Burstegard: a hierarchical clustering algorithm

Tanner Prestegard and Eric Thrane
School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA*

Gravitational-wave excess power searches are often framed in terms of finding structure in a
spectrogram, or ft-map, with a pattern recognition algorithm. Here, we describe one such pat-
tern recognition algorithm, burstegard. We demonstrate the ability of this algorithm to identify
structure due to simulated gravitational-wave signals in an ft-map.

I. INTRODUCTION

In the quest for the direct detection of gravitational
waves, a myriad number of analysis techniques are em-
ployed. One technique involves the use of pattern recog-
nition algorithms to process spectrograms, or frequency-
time maps (ft-maps), that are created from the raw de-
tector time-series. The success of this method depends
on two things: that the statistic being displayed in ft-
map form has the ability to differentiate between detec-
tor noise and a gravitational-wave signal, and that the
pattern recognition algorithm is capable of identifying
significant structures in the ft-map.

Since current gravitational-wave interferometers are
operated at sensitivities very near potential detection
thresholds, it is important that any pattern recognition
algorithm utilized be as effective as possible. Therefore, a
useful pattern recognition algorithm should be sensitive
to signatures of actual gravitational waves, and rather
insensitive to features of noise. It is also important that
the algorithm be able to complete its task quickly due to
the sheer amount of data that must often be processed
in searches for gravitational waves. Finally, it is useful
for the pattern recognition algorithm to be flexible, i.e.,
it should be capable of identifying features of somewhat
arbitrary shape, as the signal waveform may not always
be fully known or understood.

With the above goals in mind, we have developed a hi-
erarchical clustering algorithm, called burstegard, that
alms to group pixels in an ft-map in order to identify
significant structures. In Section II, we describe the
burstegard algorithm. In Section III, we illustrate the
algorithm’s capabilities by applying it ft-maps contain-
ing example waveforms, and discuss the results. Sec-
tion IV contains concluding remarks.

II. METHODOLOGY
A. Algorithm

The general purpose of the burstegard algorithm is to
identify significant features in a frequency-time map of a

* prestegard@physics.umn.edu

chosen statistic. Our specific goal is to identify structure!
due to gravitational waves (GWs), while minimizing the
computational time and overhead used. In this vein, we
have developed our algorithm in the C++ programming
language, although we note that it is likely possible to
implement the ideas shown here in another language, if
desired.

The burstegard algorithm requires five user-defined
parameters:

e Pixel threshold: the algorithm will attempt to clus-
ter only pixels that exceed this threshold for the
chosen statistic.

e Radius for clustering®: pixels separated by a dis-
tance larger than this parameter will not be clus-
tered together. Distance is defined in units of bins
in the frequency-time plane.

o Minimum number of pizels in a cluster: a cluster
must be composed of at least this many pixels for
it to be saved.

e Time metric: size of the “clustering ellipse” in the
time direction.

e Frequency metric: size of the clustering ellipse in
the frequency direction.

The time and frequency metrics, along with the clus-
tering radius, define an ellipse for clustering to a partic-
ular seed pixel. Pixels are grouped into clusters based on
their separation in the ft-map.

B. Findtrack add-on

When performing gravitational-wave data analysis, it
is often necessary to identify and flag times and frequen-
cies that are affected by instrumental noise. For example,

1 Let us note here that structure in an ft-map of a particular
statistic may be caused by a variety of things, including instru-
mental effects - it is up to the user to define a robust and useful
statistic.

2 We note that the burstegard algorithm is one of several that
employs a clustering radius; see also [1, 2]. However, burstegard
differs from [1] in that it is not a density-based clustering algo-
rithm. Rather, it is designed to target thin, line-like tracks which
do not contain high-density regions.



it may be necessary to remove, or “notch” particular fre-
quencies in an ft-map, due to vibrational modes of the
detector or seismic noise. However, frequency notching
can cause division of a GW signal in an ft-map into mul-
tiple pieces, and may reduce the ability of burstegard
to identify the signal.

To account for this possibility, we have created an add-
on to the algorithm, called findtrack, which is applied
after all individual clusters have been identified. The
purpose of this code is to group together multiple clus-
ters that may be separated by a distance larger than the
burstegard clustering radius, due to frequency notch-
ing or other removal of data caused by the presence of
instrumental effects. To do this, the user must specify an-
other parameter, the findtrack clustering radius, which
should be larger than the original burstegard clustering
radius.

