

An Overview of Advanced LIGO Interferometry

Luca Matone Columbia Experimental Gravity group (GECo)

> Jul 16-20, 2012 LIGO-G1200743

Topic References Dav H. Kogelnik and T. Li, Gravitational Waves, Michelson IFO, Fabry-Perot cavity, finesse, free-Appl. Opt. 5, 1550 1 spectral range (FSR), Michelson with Fabry-Perot arms. Group activity: (1966)single arm numerical calculations (MATLAB) and plots. K. A. Strain et al., Power recycled Michelson IFO, suspended TMs and equation of Appl. Opt. 42, 1244motion, Laplace transform, modeling of Pound-Drever-Hall locking 1256 (2003) 2 scheme. Group activity: numerical calculations (MATLAB) of single arm • Mullavey A. J. et al, cavity w/o sidebands w/o seismic noise. Optics Express, 20, 81-89 (2011) Initial LIGO: Schnupp asymmetry, degrees of freedom to sense and Morrison E. et al., control, output ports. Advanced LIGO: Resonant Sideband Extraction Appl. Opt. 33, 5037-3 (RSE), output ports, degrees of freedom to sense and control, sensing 5040 (1994) matrix, homodyne and DC readout, lock acquisition and green laser T970122 locking. Group activity: paper discussion P1200019 G050091 Transverse Electro-Magnetic (TEM) modes, cavity mode, mode-T070247 matching, transverse mode spacing, Gouy phase, Wavefront sensor, 4 T020020 Input Mode-Cleaner, frequency stabilization, Output Mode-Cleaner, T040156 Thermal Compensation System (TCS). <u>Group activity</u>: paper discussion G1101270 ٠ M060056 •

Amplitude spectral noise, basics on control loops, noise budgeting, paper discussion and summary

5

T1000298

Gravitational Wave changes the distance between

The change in distance ΔL depends on

The gravitational wave amplitude h

How big is ΔL ? Astrophysical motivation

Amplitude of GWs produced by binary neutron star systems in the VIRGO cluster is expected to be

$$h \sim 10^{-21}$$

For a 4 km baseline (L)

 $\Delta L = h L \sim 10^{-18} m$

LIGO-G1200743

LIGO-G1200743

Mode patterns

- TEMmn:
 - Transverse Electro-Magnetic
 (TEM) modes
- Figure
 - plot of $|U_{m,n}(x, y, z)|^2$ vs. position *x*, *y*

Electromagnetic wave: In general

Amplitude A

Electromagnetic wave function ψ

Photodiode measures power P

$$P = |\psi|^2 = \psi \psi^* = A^2$$

Modeling a Michelson IFO

- Assuming no misalignments
- Assuming plane mirrors
- Plane-Wave approximation
 - Helpful in conceptualizing the detector

>> <u>Powerful model</u>

Objective:

To determine what the EM fields look like throughout the IFO

Beam Propagation

Beam Reflection and Transmission

EM fields – part 1

EM fields – part 2

Assuming no losses, highly reflective end mirrors $(r^2 = 1)$ and a symmetric beam-splitter $(r_{bs}^2 = t_{bs}^2 = 50\%)$

Power at the Differential Port

Power level depends on the phase difference $\Delta \varphi$ (*differential changes*) between the two arms.

Scalar Power at the Differential Port

LIGO-G1200743

Matone: An Overview of Advanced LIGO Interferometry (1)

Simplemichelson.m

Power at the Differential Port

- Periodic function
- Power level depends on $\Delta \varphi$ (or Δl)
- General idea
 - Measure power change to determine Δl

Common Port

Power level φ_2 depends on the phase sum φ_+ (common changes). $P_{+} = \frac{1}{2} |\Psi|^{2} \cdot (1 + \cos \varphi_{+})$ φ_+ $= \varphi_2 + \varphi_1$

So far...

- The passage of a GW induces a change in the arm lengths Δl
- The arm length change Δl generates a change in the beam phases $\Delta \varphi$
- This phase change $\Delta \varphi$, in turn, causes a change in the light power ΔP .
- A photodiode then converts this light power to an electrical signal.

But...

- Simple Michelson IFO not enough to measure $\Delta L \sim 10^{-18} \ m$
- Strategy
 - Amplify signal
 - Decrease and/or control noise contribution
- Noise sources: two categories
 - Displacement noise
 - Ground seismic excitation
 - Thermal excitation of optical elements and suspensions
 - Radiation pressure
 - Phase noise
 - Amplitude and frequency fluctuations of the incoming laser beam
 - Shot-noise, the quantum limit to the *counting* of photons

Signal amplification

• Let's look at how to amplify the effect of a GW onto a Michelson IFO

Michelson arms with Delay-Lines

- Solution: Michelson arms replaced with optical *delaylines*
 - Laser beam forced to bounce several times in one arm
 - *Effective* increase of arm length: $L_{effective} = n. of bounces \times L$
- But
 - Difficult to manufacture
 - Number of bounces limited

What's the advantage?

Power build-up: Just like standing waves

Free Spectral Range (FSR)

The spacing in *frequency* v_{fsr} or *wavelength* between successive resonances

Matone: An Overview of Advanced LIGO Interferometry (1)

Intra-cavity field as a function of ${\cal F}$

 $\Psi_{refl} = ir_1\Psi_{in} + t_1\Psi_4$

LIGO-G1200743

Matone: An Overview of Advanced LIGO Interferometry (1)

\mathbf{LS} Reflected field as a function of $\mathcal F$

42

Phase sensitivity

To increase the detector's sensitivity to arm length changes ↓ Michelson IFO with Fabry-Perot arms

LIGO-G1200743

- Strategy
 - Amplify signal
 - Decrease and/or control noise contribution
- Noise sources: in general two categories
 - Displacement noise
 - Ground seismic excitation
 - Thermal excitation of optical elements and suspensions
 - Radiation pressure
 - Phase noise
 - Amplitude and frequency fluctuations of the incoming laser beam
 - Shot-noise, the quantum limit to the *counting* of photons

Group Activities

- 1. Form groups of two or three
- 2. Using table 2 of T1000298 (AdvLIGO LSC final design document), verify
 - AdvLIGO's arm cavity finesse ${\mathcal F}$ and FSR
- Using Matlab and the field equations shown, plot
 - The dark port power vs. arm length change for a Michelson IFO
 - b. The reflected and intra-cavity power (with phases) for one of LIGO's arms as a function of cavity length (assume 1W of light in)

Quantity	Non-Folded IFOs	Folded IFO
Finesse	446	446
ITM transmission	0.014	0.014
PRM transmission	0.030	0.030
SRM transmission	0.200	0.200
Schnupp asymmetry	0.050	0.050
ETM radius of curvature	2245 m	2245 m
ITM radius of curvature	1934 m	1934 m
l_{PRC}	57.6557 m	60.4112 m
l _{SRC}	56.0084 m	62.1372 m
l _{IMC} (round trip)	32.9461 m	34.5207 m
l_{EX}	3994.50 m	3996.00 m
l_{EY}	3994.50 m	3996.00 m
Free Spectral Range (FSR)	37.526 kHz	37.512 kHz
Transverse mode spacing	32.453 kHz	32.462 kHz
Lower mod. frequency	9'099'471 Hz	8'684'428 Hz
Upper mod. frequency	45'497'355 Hz	43'422'140 Hz

Table 2: Basic interferometer parameters for both folded and non-folded case.