees of freedom to sense and control, sensing 
matrix, homodyne and DC readout, lock acquisition and green laser 
locking. Group activity: paper discussion 

4 

Transverse Electro-Magnetic (TEM) modes, cavity mode, mode-
matching, transverse mode spacing, Gouy phase, Wavefront sensor, 
Input Mode-Cleaner, frequency stabilization, Output Mode-Cleaner, 
Thermal Compensation System (TCS). Group activity: paper discussion 

5 Amplitude spectral noise, basics on control loops, noise budgeting, 
paper discussion and summary 



Gravitational Waves 
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L 

ΔL 

The change in distance ∆𝐿 depends on 
• The distance 𝐿 
• The gravitational wave amplitude ℎ 

∆𝐿 = ℎ 𝐿 

The passage of a 
Gravitational Wave changes 
the distance between 
objects (ΔL). 



How big is ∆𝐿? 
Astrophysical motivation 

Amplitude of GWs produced by binary neutron 
star systems in the VIRGO cluster is expected to 
be 

ℎ ~ 10−21 
 
 
 

∆𝐿 = ℎ 𝐿 ~ 10−18𝑚 
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For a 4 km baseline (L) 



Idea: Michelson Interferometer 
(IFO) to measure ΔL 
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laser 

mirror 
m

irror
 Interference 

fringe 



Michelson IFO to measure ∆𝐿 
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Once mirrors 
move 

The light level 
changes 

• The laser fields in the 
two arms recombine 
to interfere 

• Interference can be 
constructive or 
destructive 



How does a Michelson IFO work? 
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Description of a Laser Beam 

𝑈𝑚,𝑛 𝑥, 𝑦, 𝑧

=
𝐴𝑚,𝑛

𝑤 𝑧
 𝐻𝑚 2

𝑥
𝑤 𝑧

𝐻𝑛 2
𝑦

𝑤 𝑧
× 

𝑒− 𝑥2+𝑦2 𝑤2 𝑧⁄ × 
𝑒−𝑖𝑖 𝑥2+𝑦2 2 𝑅 𝑧⁄ × 

𝑒−𝑖 𝑘 𝑧 −𝜑𝑚,𝑛 𝑧  
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Any laser beam can be represented in 
terms of TEM (Propagation) modes 

Hermite 
polynomial 

Spot size Wavefront radius 

Gouy phase 

Wavefront 



• TEMmn:  
– Transverse Electro-Magnetic 

(TEM) modes 

• Figure 

– plot of 𝑈𝑚,𝑛 𝑥, 𝑦, 𝑧 2
vs. 

position 𝑥, 𝑦 
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𝒚 

𝒙 

Mode patterns 



Electromagnetic wave: 
In general 
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𝝍 = 𝑨 𝒆𝒊𝒊 
Electromagnetic 
wave function 𝜓 

Amplitude A 

Phase 𝜑 

Photodiode measures power 𝑃 
 

𝑃 = 𝜓 2 = 𝜓 𝜓∗ = 𝐴2 



Simplifying: Plane-Wave 
Approximation 
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Flat wavefront   
(like that of a 
plane wave) 



A laser beam in the plane-wave 
approximation 

𝑈𝑚,𝑛 𝑥, 𝑦, 𝑧

=
𝐴𝑚,𝑛

𝑤 𝑧
 𝐻𝑚 2

𝑥
𝑤 𝑧

𝐻𝑛 2
𝑦

𝑤 𝑧
× 

𝑒− 𝑥2+𝑦2 𝑤2 𝑧⁄ × 
𝑒−𝑖𝑖 𝑥2+𝑦2 2 𝑅 𝑧⁄ × 

𝑒−𝑖 𝑘 𝑧 −𝜑𝑚,𝑛 𝑧  
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Ψ 𝑧 = 𝐴 𝑒−𝑖 𝑘 𝑧  