The findtrack add-on works by calculating the dis-
tance between particular corners of two clusters - if this
distance is sufficiently small, those clusters are grouped
together. In the case of a “chirp-down”-type signal,
findtrack tries to connect clusters by considering the
distances between the top left and bottom right corners
of each cluster (see Fig. 1 for an example of this type
of signal). For a “chirp-up”-type signal, findtrack tries
to connect clusters using the top right and bottom left
corners of each cluster. We note here that findtrack
may only be useful in the limit of large signal power. For
signals of marginal power, findtrack may increase the
background for such a search at a rate greater than the
potential improvement in signal sensitivity.

An example of a signal waveform affected by frequency
notching, and the effect of findtrack on it can be seen
in Fig. 1.

C. Clustering Detalils

A general outline of the burstegard algorithm is as
follows:

1. Identify all above-threshold pixels in the ft-map.

2. Label each pixel with a “seed number” based on its
location in the ft-map, beginning in the upper left
corner and running left to right, top to bottom.

3. Set the pixel with the lowest seed number as the
seed and try to cluster nearby pixels to it.

4. When the seed has added all nearby above-
threshold pixels to the cluster, pick another pixel
from the cluster to be the seed and repeat the clus-
tering process.

5. When all pixels in a cluster have been used as the
seed, the cluster is complete (it cannot be con-
nected to anything else).

6. Since the cluster cannot be connected to any other
clusters (except by using findtrack at a later
time), all pixels in the cluster are removed from
the list of pixels for further clustering.

7. If the number of pixels in this cluster is greater
than or equal to the required amount, the cluster
is saved.

8. Repeat this process of identifying clusters until all
pixels in the ft-map have been used as the seed at
some point.

9. Try to group together any saved clusters using
findtrack.

10. For each saved cluster, calculate the overall “clus-
ter” value for a chosen statistic and return the clus-
ter that has the maximum value of this statistic.

A flow chart of the process is shown in Fig. 2 for illus-
trative purposes.

III. EXAMPLES

For demonstrative purposes, we consider the cross-
power-based Stochastic Transient Analysis Multi-
detector Pipeline (STAMP) [3]. STAMP utilizes the
cross-correlation of two spatially separated GW interfer-
ometers to construct an unbiased estimator Y'(¢; f) of
the GW power at a particular time and frequency.

Y(t; f) =Re |Qrst; f;NCri(t; f) (1)

Here, C’IJ(t;f) is the cross-correlation time-series of
the two detectors, and QU(t;f;Q) is a filter function
that accounts for the efficiency of the detector pair and
the phase delay between them.

An estimator for the variance of Y (¢; f), called 62(t; f),
can be constructed by using the auto-power in each de-
tector at adjacent times. Using this variance, we can
define the STAMP cross-correlation SNR = Y /6. Re-
calling that Y (¢; f) is an estimator for the GW power in
a particular frequency bin at a particular time, we can
use the set of Y to create a spectrogram for this statistic.
Analogously, we can do the same for ¢ and the cross-
correlation SNR. The cross-correlation SNR is designed
so that GW signals will manifest themselves as groups
of pixels with positive, relatively large values in the cor-
responding ft-map. The interested reader should refer
to [3] for more details on STAMP formalism.

To test the performance of burstegard with STAMP,
we inject simulated GW waveforms into Gaussian Monte
Carlo noise and try to recover them. In all of the exam-
ples shown here, we utilize the following parameters for



f (Hz)

0 10 2
t

5
24
0z
%]
-5
0 10 20 30 40
t(s)
(b)
5
24
0z
%]
-5
0 10 20 30 40
t(s)
(d)

5
24
0z
7
- S -5
30 40
All clusters, number of clusters = 2
250
200t
~
I
= 150f \
100+ I
50r ) ) )
10 20 30 40
t(s)
(c)
All clusters, number of clusters = 1
250
200t
~
I
= 1501 \
100+ I
50r

10 20 30 40
t(s)

(e)

FIG. 1: Example of a simulated GW signal, with frequencies from 137 Hz to 143 Hz notched. Top: ft-map of
cross-correlation SNR, showing the waveform and the notched frequencies. Middle-left: burstegard recovery
without findtrack. Middle-right: all clusters identified by burstegard without findtrack. Different colors
indicate independent clusters. Bottom-left: burstegard recovery with findtrack. Bottom-right: all clusters
identified by burstegard with findtrack. See Section III for more information on the signal waveform and the
analysis pipeline used in this example.

burstegard, chosen based on testing with STAMP?3:

o Pixel threshold: 0.75

3 A more systematic determination of the optimal parameters is
possible, and may be done in a similar fashion to previous studies
done using a different clustering algorithm with STAMP(1, 4, 5].

e Radius for clustering: 2

o Minimum number of pizels in a cluster: 80
o Time metric: 1

o [Frequency metric: 1

The first waveform, displayed in Fig. 3, is based on
GW emission due to instabilities in the accretion torus



Apply pixel
threshold
to ft-map.

