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@ Dealing With the Data

e Looking for the Signal
@ Modelled Signals
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Q Interpreting the Results
@ Absence of Signal
@ Presence of Signal
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@ Linearized gravity g,“, =N + M
@ TT gauge hj€ié; = h= hy ( EF>3+ + hy (t - ’%F e,
Fyhy (1)

o GW degactor measures h(t) = h.d= Fihy(t)
where d = M w/u & v along arms

GW Data Analysis: a Mathematical & Statistical Challenge
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Grawtatlonal Wave Observations

@ Limiting attention to ground-based interferometers
Not considering space-based detectors, pulsar timing, etc
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@ km-scale ifos in US & Europe; “initial detector era” 2002—11
@ Currently upgrading for “advanced detector era” 2015+

@ Data analysts finishing last of initial detector analyses
& preparing improved analysis methods for ADE
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Characterlzatlon of Noise

Representative Spectra for LIGO/Virgo Detectors in S6/VSR2-3
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@ “Noise curve” is estimate of ASD /Sy(f)
where S,(f) is one-sided power spectral density
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Characterization of Noise

@ “Noise curve” is estimate of ASD /Sy (f)
where S,(f) is one-sided power spectral density

@ For wide-sense stationary noise

E [n(t)n(t)] = /O " cos(2rf[t — t]) Su(f) of
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Characterization of Noise

@ “Noise curve” is estimate of ASD /Sy (f)
where Sp(f) is one-sided power spectral density

@ For wide-sense stationary noise

E [A(NA()] = 3(F — 1)Sn(1)
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Characterization of Noise

@ “Noise curve” is estimate of ASD /Sy(f)
where S,(f) is one-sided power spectral density
@ For wide-sense stationary noise

E [(1)A()] = 307 ~ )81

@ If noise is Gaussian, its probability distribution is
> |A()[>
n) o ex —2/ df
p(n) o exp ( . S
@ Real noise has non-Gaussian “glitches”, non-stationarities,
correlations between detectors, narrow “lines” etc

@ |dealized model is a good starting point,
but need to cope with complications
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Data Quality Vetos

Examining auxiliary data channels allows “bad” times to be
flagged and/or vetoed according to categories, e.g.:
Cat 1 Do not include data in Fourier transforms

Cat 2 Okay to include in Fourier transform,
but ignore any transient event at this time

Cat 3 Regard transient event at this time w/suspicion
Cat 4 Transient events somewhat more likely to be noise

Slutsky et al, CQG 27, 165023 (2010), arXiv:1004.0998
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Class. Quuntum Grav. 27 {2010) 194010 N Christensen
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Figure L. Single interferometer SNR plots from the coherent wave burst [25] pipeline averlaid
with the single interferometer Omega |24 rs; the Gaussian distribution is alse

Note that the SNR ~10 events are the problem for the coherent analysis; i
rate of §NR ~ 10 events is very large. The effect of the successive application of
sgaries can be seen in the results for H1 {left) and L1 (right) from S6.

comparison.
interferome:

the D flag

Vetoing bad times reduces noise “tails”
but data still not Gaussian

a Mathematical & Statistical Challenge
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e Looking for the Signal
@ Modelled Signals
@ Unmodelled Signals
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Classmcatlon of GW Signals

At fregs relevant to ground-based detectors (10s-1000s of Hz),
natural division of sources:

modelled unmodelled

Periodic Sources
long | (aka Continuous Waves)
(e.g., Rotating Neutron Star)

Stochastic Background
(Cosmological or Astrophysical)

Binary Coalescence

, , Bursts
short (Inspiral+Merger+Ringdown)

(Supernova, BH Merger, etc.)
(Black Holes, Neutron Stars)
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Search Methods

Matched Filtering

Given noise and signal hypotheses
Hy o x(t) =n(t) Hs:  x(t) =n(t) + s(t)

odds ratio is
p(Hslx) _ p(x|[Hs) p(Hs)
P(HnIX)  p(x|Hn) P(HN)

For Gaussian noise, Bayes factor = likelihood ratio is

p(x|Hs) > [x(f) - 3(F) = [x(f)?
p(xl#n) ~ &° (‘2/0 s 7 ) / o (‘2/0 sin @ )
s0 log-likelihood ratio is

|n/\:4Re/OOg(;)*(;(f)(f)a/f—z/oo BOF 4
0 n 0
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|dealized Matched Filter & Complications

i oo X(f)*y(f
Define (x|y) = 4Re [~ *QH0 of
@ Likelihood is p(x|Hy) oc e~ X1¥)/2

@ Likelihood ratio is In 5&'%23 = (s|x) - (2

@ Could use p = XL ag detection statistic; pp|Hn) x e r°/2

V(sls)