• Wave number 𝑘 = 2𝜋
𝜆

 
• Propagation axis 𝑧 



Modeling a Michelson IFO 

• Assuming no misalignments 
• Assuming plane mirrors 
 Plane-Wave approximation 

– Helpful in conceptualizing the 
detector 

 
>> Powerful model 
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laser 

mirror 

m
irror

 

photodiode 

 



Objective: 
To determine what the EM fields 

look like throughout the IFO 
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Interference port 



Beam Propagation 
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l 

Ψ𝑙𝑙𝑙𝑙𝑙 
Electromagnetic field 
right after the laser Ψ1 = 𝑒−𝑖 𝑘 𝑙 ∙ Ψ𝑙𝑙𝑙𝑙𝑙 

Electromagnetic field right 
before the mirror 

Phase 𝜑 = 𝑘 𝑙 



Beam Reflection and Transmission 

LIGO-G1200743 Matone: An Overview of Advanced LIGO Interferometry (1) 16 

Ψ𝑖𝑖 
Impinging electromagnetic field  

Ψ𝑡 = 𝑡 ∙ Ψ𝑖𝑖 
Transmitted electromagnetic 
field right after the mirror. 
 
Mirror’s transmission amplitude t 

Ψ𝑟 = 𝑖𝑖 ∙ Ψ𝑖𝑖 
Reflected electromagnetic field 
right after the mirror. 
 
Mirror’s reflection amplitude r. 
Reflected field gains a 900 phase 
change (i is the imaginary unit) 

𝑡2 + 𝑟2 = 1 
no losses 



EM fields – part 1 
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Ψ 

Ψ1 = 𝑡𝑏𝑏 ∙ Ψ 

Ψ𝑙𝑙𝑙𝑙𝑙  

Ψ2 = 𝑒−𝑖𝑖𝑙1 ∙ Ψ1  

Ψ3 = 𝑖𝑖 ∙ Ψ2 Ψ4 = 𝑒−𝑖𝑖𝑙1 ∙ Ψ3  



EM fields – part 2 
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Ψ5 = 𝑖𝑟𝑏𝑏 ∙ Ψ 

Ψ𝑙𝑙𝑙𝑙𝑙  

Ψ7 = 𝑖𝑖 ∙ Ψ6 

Ψ6 = 𝑒−𝑖𝑖𝑙2 ∙ Ψ5  Ψ8 = 𝑒−𝑖𝑖𝑙2 ∙ Ψ7  

Ψ 



EM fields:  
Common (+) and Differential (-) Ports 
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Ψ− = 𝑡𝑏𝑏 ∙ Ψ8 + 𝑖𝑟𝑏𝑏 ∙ Ψ4  

Ψ8 

Ψ4 

Ψ+ = 𝑖𝑟𝑏𝑏 ∙ Ψ8 + 𝑡𝑏𝑏 ∙ Ψ4  



EM field at the Differential Port  

LIGO-G1200743 Matone: An Overview of Advanced LIGO Interferometry (1) 20 

Ψ− = −
1
2

 Ψ 𝑒−𝑖 𝜑1 + 𝑒−𝑖 𝜑2  

Phase in arm 1 
𝜑1 = 2 𝑘 𝑙1 

𝜑1 

𝜑2 

Phase in arm 2 
𝜑2 = 2 𝑘 𝑙2 

Assuming no losses, highly reflective end mirrors 
𝑟2 = 1  and a symmetric beam-splitter 

𝑟𝑏𝑏2 = 𝑡𝑏𝑏2 = 50%  

Ψ 



Power at the Differential Port  
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𝑃− = Ψ− 2 =
1
2

 Ψ 2 ∙ 1 + cos∆𝜑  

Δ𝜑 = 𝜑2 − 𝜑1 

𝜑1 

𝜑2 

Power level depends on the phase difference Δ𝜑 
(differential changes) between the two arms. 



