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Topic

Gravitational Waves, Michelson IFO, Fabry-Perot cavity, finesse, free-
spectral range (FSR), Michelson with Fabry-Perot arms. Group activity:
single arm numerical calculations (MATLAB) and plots.

Power recycled Michelson IFO, suspended TMs and equation of
motion, Laplace transform, modeling of Pound-Drever-Hall locking
scheme. Group activity: numerical calculations (MATLAB) of single arm
cavity w/o sidebands w/o seismic noise.

Initial LIGO: Schnupp asymmetry, degrees of freedom to sense and
control, output ports. Advanced LIGO: Resonant Sideband Extraction
(RSE), output ports, degrees of freedom to sense and control, sensing
matrix, homodyne and DC readout, lock acquisition and green laser
locking. Group activity: paper discussion

Transverse Electro-Magnetic (TEM) modes, cavity mode, mode-
matching, transverse mode spacing, Gouy phase, Wavefront sensor,
Input Mode-Cleaner, frequency stabilization, Output Mode-Cleaner,
Thermal Compensation System (TCS). Group activity: paper discussion

Amplitude spectral noise, basics on control loops, noise budgeting,
paper discussion and summary
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Gravitational Waves ﬁa

The passage of a
0 ®® Gravitational Wave changes

the distance between
® q @ objects (AL).

The change in distance AL depends on
e The distance L

 The gravitational wave amplitude h
AL =hL
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How big is AL? @E

Astrophysical motivation

Amplitude of GWs produced by binary neutron

star systems in the VIRGO cluster is expected to
be

h~1041

‘ For a 4 km baseline (L)

AL=hL~10"8m

LIGO-G1200743 Matone: An Overview of Advanced LIGO Interferometry (1) 4



Idea: Michelson Interferometer
(IFO) to measure AL
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Michelson IFO to measure AL@

e The laser fields in the
two arms recombine
to interfere

e Interference can be
constructive or
destructive

\ 4
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LSC

How does a Michelson IFO work?™
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Description of a Laser Beam @E

Any laser beam can be represented in
terms of TEM (Propagation) modes Gouy phase

U,,,(x7v, 2) Spot size Wavefront radius

Ay X y
- o () (V)
(z) ™ X/—W(Z) " \/—W(Z)
e_(x2+y2)/W2(Z) X
e—ik(x2+y2)/2 R(Z)

ot (k2 -Pmn@)

w

Hermite
Wavefront polynomial
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Mode patterns @E

TEM TEM ,, TEM

e TEMmn:

— Transverse Electro-Magnetic
(TEM) modes

e Figure
TEMHy g

TEM ,,

TEM

— plot of |Um,n(x, y, Z)|2V5-
position x,y




Electromagnetic wave: @E
In general

Electromagnetic
wave function Y
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Simplifying: Plane-Wave

Approximation

-________—n

Flat wavefront

(like that of a
plane wave)
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A laser beam in the plane-wave
approximation

Um,n(x:y'z)
Amn
— — H H
W) ’”%@) "
e~ (x°
: —ik(x?%+
Y(z) =Ae t*? A e
e—l kz-—q

] 2
m e Wave number k = 7”
S— e« Propagation axis z
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LSC

Modeling a Michelson IFO @E

e Assuming no misalignments
e Assuming plane mirrors
» Plane-Wave approximation - —

— Helpful in conceptualizing the
detector

_— /

>> Powerful model
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Objective:
To determine what the EM fields
look like throughout the IFO




Beam Propagation @

Phasep = k [

-9

LIJlaser

Electromagnetic field
right after the laser

Electromagnetic field right
before the mirror

ikl
LI"1 — € LI"lase'r
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Beam Reflection and Transmissionﬁa

Reflected electromagnetic field
right after the mirror.