Complications:
@ Data not Gaussian; true p(p|Hy) has large outliers

@ Hs(A) is composite hypothesis;
s(t; \) depends on unknown signal parameters

@ Data taken by detectors w/different location & orientation
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Suppressing Noise Outliers (Transient Search)

@ Large values of matched filter SNR p = 4Re [;° S(g ()gf) df
for signals, or for non-Gaussian glitches
@ \2 method (Allen PRD 71, 062001 (2005); gr-qc/0405045):
o Splitinto p frequency intervals p; = 4 Re [, RO df
into which signal SNR would be evenly distributed.
e Construct x2 = p>-7 ,(pi — p/p)?

@ Empirically determine contours in
(p, x?) which separate simulated -,
signals from background events
(Babak et al arXiv:1208.3491.) i

T 74
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Parameter Space

Signal expected in a detector depends on unknown params:
@ distance, arrival time/phase, sky position (a, §),
inclination ¢, polarization angle ¢
@ For binary coalescence: masses, spins

@ For periodic: NS spin, spindown, ellipticity, orbit if in binary
2
s(t) = A(t) <1+COSLF+ cos ¢(t) + cos F sin ¢(t)>

12/29 G1200738-v1 2012 Sep 22 John T. Whelan GW Data Analy
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Parameter Space

Signal expected in a detector depends on unknown params:
@ distance, arrival time/phase, sky position (a, §),
inclination ¢, polarization angle
@ For binary coalescence: masses, spins
@ For periodic: NS spin, spindown, ellipticity, orbit if in binary

s(t) = A(t) <1+02032LF+ cos ¢(t) + cos .t F sin <z>(t)>

@ CBC: shape of transient signal in a detector depends on
masses & spins; other params just change amplitude A(t)
® CW: signal factors into s(t) = Y- A”h,(1)
where {A*} depend on amplitude params {hg, ¢, %, ¢o};
template shape depends on phase params f, %, a, 9, etc.
Jaranowski et al PRD 58, 063001 (1998); gr-qc/9804014
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Template Banks

@ Need to search for signal w/unknown parameters

o (si]sp) = 4Re [ S0 si(f) df
lets us define dlstance btwn nearby param space pts
(Owen PRD 53, 6749 (1996); gr-qc/9511032)

(s(A)[s(A+dA) =13 gydN aN
if

@ “metric” g; used to -
determine spacing
btwn templates
(figure from Babak et al
arXiv:1208.3491.)
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Singular Value Decomposition for Template Banks

@ Standard method specifies 97% overlap between signal &
nearest template; neighboring templates overlap by > 94%
@ Can speed up for low-latency analysis by using SVD
to resolve templates in orthonormal basis
& dropping least significant basis vectors
@ Cannon et al PRD 82, 044025 (2010); arXiv:1005.0012

: :

14/29  G1200738-vli 2012 Sep22 John T. Whelan GW Data Analysis: a Mathematical & Statistical Challenge
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Coherent Search for Periodic Signals

@ For continuous waves, divide signal parameters into
e amplitude params: {hg, ¢, v, do}
e phase params: A = {a, 0, fo, f1,...}
@ Jaranowski et al PRD 58, 063001 (1998); gr-qc/9804014
showed signal linear in { A"}, fcns of amplitude params
1 4
s(t) = A"h,(t) (assume )
template waveforms h,(t) depend on phase params
@ Log-likelihood ratio quadratic in {.A*}:
(sls)

INAGA,A) = (8]%) = =52 = 247%,(3) = A" My () A”

@ F-stat method uses best-fit amp params A" = M#()\)x, ())
(M*¥ is inv of M, ); detection statistic is max log-likelihood

F=InA(A,N) = % Xu(A)M (A)x, (V)
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Bayesian Interpretation (B-statistic)

@ Assume A known; likelihood p(x|.A) o« e X*(4)/2

@ Bayes’s theorem says p(H|x) = W

@ Odds ratio pgzsm = 58((\‘;[1% gngvg; Bayes Factor 5o = gg“zi;
@ Hg = noise + signal w/some A; Hy = noise only