Power at the Differential Port 

Assuming a 
laser input  
Ψ 2 = 1 
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Sim
plem

ichelson.m
 

Bright Fringe – all 
laser power out 

Dark Fringe – no 
laser power out 



Power at the Differential Port 

• Periodic function 
• Power level depends 

on Δ𝜑 or Δ𝑙   
• General idea 

– Measure power 
change to determine 
Δ𝑙 
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Common Port 
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𝑃+ =
1
2

 Ψ 2 ∙ 1 + cos𝜑+  

𝜑+ = 𝜑2 + 𝜑1 

𝜑1 

𝜑2 Power level 
depends on the 
phase sum 𝜑+ 

(common changes). 



So far…   
• The passage of a GW induces a change in the arm 

lengths Δ𝑙 
• The arm length change Δ𝑙 generates a change in the 

beam phases ∆𝜑 
• This phase change ∆𝜑, in turn, causes a change in the 

light power ∆𝑃. 
• A photodiode then converts this light power to an 

electrical signal. 
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⇒ Measurement of 
gravitational wave amplitude ℎ! 

 



But… 
• Simple Michelson IFO not enough to measure 

∆𝐿 ~ 10−18 𝑚 
• Strategy 

– Amplify signal 
– Decrease and/or control noise contribution 

• Noise sources: two categories 
– Displacement noise 

• Ground seismic excitation 
• Thermal excitation of optical elements and suspensions 
• Radiation pressure  

– Phase noise 
• Amplitude and frequency fluctuations of the incoming laser 

beam 
• Shot-noise, the quantum limit to the counting of photons 
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Signal amplification 
• Let’s look at how to amplify the effect of a GW 

onto a Michelson IFO 
• Recall: 
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𝜑1 

Beam coming back 
to BS has phase 𝜑1: 
Ψ4 = 𝑖 𝑟 𝑡𝑏𝑏𝑒−𝑖𝜑1 

where 
𝜑1 = 2 𝑘 𝑙1 

Phase 𝜑1 carries 
information about 
arm length 1 

𝜑1 is 
proportional to 
length of arm 1  



Michelson arms with Delay-Lines 
• Solution: Michelson arms 

replaced with optical delay-
lines 
– Laser beam forced to bounce 

several times in one arm 
– Effective increase of arm length: 
𝐿𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑛. 𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 𝐿 

• But  
– Difficult to manufacture 
– Number of bounces limited  
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• Delay-line 
– Beams bounce multiple 

times (4x in diagram) 
– Beams do not overlap 
 
 

• Fabry-Perot 
– Partly reflective mirrors 
– Photons bounce multiple 

times 
– Beams overlap in space 
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Ψ𝑖𝑖  

Ψ𝑟𝑟𝑟𝑟  

Ψ𝑖𝑖  

Ψ𝑟𝑟𝑟𝑟  

Alternative: Michelson arms 
with Fabry-Perot cavities 

 



What’s the advantage? 
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Ψ1  Ψ2 = 𝑒−𝑖𝑖𝑖 ∙ Ψ1  

