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Abstract 
Motivation: Observe gravitational waves from astrophysical sources 

(supernovae, pulsars, black hole mergers, etc) using the LIGO 
observatories. 

 
Problem: Active control to suppresses time varying ground 

disturbances. This control introduces additional noise. Optimal 
control requires tuning the trade-off as the disturbances evolve. 

 
1. Many of the LIGO control loops contain non-negligible sensing noise 
2. Seismic disturbances evolves in time 
3. LIGO optical cavities have a small finite linear operating range 
 
Solution:  An adaptive algorithm to constantly monitor and tune the 

performance of this control. Applied to the method of modal 
damping. Adaptation optimized for astrophysical sources. 
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Outline 

1. LIGO and gravitational waves 
2. Seismic (vibration) isolation 
3. Problems and challenges 
4. Method of adaptive modal damping 
5. Experimental results 
6. Simulated results 
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Pulsar Supernova Merging Black Holes 

• Supernovae 
 Asymmetry required 

 

• Coalescing Binaries 
 Black Holes or Neutron Stars 
 Mergers 

• Pulsars 
 Asymmetry required 

 

• Stochastic Background 
    (Big bang, etc.) 

Gravitational Waves 

Wave of 
strain 
amplitude h 
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The Laser Interferometer 
Gravitational-wave Observatory (LIGO) 

Livingston, LA 

Hanford, WA 

• 3, 4 km interferometers at 2 sites in the US 
• Michelson interferometers with Fabry-Pérot arms 
• Optical path enclosed in vacuum 
• Sensitive to strains around 10-22 -> 10-19mrms 
• LIGO Budget  ≈ $60 Million per year from NSF.  
• Operated by MIT and Caltech. 

Funded by  

FI 
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•Advanced LIGO configuration 
•Under construction until 
≈2015 
•Upgrade to Initial LIGO 



If we put LIGO in Cambridge, MA 

LIGO spans 16 km2. Cambridge, MA covers 16.65 km2 (wikipedia http://en.wikipedia.org/wiki/Cambridge,_Massachusetts). 6 

Kenmore 
Square 

MIT 

Harvard 

MGH 

Porter 
Square 
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Advanced LIGO Goal

Projected Sensitivity for Advanced 
LIGO 
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Quantum Noise
Seismic Noise
Gravity Gradient Noise
Suspension Thermal Noise
Coating Brownian Noise
Advanced LIGO Goal
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Quantum Noise
Seismic Noise
Gravity Gradient Noise
Suspension Thermal Noise
Coating Brownian Noise
Advanced LIGO Goal
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Suspensions and Seismic Isolation 

active isolation 
platform  (2 stages 

of isolation) 

hydraulic external pre-
isolator (HEPI)   (one 

stage of isolation) 

quadruple pendulum (four 
stages of isolation) with 

monolithic silica final stage 

Advanced LIGO test mass isolation                               

Ref: LIGO-G1000469-v1; Kissel PhD thesis Thesis Defense - BNS - 20 April 2012 
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quadruple pendulum (four 
stages of isolation) 

active isolation 
platform  (2 stages 

of isolation) 

Installing prototype quad 
pendulum with glass optic on 
metal wires, Jan 2009 at MIT. 10 



FI 

Test Masses : 
fused silica , 

34  cm diam x  20  cm thick , 
40  kg 

SRM 

ITM 

ETM 

Output 
Mode 

Cleaner 
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BS 
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Laser Φ 
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Five Pendulum Designs 

Ref: G1100434 



Quadruple Pendulum 
Main (test) 

Chain 
Reaction 

Chain 

Control 
• Damping   –stage 1 
• Cavity length - all stages 
 
 

Sensors/Actuators 
•         BOSEMs at stage 1 & 2 
 

•         AOSEMs at stage 3 
 

• Opt. levs. and interf. sigs. at 
stage 2 
• Electrostatic drive (ESD) at 
stage 4 
 

Purpose 
• Test mass (stage 4) isolation. 
     the test mass consists of a 40 kg high 
reflective mirror 

Stage 1 

Stage 2 

Stage 3 

Stage 4 
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Terminology: peaks are called resonances or modes 
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Control: Problems and Challenges 