Mirror's reflection amplitude r-
Reflected field gains a 90° phase
change (/is the imaginary unit)

Fin W =t Wy,

Impinging electromagnetic field

Transmitted electromagnetic
t2 + ,r2 -1 field right after the mirror.

no losses Mirror's transmission amplitude #
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EM fields — part 1

LIJ:I_:I’:bS'l‘IJ
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EM fields — part 2

LIJ7=i7"'LIJ6

-_——

LIGO-G1200743

5 _ —ikl, .
LIJ8=e—iklz_Lp7\‘ Y, =e "2 Y,

‘M‘\

=

Y

\

“IJS — inS 4
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LSC EM fields:
Common (+) and Differential (-) Ports

Yy = irps - Vg + tps " Py

. }%%

\ y,

-
Y_ = tbS 'LIJS + inS 'LIJ4
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= EM field at the Differential Port GE
T

Phaseinarm 1

= P =2kl
— —>/\11’ '
S Phase in arm 2
ﬁ' // O, = 2 k lz

1 . .
Y_ = —3 Y (e t¥1 + g7t 92)

Assuming no losses, highly reflective end mirrors
(r4 = 1) and a symmetric beam-splitter
(rbs2 N tbsz =50%)




== Power at the Differential Port @E

0, Ap = @2 — @1

1
P =|¥_|?= > W] (1 + cosAp)

Power level depends on the phase difference Ag
(differential changes) between the two arms.
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Power at the Differential Port

Power at the anti-symmetric port for a simple Michelson IFO
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e Periodic function

 Power level depends
on Ag (or Al)

e General idea

— Measure power
change to determine
Al

Power [AU]

1

0.9
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'Power at the Differential Port @E

Power at the anti-symmetric port for a simple Michelson [FO




Common Port

——=
Power level
P2
depends on the
phase sum @ — T ;
(common changes). i '

1
P, = ) [W[*- (1 + cosg,)

N‘P+=<Pz+§01
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So far... @E

 The passage of a GW induces a change in the arm
lengths Al

e The arm length change Al generates a change in the
beam phases Ag

e This phase change Ag, in turn, causes a change in the
light power AP.

A photodiode then converts this light power to an
electrical signal.




But... @E

 Simple Michelson IFO not enough to measure
AL ~ 1078 m
e Strategy
— Amplify signal
— Decrease and/or control noise contribution

* Noise sources: two categories

— Displacement noise
* Ground seismic excitation

 Thermal excitation of optical elements and suspensions
e Radiation pressure

— Phase noise

 Amplitude and frequency fluctuations of the incoming laser
beam

e Shot-noise, the quantum limit to the counting of photons



Signal amplification @a

e Let’s look at how to amplify the effect of a GW
onto a Michelson IFO

* Recall Beam coming back
@1 1s to BS has phase ¢ :
proportional to === Y, =irt,e "1
length of arm 1 where
P, = 2 k ll
- L/:gpl __________ ' Phase @, carries

- \ information about
arm length 1




Z Michelson arms with DeIay-LineS @E

e Solution: Michelson arms
replaced with optical delay- 2
lines =T

|
— Laser beam forced to bounce N
several times in one arm | |

— Effective increase of arm length: ]
Leffective = N.0f bounces X L

e But

— Difficult to manufacture . ! ; _
— Number of bounces limited “~ /)(

B : : h L |4
S 50:50 | . %

Vacuum state

Photo-detactor :
&<
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Alternative: Michelson arms GE

Lprefl

with Fabry-Perot cavities
e Delay-line

— Beams bounce multiple
times (4x in diagram)
— Beams do not overlap

o

in

qJrefl

<

qJi'n (

LIGO-G1200743

e Fabry-Perot
— Partly reflective mirrors

— Photons bounce multiple
times

— Beams overlap in space
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What’s the advantage? @

l‘pg — irz " "IJZ
LIJtT'anS

—>

ﬁ — e_ikL "'Ijl
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LSC _ @
qjl — lT1 L114_ + tl LIJiTl S
Lpl = lr1LIJ4 + thjm lT1 (e —ikL . -y ) + tl in
=in (e “L iy W) + 5 Wy, =
—ikL

iry (e~ —ikL, W) + 4 W,

/%IJ
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Phase [deq]

Intracavity field (Pin =1 W, finesse = 46)

- IA ——
B puild-up

Phase ¢ [x]