Assign useful
ID numbers
to each pixel.

Clustering.

|

ﬁf:t:;;y yes App}y fi'ndtrack
identified? if desired.
Calculate cluster
statistics.
no
Stop Identify max-

imal cluster.

FIG. 2: Flow chart describing the burstegard
algorithm.

of a black hole [6-8]. This waveform manifests itself as a
“chirp-down” track of O(100s) in an ft-map of STAMP
cross-correlation SNR.

Comparing the two plots in the top row of Fig. 3, we
can see that nearly all of the track corresponding to the
ADI signal is recovered. A portion of the tail is not re-
covered, likely because it dips below the imposed SNR
threshold. We also note that few other noise pixels are
added to the track. Finally, the bottom plot in Fig. 3
shows only one other identified cluster, which indicates
that pure noise is unlikely to form clusters that would be
identified by burstegard.

The second waveform tested here is a simulation of the
inspiral of an eccentric binary black hole system [9]. This
signal is visible as a “chirp-up” of O(10s) in Fig. 4. It is
evident that burstegard is able to accurately reconstruct
the GW signal. It is also important to note that, other
than the signal cluster, no other clusters are identified.

From the examples shown, we can draw some con-
clusions about the effectiveness of the burstegard al-
gorithm. In each case, a significant portion of the sig-
nal is recovered by burstegard, so we conclude that
the algorithm is capable of identifying thin, “line-like”
curves, and thicker, “cluster-like” groups of pixels. We
can also conclude that, due to the small number of ex-
traneous clusters recovered, the burstegard algorihm
is insensitive to structures arising due to noise fluctu-
ations. We note again that both of these statements are
highly dependent on a proper choice of parameters for
the burstegard clustering algorithm.

IV. CONCLUSIONS

There is strong motivation for using pattern recogni-
tion techniques to identify GW signals in ft-maps and
clustering is a particularly useful method, due to its flex-
ibility. We have shown that our clustering algorithm is
capable of recovering various GW signals and that it is
insensitive to noise. Although the examples shown were
based on a particular cross-correlation statistic, we ex-
pect that burstegard would be effective at identifying
GW signals for any well-motivated statistic presented in
the form of an ft-map.

[1] Khan R and Chatterji S 2009 Class. Quantum Grav. 26
155009

[2] Raffai P, Frei Z, Mérka Z and Marka S 2007 Class. Quan-
tum Grav. 24 S457

[3] Thrane E, Kandhasamy S, Ott C D et al. 2011 Phys. Rev.
D 83 083004

[4] Kandhasamy S 2011 URL www.ldas-sw.ligo.caltech.
edu/ilog/pub/groups/stochastic/logs/2011/images/

05/05/shivaraj-1306425734.pdf

[6] Kandhasamy S 2012 URL www.ldas-sw.ligo.caltech.
edu/ilog/pub/groups/stochastic/logs/2012/images/
02/28/shivaraj-1331057458.pdf

[6] van Putten M 2002 Astrophys. J. Lett. 575 71-74

[7] van Putten M 2001 Phys. Rev. Lett. 87 091101

[8] van Putten M 2008 Astrophys. J. Lett. 684 91

[9] Csizmadia P, Debreczeni G, Récz I and Vasuth M 2012
Submitted to Class. Quantum Grav.



o
SNR

0 50 100 150 200 250 0 50 100 150 200 250
t(s) t(s)

(a) (b)

All clusters, number of clusters = 2
5001

450+
400
350
< 3000
= 250t
200
150

1001 .

50t

50 100 200 250

(©)

150
t(s)

FIG. 3: Plots of a simulated accretion disk instability waveform injected into Gaussian Monte Carlo noise. Top-left:
SNR ft-map, including injected signal. Top-right: largest cluster recovered by burstegard. Bottom: all clusters
identified by burstegard.



[
SNR

All clusters, number of clusters = 1
2500

200f

50r

FIG. 4: Plots of a simulated eccentric binary black hole waveform injected into Gaussian Monte Carlo noise.
Top-left: SNR ft-map, including injected signal. Top-right: largest cluster recovered by burstegard. Bottom: all
clusters identified by burstegard. Different colors indicate independent clusters.