Laser 
4 km ± ΔL 

Reflected 
beam 

Photodiode 

Incident beam 

Cavity Resonant beam 

Pendulum 2 Pendulum 1 

Control Law Error Signal:  Actuation 

Cavity length control  
Goal: mLRMS

1510−<∆

u1 

u2 

u3 

u4 
2.85 kW 

≈ 800 kW 

L̂∆

Variable seismic 
disturbances 

Active damping + 
sensor noise 

Problem 2 

Problem 1 

Problem 3 
Upconversion 
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Schematic view of one of LIGO’s 4 km Fabry-Perot cavity arms 

125 W 



Problem 1: Nonstationary Disturbance 
Seismic disturbance at Livingston Observatory on November 21, 2009 
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Target Seismic Disturbance (ISI Stage 2)
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Target Seismic Disturbance (ISI Stage 2)
Stage 1 Undamped Displacement
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Stage 1 Sensor Noise
Target Seismic Disturbance (ISI Stage 2)
Stage 1 Undamped Displacement

Problem 2: Damping Sensor Noise 
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Problem 3: Seismic Upconversion 

Courtesy Sam Waldman 

Feb. 2006 

Mechanisms for upconversion: 
 
1. Laser beams falling off mirrors 
2. Laser scattering off vacuum 
walls and other objects 
3. Interferometer readout 
method 
4. Creak in pendulum springs 
5. Actuator nonlinearities 
6. ? 
7. etc 

17 

Large seismic 
disturbances 

Upconversion 



Experimental Setup at MIT 

Laser 
16 m + ΔL 

Reflected beam 

Photodiode 

Incident beam 
Cavity Resonant beam 

Triple Pendulum 

Quadruple Pendulum 

Control Law Error Signal 
(PDH) 

Actuation 

computation 

Variable seismic 
disturbances 

Active damping + 
sensor noise 

Active damping 

Problem 1 

Problem 2 

Problem 3 
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Experimental Setup at MIT 
Quadruple Pendulum Mirror  Triple Pendulum 

16 meters 

1064 nm light 

Laser 

photodiode 

1% light transmission 
through triple mirror 

50 ppm light transmission 
through quad mirror 

Shaking 
table 
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Measured Displacement Spectrum 
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Measured Displacement with a 1 to 3 Hz Drive
Measured Undriven Displacement
Drive Frequencies

pendulum resonances 

nonlinear upconversion 

ΔL
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Measured Displacement Spectrum 
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Measured Displacement with a 1 to 3 Hz Drive
Measured Undriven Displacement
Measured Damped Displacement with a 1 to 3 Hz Drive
Drive Frequencies

pendulum resonances 

sensor noise amplification 

ΔL
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Modal Damping with State Estimation 
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( )T1−Φ
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•  
 
•       = 
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Cavity Control with Modal Damping 

Triple Modal 
Damping 

Cavity error signal Cavity 
Control 

Non-stationary 
disturbance 

+ 

Sensor noise 

Top mass measurement 

Top mass damping force 

Bottom mass force 
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Cavity Control with Adaptive M.D. 

Gauss-Newton stepping of modal 
damping gain values 

Weighting of 
relevant 

information 

Cost Adapt 

Triple Modal 
Damping 

Cavity 
Control 

Non-stationary 
disturbance 

+ 

Sensor noise 

Top mass damping force 

Top mass measurement 

Damping gains 

Bottom mass force 

Cavity error signal 
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ζ1: 1.3 Hz mode

ζ2: 2.8 Hz mode

Measured Response to a ‘Test’ Train 

Notes: 1st , no adapt and lock loss; 2nd, 30 sec quicksteps; 3rd, 15 sec quicksteps. 

Adaptation on 
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Simulation of LIGO cavity with AMD 

Cost Adapt 

Modal 
Damping 

Interferometer signal w/ 
nonlinear model 

Non-stationary 
disturbance 

+ 

Sensor noise 

Stage 1 damping force 

Stage 1 measurement 

Damping gains 

Pend. 

≈L 4 km 

Assumption that  
meters 10 15−<∆ RMSL

Removes nonlinearity 
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• To model the impact of AMD on LIGO’s 
sensitivity to gravitational wave sources. 
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Stage 1 Sensor Noise

Nominal Seismic Disturbance (ISI Stage 2)

Stage 1 Undamped Displacement

Simulated Disturbance and Noise 
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100% max 
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simulation 
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 Nominal Seismic Disturbance
 Sensor Noise with Low Damping
 Nominal aLIGO Sensitivity
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Upconversion with 100% 
max disturbance and 
minimum damping 