Power build-up:
Just like standing waves
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Free Spectral Range (FSR) @E

The spacing in frequency vy, or wavelength
between successive resonances

Intracavity field (Pin = 1 W, finesse = 24)
I I

2 1 (phase) or 4/, (length) or
Vrsr = /21 (frequency)




Note

Intracavity field (Pin = 1 W, finesse = 24)
I I

Phase ¢ ]

o =2kL=2m

str
where Vv is the laser frequency




Finesse F @E

Intracavity field (Pin = 1 W, finesse = 24)

Defined as —
FSR AT T,

FWHM 1-nr,

e Like quality factor Q

e Determines power build-up
 Average number of photon bounces

Full-Width-at-Half-
Maximum (FWHM)

|
2




z

5 15
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0 10
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Phase [deg]

So — what is the advantage of Gg
having Fabry-Perot cavities?

Intracavity field (Pin = 1 W, finesse = 46)
I

the field’s phase

changes rapidly!




= |ntra-cavity field as a function of ¥ ﬁ

Intracavity field (Pin = 1 W)

finesse = 27
finesse = 54 |
finesse = 102

finesse = 569

A —

w-d} uny
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Phase [deg]

The rate of phase
' change depends on F

. |
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Cavity length L [A]



LSC

LIJrefl =in¥, +t%,

Lp’refl
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LIJin

N
o,

Matone: An Overview of Advanced LIGO Interferometry (1)

39



Reflected field

4t

Reflected field (Pin=1W, finesse = 46)
I I

2
8
o

When in resonance,
light leaks into the
cavity

—)

0.6 0.7 0.8 0.9 1

When out of resonance:
- 90° phase change — just

©
b=

Phase [deg]

like a single mirror

—— e R e |
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Cavity length L [2]
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Reflected field as a function of F ﬁ

Reflected field (Pin = 1 W)

_ Therateof, _________________________ ;
| phasechange ____________________ ______________________________ _______________

finesse = 27 []
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Phase sensitivity

——
/ @ « arm length

Replace Michelson
end mirrors with
Fabry-Perot cavities

d LIGO nterfem/ 43
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To increase the detector’s sensitivity
to arm length changes

N2
Michelson IFO with Fabry-Perot arms
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e Strategy
— Amplify signal
— Decrease and/or control noise contribution

 Noise sources: in general two categories

— Displacement noise
e Ground seismic excitation
 Thermal excitation of optical elements and suspensions
e Radiation pressure

— Phase noise

e Amplitude and frequency fluctuations of the incoming
laser beam

e Shot-noise, the quantum limit to the counting of
photons



Group Activities @E

1. Form groups of two or three

2. Usingtable 2 of T1000298 (AdvLIGO LSC final
design document), verify

AdvLIGO’s arm cavity finesse F and FSR

3. Using Matlab and the field equations shown,
plot

d.

b.

The dark port power vs. arm length change for a
Michelson IFO

The reflected and intra-cavity power (with
phases) for one of LIGO’s arms as a function of
cavity length (assume 1W of light in)



From “The AdvLIGO Length Sensing and Control

Final Design” T1000298

Table 2: Basic interferometer parameters for both folded and non-folded case.

LIGO-G1200743

Cluantity Non-Folded IFOs  Folded IFO
Finesse 446 446
ITM transmission 0.014 0.014
PRM transmission 0.030) 0.030
SREM transmission 0.200) 0.200
Schnupp asymmetry (0.050 0.050
ETM radius of curvature 2245 m 2245 m
ITM radius of curvature 1934 m 1934 m
lpre BT.655T7 m 60.4112 m
lspe H6.0084 m 62.1372 m
Ipge (round trip) 32,9461 m 345207 m
lEx 399450 m 3996.00 m
Iy 3994.50 m 3996.00 m

Free Spectral Range (FSR)
Transverse mode spacing
Lower mod. frequency
Upper mod. frequency

37.526 kHz
32.453 kHz
9'099°471 Hz
45'497°355 Hz

37.512 kH=
32.462 kH=z
B'684°428 Hz

43'422'140 Hz
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