@ F-stat is maximized log-likelihood: max 4 lr))((ﬂlé)) =er

@ But Hg is composite hypoth. p(x|Hs) = [ p(x|A)p(A|Hs)d*A
@ Don’'t maximize; marginalizeI B-statistic (Prix): B =
f P())((\‘v(;\))p .A|7'[s d4A f e—fA/ My AY +A"X,Lp(A|HS)d4A
@ Prix & Krishnan CQG 26, 204013 (2009): If p(A|Hs) uniformin { A*}, B = e
Unphysical; implies p(ho, cos ¢, 1, ¢o|Hs) o< h3(1 — cos?1)®
@ Prix & JTW working on approximations for evaluating
B-stat integral w/physical priors
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http://stacks.iop.org/CQG/26/204013
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Computational Costs for CW Searches

@ If A = {freq, sky pos etc} known, can do most sensitive
fully coherent search (correlate all data)

@ If some params unknown, have to search over them

@ Long coherent observation — fine resolution in freq etc
— need too many templates — computationally impossible

11 1

_ ~ . 2. 2
Af Af Asky T-7=-(T)

€.g. Nimpits ~

@ Most CW searches semi-coherent: deliberately limit
coherent integration time & param space resolution
to keep number of templates manageable
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One Semicoherent Method: Cross-Correlation

Dhurandhar, Krishnan, Mukhopadhyay & JTW PRD 77, 082001 (2008)
Chung, Melatos, Krishnan & JTW MNRAS 414, 2650 (2011)

(Currently being applied by JTW, Larson, Krishnan, et al)
@ Divide data into segments of length T
& take “short Fourier transform” (SFT) X;(f)
@ Label SFTs by /, J,...and pairs by «, £, ...
w [ & J can be same or different times or detectors
. X (e )Xu(f )
@ Construct cross-correlation )y = B
W f ~ signal freq @ time T; Doppler shifted for detector /
@ Use CW signal model to determine expected cross-correlation
btwn SFTs & combine pairs into optimal statistic
p =2 a(Uada + UZYS)
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http://link.aps.org/abstract/PRD/v77/e082001

CL ER FOR
Modelled Signals OMPUTATIONAL
Unmodelled Signals RGR];I\‘II]-‘[ET}(J\)]Q

Search Methods

Tuning the Cross-Correlation Search

@ Computational considerations limit coherent integration time

@ Can make tunable semi-coherent search by restricting
which SFT pairs « are included in p = >~ (Ua Vo + ULYE)

@ E.g., only include pairs where |T) — T,| = | To| < Tmax

Included SFT pairs Included SFT pairs

T, (detector 2)
T, (detector 1)

T, (detector 1) T, (detector 1)

19/29  G1200738-vi 2012Sep22 John T. Whelan GW Data Analysis: a Mathematical & Statistical Challenge
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Search Methods

Stochastic Background Search Method

@ Noisy data from GW Detec’ggr: o
x(t)=n(t)+ s(t)=n(t)+ h(t): d
@ Look for correlations between detectors
avgto0 avgto0 avgto0
—_— N
E [x1x] = Elnrmp] + Elarss] + Elsrmi] + E [s15;]

@ Expected cross-correlation (frequency domain)

- - . " “ g peg -
E [X{(H%(f)] = E[5{(H3(f)] =d1: E [h}"(f) ® hg(f/):| 1 da
@ For stochastic backgrounds

Sgw(f)
2

Sgw(f) encodes spectrum; v42(f) encodes geometry

E [81(N3a(f)] = 3(f — ) ra(f)
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Stochastic Background Detection Statistic

21/29

@ Expected cross-correlation (frequency domain)

E [%; (H%(f)] = E [8](H&(F)] = o(f — f')12(f) ngé(f)

@ Optimally filtered cross-correlation statistic

Y = /dfx1 f) Xo(f)

@ Filter encodes expected spectrum & spatial distribution
(isotropic, pointlike, spherical harmonics .. .)

Vo (1) Sgu' (1)

AN > 5 5l

Modelled Signals OMPUTATIONAL
Unmodelled Signals RGR AVITATION

TIVITY AND
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Search Methods

Burst Search Methods

@ Robust method for finding transients:
look for coincident signals in multiple detectors

@ For bursts, no template, so look for e.g., excess power
@ Can also combine detector data coherently
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Search Methods

Sutton et al, NJP 12, 053034 (2010); arXiv:0908.3665
@ Vector x of D detector outputs is

X1 Fiv Fix m

X=Fh+n=| : | =] : : <Z+)+
X
XD FDJr FD>< Np

o Log-likelihood ratio is In A = (Fh|x) — (F[F)

@ Maximize by taking h = h = (F'F)~ 1FTh, detection stat is
Egw = 2InA = (Fh|Fh) = (P9"x|P9"x)

@ P9 = F(F'F)~'F' projects onto 2-dim space of GW signals

e P =1, p— P9 projects onto (D — 2)-dim null space
@ Enu = (P™'x|P"x) used to veto noise transients
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Settlng Upper Limits

@ If no significant signal seen, can set upper limit on event
rate, known pulsar ellipticity, GW background strength, etc.