Max sensor noise 
amplification 



Optimization Goal 
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 Upconverted Seismic Disturbance
 Sensor Noise with Low Damping
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GW Source: Binary Inspiral 
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G = gravitational constant 
Mi = mass of orbiting object  
N2 = detector noise power spectral density 
ρ = desired signal to noise ratio (typically ρ = 8) 
ISCO: Innermost Stable Circular Orbit 

Detectable inspiral range r 
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Increasing damping with nominal low seismic amplitude 
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Combining Seismic and Sensor Noise 
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Visible Universe for two 150 Solar Mass Inspiraling Black Holes 
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AMD Inspiral Simulation Results 
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Seismic 
% of max 

150 SM volume 

0 0.00054 0.00055 0.00051 0.00050 3051        (100%) 
50 0.00059 0.0051 0.016 0.0042 2982        (97.7%) 
75 0.00073 0.0089 0.029 0.0090 2915        (95.5%) 

100 0.00091 0.014 0.046 0.016 2796        (91.6%) 
100 0.20 0.20 0.20 0.20 473          (15.6%) 
100 0.00050 0.00050 0.00050 0.00050 3.05         (0.1%) 
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Binary Neutron Star Inspiral Sensitivity 

10 Hz: 16000 
cycles to 
merger 

20 Hz: 5000 
cycles to 
merger 

Merger 
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More cycles (orbits) 
to merger means 
more data to 
estimate the source 
properties. 



AMD Conclusions 
• AMD has the power to select modal damping gains that are 

optimal to the detection of high mass black hole inspirals (> 
75 SM)  for a range of disturbances. 

• Lower mass inspirals benefit by extending observation time. 
• The same gains are also optimal for the stochastic 

background, pulsars, and supernovae. However, these 
sources are insensitive to the lowest frequencies, so constant 
maximum damping is likely to be more reliable. 

• This work explored adaptive damping for the quad 
pendulum, but similar adaption could be useful in other LIGO 
control loops. 

• Practical application of this work depends on the behavior of 
the true Advanced LIGO interferometers still under 
construction. 
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Thesis Contributions, 1-2 

• Adaptive algorithm for modal damping (AMD) 
– Adaptation optimizes the response in real-time to 

changing environmental conditions. 
– Switching of step rates, estimation time scales, 

and step sizes based on the measured proximity of 
these statistics to the optimal solution. 

– Easily adapted to other aspects of interferometer 
control. 
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Thesis Contributions, 2-2 

• Optimization of AMD for astrophysical sources 
• Optimization and limitations of modal damping 

– Optimal state estimation (ACC 2011) 
– Maximum achievable closed loop damping 

• Modeling – procedure for identifying most 
important measurements and parameter 
uncertainties of quadruple pendulum. 

• Actuator sizing – min. least squares actuation 
required when driving many DOFs (ACC2012) 
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Backups 

LIGO spans 16 km2. Cambridge, MA covers 16.65 km2 (wikipedia). 
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Problem 1: Nonstationary Disturbance 
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Projected Sensitivity for aLIGO 

48 Adapted from Gregg Harry.  “Advanced LIGO: the next generation of gravitational wave 
detectors” . Classical and Quantum Gravity, vol. 27, April 2010 

GW band: 10 Hz to 8 kHz  
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Increasing seismic amplitude with no damping 

Increasing 
amplitude 

Decreasing 
frequency 

1 pc = 3.26 ly Thesis Defense - BNS - 20 April 2012 



Parameter Mode 1 Mode 2 Mode 3 Mode 4 

0.0005 0.0005 0.0005 0.0005 

MRMS with 
& max seis 

1.45*10-8 6.54*10-9 1.17*10-8 2.00*10-9 

M0 2*10-8 10-9 8*10-10 5*10-10 

MRMS/M0 0.725 6.54 14.625 4 

AMD Inspiral Simulation Cost 
Functions 
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AMD Inspiral Simulation Results 
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Seismic % 
of max 

150 SM volume 

0 0.00054 0.00055 0.00051 0.00050 3051        (100%) 

50 0.00059 0.0051 0.016 0.0042 2982        (97.7%) 

75 0.00073 0.0089 0.029 0.0090 2915        (95.5%) 

100 0.00091 0.014 0.046 0.016 2796        (91.6%) 

100 0.20 0.20 0.20 0.20 473          (15.6%) 

100 0.00050 0.00050 0.00050 0.00050 3.05         (0.1%) 

Table II: Optimal damping values determined by the selected cost function parameters.  