Ψ3 = 𝑖𝑟2 ∙ Ψ2 
Ψ4 = 𝑒−𝑖𝑖𝑖 ∙ Ψ3  

Ψ𝑖𝑖  

Ψ𝑟𝑟𝑟𝑟 Ψ𝑡𝑡𝑡𝑡𝑡  
1 2 

L 
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Ψ1  

Ψ4 

Ψ𝑖𝑖  
1 2 

Ψ1 = 𝑖𝑟1Ψ4 + 𝑡1Ψ𝑖𝑖 = 𝑖𝑟1 𝑒−𝑖𝑖𝑖 ∙ Ψ3 + 𝑡1Ψ𝑖𝑖
= 𝑖𝑟1 𝑒−𝑖𝑖𝑖 ∙ 𝑖𝑟2 ∙ Ψ2 + 𝑡1Ψ𝑖𝑖 = 

𝑖𝑟1 𝑒−𝑖𝑖𝑖 ∙ 𝑖𝑟2 ∙ 𝑒−𝑖𝑖𝑖 ∙ Ψ1 + 𝑡1Ψ𝑖𝑖 
 

Ψ1 = 𝑖𝑟1Ψ4 + 𝑡1Ψ𝑖𝑖 

Ψ𝑟𝑟𝑟𝑟 

Ψ1 =
𝑡1

1 + 𝑟1𝑟2𝑒−𝑖𝜑
Ψ𝑖𝑖 

𝜑 = 2 𝑘 𝐿 

L 
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Power 
build-up 

Ψ1 2 

∠Ψ1 (Fast) phase change 
when light resonates  



Power build-up: 
Just like standing waves 
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Free Spectral Range (FSR) 
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Phase 𝜑 [𝜋] 

2 𝜋 (phase) or 𝜆 2⁄  (length) or 
𝜈𝑓𝑓𝑓 = 𝑐

2 𝐿⁄  (frequency) 

The spacing in frequency 𝜈𝑓𝑓𝑓  or wavelength 
between successive resonances 



Note 
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Phase 𝜑 [𝜋] 

𝜑 = 2 𝑘 𝐿 = 2 𝜋 
𝜈
𝜈𝑓𝑓𝑓

 

where 𝜈 is the laser frequency 



Finesse ℱ 
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Phase 𝜑 [𝜋] 

Defined as  

ℱ =
𝐹𝐹𝐹

𝐹𝐹𝐹𝐹
≃

𝜋 𝑟1𝑟2
1 − 𝑟1𝑟2

 

• Like quality factor Q 
• Determines power build-up 
• Average number of photon bounces  

Full-Width-at-Half-
Maximum (FWHM) 



So – what is the advantage of 
having Fabry-Perot cavities? 
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When light resonates, 
the field’s phase 
changes rapidly! 



Intra-cavity field as a function of ℱ 
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Run_fp.m
 

The rate of phase 
change depends on ℱ 
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Ψ1  

Ψ4 

Ψ𝑖𝑖  
1 2 

Ψ𝑟𝑟𝑟𝑟 = 𝑖𝑟1Ψ𝑖𝑖 + 𝑡1Ψ4 

Ψ𝑟𝑟𝑟𝑟 = 𝑖
𝑟1 + 𝑟2 𝑒−𝑖𝜑

1 + 𝑟1𝑟2𝑒−𝑖𝜑
Ψ𝑖𝑖 

Ψ𝑟𝑟𝑟𝑟 



Reflected field 
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Run_fp.m
 

When out of resonance: 
900 phase change – just 

like a single mirror 

When in resonance, 
light leaks into the 

cavity 



Reflected field 
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Run_fp.m
 

Around resonance: rapid 
phase change, highly 

sensitive to Δ𝐿 



Reflected field as a function of ℱ 
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Run_fp.m
 

The rate of 
phase change 
depends on ℱ 



Phase sensitivity 
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𝜑 ∝ arm length 

Ψ𝑖𝑖  

𝜑 ∝ arm length ×  ℱ 

Replace Michelson 
end mirrors with 

Fabry-Perot cavities 
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To increase the detector’s sensitivity 
to arm length changes 

↓ 
Michelson IFO with Fabry-Perot arms 



• Strategy 
– Amplify signal 
– Decrease and/or control noise contribution 

• Noise sources: in general two categories 
– Displacement noise 

• Ground seismic excitation 
• Thermal excitation of optical elements and suspensions 
• Radiation pressure  

– Phase noise 
• Amplitude and frequency fluctuations of the incoming 

laser beam 
• Shot-noise, the quantum limit to the counting of 

photons 
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Group Activities 
1. Form groups of two or three 
2. Using table 2 of T1000298 (AdvLIGO LSC final 

design document), verify   
– AdvLIGO’s arm cavity finesse ℱ and FSR 

3. Using Matlab and the field equations shown, 
plot  

a. The dark port power vs. arm length change for a 
Michelson IFO 

b. The reflected and intra-cavity power (with 
phases) for one of LIGO’s arms as a function of 
cavity length (assume 1W of light in) 
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