@ E.g., inspiral event rate set using loudest event statistic
Biswas et al CQG 26, 175009 (2009); arXiv:0710.0465

@ Typically use data x to set limit on physical quantity
by constructing posterior pdf

_ Py, Dp(pll)
p(ulx, 1) = T pxIlh

& integrating to find upper limit "": fo“gls% p(ulx, ) dp = 0.95
@ Don’t generally include much non-GW prior info in p(u|/);
in initial detector era, would often find p(u|x, /) ~ p(u|/) if we did!
@ Do use this method to combine independent experiments
PO, Xl NP(ull) _ POl Dp(xi 12, Dp( )
pOexill)  pOelx, Dp(all)

p(,u|X2, X1, I) =

24/29 G1200738-vi 2012 Sep 22 John T. Whelan GW Data Analysis: a Mathematical & Statistical Challenge
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Settlng Upper Limits

@ If no significant signal seen, can set upper limit on event
rate, known pulsar ellipticity, GW background strength, etc.

@ E.g., inspiral event rate set using loudest event statistic
Biswas et al CQG 26, 175009 (2009); arXiv:0710.0465

@ Typically use data x to set limit on physical quantity
by constructing posterior pdf

_ Py, Dp(pll)
p(ulx, 1) = T pxIlh

& integrating to find upper limit "": fo“gls% p(ulx, ) dp = 0.95
@ Don’t generally include much non-GW prior info in p(u|/);
in initial detector era, would often find p(u|x, /) ~ p(u|/) if we did!
@ Do use this method to combine independent experiments
p(Xe|p, (x|, Dp(ull) — p(Xelp, Hp(ulxi, 1)
pOelxi, plxall) — — plxelxi, 1)

p(,u|X2, X1, I) =
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Blind Injection Challenge

@ No direct detections of GW so far; detection & parameter
estimation methods tested by Blind Injection Challenge:
http://www.ligo.org/science/GW100916/

@ LIGO & Virgo routinely perform “hardware injections”;
simulated signals added to data via control loop.

@ For blind injection, time & parameters were concealed
until analysis was complete

@ Reported as part of S6/VSR2/VSR3 inspiral search
Abadie et al (LsC/Virgo) PRD 85, 082002 (2012); arXiv:1111.7314
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Detection Confidence

@ Non-Gaussian data == can't trust false alarm rate from p(p|Hn)
@ Can’t “turn off” GW to get background (unless using EM triggers)

@ Seek events found in coincidence in different detectors;
estimate background by “time-sliding” data relative to each other.
(Low thresholds — 3 many triggers in each detector.)

@ Routinely do 100 time-slides to estimate significance of events.
Only allows false alarm probability > 1%

@ For BIC, used trigger lists to synthesize slides for all of S6

@ Only louder “background” events were signal trigger in one
detector + glitch in other.
Different FAR estimates if you exclude “signal” trigger or not!

26/29 G1200738-vi 2012 Sep 22 John T. Whelan GW Data Analysis: a Mathematical & Statistical Challenge
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Interpretation

Cumulative Rate (yr~!)

A 44 Foreground

4l
10 e e+ Background
1075 H xxx  Extended Background %f %

—6 1 n I L 1
10778 9 10 11 12 13

Threshold p.

Abadie et al (LsC/virgo) PRD 85, 082002 (2012); arXiv:1111.7314
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http://link.aps.org/abstract/PRD/v85/e082002
http://arxiv.org/abs/1111.7314
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Interpretation

Parameter Estimation

@ Matched-filter searches return best-fit pt in param space;
not generally best estimate of true signal parameters:

e Single-detector triggers independent of some params
o Other parameter degeneracies
o Coarse template banks

@ Follow up detections with dedicated parameter estimation
using Markov-Chain Monte Carlo, nested sampling, etc

@ Produce posterior PDFs for signal parameters
@ LSC/Virgo parameter estimation paper forthcoming . ..
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Summary

@ GW data analysis involves not just model + experiment
also statistical and mathematical signal processing

@ Looking for modelled/unmodelled signal in non-ideal noise

@ Matched filtering, but also coherent/semicoherent analyses,
template banks, sensitivity vs computational cost

@ Statistical inference used to

e Set upper limits in the absence of a detection (now)
e Assign confidence to a potential detection (soon!)
e Determine parameters of detected systems (later)
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