1ς 2ς 3ς 4ς
63 10Mpc ×
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Stochastic Sensitivity 
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sensitivity from ≈ 0.01 s time 
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Ref: Bruce Allen. The 
Stochastic Gravity-wave 
Background: Sources and 
Detection. 1996. 
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Stochastic Overlap Reduction Function 
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Backups: Science from Observations 

• Binary black holes 
– Probe nonlinear dynamics of spacetime curvature 

during merger phase. 
– GW scattering during inspiral phase. 
– Characterize number of neutron star and/or black 

hole binaries 
– Characterise ringdown phsase after merger 
– Test Hawking’s law that the event horizon must 

increase in area 
– Naked singularity test 
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Backups: Science from Observations 

• Stochastic background 
– Observe early universe from 10-22 sec after Big 

Bang. Currently, CMB observations only get us to 
about 100,000 years after big bang (≈35 orders of 
magnitude improvement). 

– Quantify background from incoherent sum of 
many weak/distant sources such as binaries, 
supernovae, etc. 
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Backups: Science from Observations 

• Inspirals 
– Quantity in Milky Way 
– Neutron star structure 
– Neutron star ellipticity (how big are the mountains) 
– Neutron star quakes 
– Theory of maximum spin rate of X-ray binaries due to 

GW emmission 

• Supernovae 
– Evolution of stellar collapse - no complete models exist. 
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Backups: GW Signal Calibration 

[ ] mdPvPdPdPvPdPvGW
CP

x 9
4133123112131121112

13

10222111
11

1 −<+++++++
+

=

413312311213112111213 222111)11( dPvPdPdPvPdPvGWCPx +++++++=+

Cavity Displacement (Eq. 1): 

Solving for the GW (Eq. 2): 

GW≈

If GW is much greater than everything else on the right hand side of (2), then the calibrated 
signal is approximately GW. 

Calibrated cavity signal (effectively open loop) 
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Simulation of LIGO cavity with AMD 
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Real-time tuning optimizes pendulum damping for: 
1. Nonstationary disturbance 
2. Sensor noise 
3. Nonlinear interferometer response 
 A. Laser beams falling off mirrors 
 B. Laser scattering off vacuum walls and other objects 
 C. Interferometer readout method 
 D. Creak in suspension springs 
 E. etc 

 

Assumption that  
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Removes nonlinearity 
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Cost Adapt 
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Backups: Boosted Experimental Noise 
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Cavity Control with Adaptive M.D. 

60/50 

The cost box measures the 
performance values we care about 
and scales them to get the costs: 
 1. Modal Amplitudes 
 2. Noise Amplification 
  - directly proportional to 

 damping gain 

Cost Adapt 

Triple Modal 
Damping 

Cavity error signal Cavity 
Control 

Non-stationary 
disturbance 
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Sensor noise 

Top mass damping force 

Top mass measurement 
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Bottom mass force 

Modal amplitude 

Sensor noise amplification 

k1 

k2 
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Top Mass Displacement Sensor
Mode 1 Bandpass
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Cost Input 1: Modal Amplitudes 
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(arbitrary magnitude) 

Mode 1 Mode 2 

Simulated Undamped Top Mass Displacement Measurement (arbitrary magnitude) 

Cost Box 

Modal amplitude 

Sensor noise amplification 
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Modal Amplitude Variance Estimation 
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Cost Input 2: Noise Amplification 

For frequencies ≥ 10 Hz : 

vGkv
GkPlant

GkP 11
111

11
1 )(1

≈
+

=

mode 1 
damping force 

stationary 
sensor noise 

vkP ii ∝

Since the sensor noise amplification for a given mode is directly proportional to 
its damping gain, the damping gain, rather than a measured noise term is used 
for this calculation. This is a quicker and more accurate estimate then 
measuring the noise directly like the modal amplitude. 

linear in ki 

Cost Box 

Modal amplitude 

Sensor noise amplification 
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Recursive damping gain equation 

64/50 

nik , = ith mode damping gain at time step n. Each time step is 30 to 60 sec. 
+
niJ , = pseudoinverse of the ith mode Jacobian descent matrix at time step n (model based). 

nic ,


= cost vector of the ith mode at time step n. 

=nic ,
 (scaled modal amplitude) 

(scaled modal noise amplification) [ ] 

=niJ ,
(Modal amplitude gradient wrt ki) 
(modal noise amp. gradient wrt ki) [ ] 

Notes 

ni,α = step size of the ith mode damping gain at time step n. 

=+ pseudoinverse 
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• If the measured modal amplitude is above the moving boundary layer, the adaptation takes 
large, quick steps with short RMS time constants to respond to sudden seismic events quickly. 
• When the modal amplitude goes below the line, the adaptation takes small slow steps with 
long RMS time constants to converge accurately to the optimal damping solution. 

102 10310-3

10-2

10-1

100

101

102

103

104

105

Damping Gain k

C
os

t M
ag

ni
tu

de
Damping cost as a function of gain k, for a given seismic environment

 

 

Modal Amplitude Cost
Sensor Noise Cost
Total (sum of squares)

Adaptive Step Sizes and Step Rates 

65/50 

Notes: 

step size and time boundary layer, 
factor of 2 above the sensor noise.  

current damping gain 

Big α, short time step 

Small α, long time step 
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Measured Response to a Seismic 
Square Wave: Modal RMS 
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Measured Response to a Seismic 
Square Wave: Damping Gains 
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Ex. Train Passing Through Livingston 
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Backups: Adaptive Damping Interface 
Screen 
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Projected Sensitivity for aLIGO 

70 Adapted from Gregg Harry.  “Advanced LIGO: the next generation of gravitational wave 
detectors” . Classical and Quantum Gravity, vol. 27, April 2010 

GW band: 10 Hz to 8 kHz  
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Plot of the Pound–Drever–Hall (PDH) Signal for aLIGO

Problem 3: Cavity Signal 

The PDH signal for a 4 km aLIGO Fabry-Perot cavity with mirror power transmissions of 1.4% and 
7.5 ppm. The cavity finesse is 445. The linear region between the dashed lines is 1 nm wide. 
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Backups: PDH and Resonant Cavity 
Power 
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Backups: Cost Scaling Details 

73 Thesis Defense - BNS - 20 April 2012 



Backups: Cost Scaling Details 
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Damping Gain Scaling Modal RMS Scaling 
0M

M RMS

0G
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<- equal trade off -> 
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Backups: Cost Scaling Details 
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Damping Gain Scaling 
Modal RMS Scaling 
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<- progressive trade off -> 

• Progressive trade off anticipates cavity lock loss for large amplitude disturbances. 
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Backups: Cost Scaling Details 
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Damping Gain Scaling 
Modal RMS Scaling 
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<- progressive trade off -> 

• Progressive trade off anticipates cavity lock loss for large amplitude disturbances. 
• erf() removes the pole and reduces the aggressiveness. 
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Backups: Cost Scaling Details 
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Damping Gain Scaling 
Modal RMS Scaling 
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• Progressive trade off anticipates cavity lock loss for large amplitude disturbances. 
• erf() removes the pole and reduces the aggressiveness. 
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Backups: Cost Box Details 
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RMS Filter 
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Backups: Measurement of modal 
RMS dependence of damping gain 

(Jacobian Measurement) 
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Backups: Jacobian Measurement 
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Backups: Jacobian Measurement 
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Backups: Jacobian Measurement 
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Backups: Jacobian Measurement 
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Backups: Driven Seismic Amplitudes 
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Backups: Optical Sensor ElectroMagnet (OSEM) 

Birmingham OSEM (BOSEM) Advanced LIGO OSEM (AOSEM) 
 - modified iLIGO OSEM 

BOSEM Schematic G1100866-v8 85 

Magnet Types (M0900034) 
• BOSEM – 10 X 10 mm, NdFeB , 
SmCo 
   10 X 5 mm, NdFeB, SmCo 
• AOSEM  – 2 X 3 mm, SmCo 

   2 X 6 mm, SmCo 
   2 X 0.5 mm, SmCo 



Backups: Quadruple Suspension ESD 
Main (test) 

Chain 
Reaction 

Chain 
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The electrostatic 
drive (ESD) acts 
directly on the test 
ITM and ETM test 
masses. 
• ± 400 V (ΔV 800 V) 

≈ 100 μN 
• Each quadrant has 
an independent 
control channel 
• Common bias 
channel over all 
quadrants 

UL UR 

LL LR 
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Backups: Quadruple Suspension 

MIT 
monolithic 

quad in BSC 
 

June 2010 
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Pulling Fibers 
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Quad Monolithic Stages 
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Streckeisen STS-2 Seismometer 

91 
Ref: http://www.passcal.nmt.edu/content/instrumentation/sensors/broadband-sensors/sts-2-bb-sensor 
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Scratch 
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LIGO GW sources with sound files 
http://www.ligo.org/science//GW-Burst.php 
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