aLIGO SUS Operations Manual

Mark Barton and the SUS Team
LIGO-E1200633-v2, 05/27/14

This document is a snapshot of the wiki at https://awiki.ligo-wa.caltech.edu/aLIGO/Suspensions/OpsManual .

See there for the latest information.

Table of Contents

Suspensions/OpsManual 5
Suspensions/OpsManual/Nomenclature 8
Suspensions/OpsManual/Safety 10
Suspensions/OpsManual/QuickStart 12
Suspensions/OpsManual/Setup 13
Suspensions/OpsManual/Testing 14
Suspensions/OpsManual/TFs 15
Suspensions/OpsManual/TFs/Matlab 18
Suspensions/OpsManual/TFs/DTT 21
Suspensions/OpsManual/Spectra 25
Suspensions/OpsManual/OperatingInstructions 28
Suspensions/OpsManual/Calibration 29
Suspensions/OpsManual/Maintenance 30
Suspensions/OpsManual/Storage 31
Suspensions/OpsManual/Troubleshooting 32
Suspensions/OpsManual/Screens 35
Suspensions/OpsManual/Alarms 36
Suspensions/OpsManual/Watchdogs 40
Suspensions/OpsManual/Guardian 43
Suspensions/OpsManual/ByChamber 50
Suspensions/OpsManual/OSEMs 54
Suspensions/OpsManual/OpLev 57
Suspensions/OpsManual/ESD 59
Suspensions/OpsManual/Diagonalization 60
Suspensions/OpsManual/Damping 61
Suspensions/OpsManual/Alignments 62
Suspensions/OpsManual/Projections 63
Suspensions/OpsManual/Computing 64
Suspensions/OpsManual/PythonTools 65
Suspensions/OpsManual/cdscfg 68
Suspensions/OpsManual/BURT 70
Suspensions/OpsManual/FOTON 74
Suspensions/OpsManual/MEDM 75
Suspensions/OpsManual/Simulink 78
Suspensions/OpsManual/Network 80
Suspensions/OpsManual/ODC 82
Suspensions/OpsManual/DTT 83
Suspensions/OpsManual/dataviewer 84
Suspensions/OpsManual/diag 85
Suspensions/OpsManual/SVN 86
Suspensions/OpsManual/Models 89
Suspensions/OpsManual/QUAD 90
Suspensions/OpsManual/QUAD/Screens 93
Suspensions/OpsManual/QUAD/Models 115
Suspensions/OpsManual/QUAD/Models/20140304TMproductionTM 116
Suspensions/OpsManual/QUAD/Models/20120601TMproductionTMrehang 142
Suspensions/OpsManual/QUAD/Models/20120831TMproductionCP 167
Suspensions/OpsManual/QUAD/Models/20120831TMproductionERM 192
Suspensions/OpsManual/QUAD/Models/20121115TMproductionWire 217
Suspensions/OpsManual/BSFM 242
Suspensions/OpsManual/BSFM/Screens 243
Suspensions/OpsManual/BSFM/Models 256
Suspensions/OpsManual/BSFM/Models/20120120bsNW 257
Suspensions/OpsManual/HLTS 276
Suspensions/OpsManual/HLTS/Screens 277
Suspensions/OpsManual/HLTS/Models 294
Suspensions/OpsManual/HLTS/Models/20120120hlts 295
Suspensions/OpsManual/HSTS 314
Suspensions/OpsManual/HSTS/Screens 315
Suspensions/OpsManual/HSTS/Models 330
Suspensions/OpsManual/HSTS/Models/20120120hsts 331
Suspensions/OpsManual/OMCS 351
Suspensions/OpsManual/OMCS/Screens 352
Suspensions/OpsManual/OMCS/Models 361
Suspensions/OpsManual/OMCS/Models/201306120MCSmetal4904 362
Suspensions/OpsManual/HTTS 375
Suspensions/OpsManual/HTTS/Screens 376
Suspensions/OpsManual/HTTS/Models 384
Suspensions/OpsManual/HTTS/Models/20140123HTTSdamp 385
Suspensions/OpsManual/HAUX 392
Suspensions/OpsManual/HAUX/Screens 393
Suspensions/OpsManual/HAUX/Models 401
Suspensions/OpsManual/HAUX/Models/20131231HAUXdamp 402
Suspensions/OpsManual/TMTS 410
Suspensions/OpsManual/TMTS/Screens 412
Suspensions/OpsManual/TMTS/Models 421
Suspensions/OpsManual/TMTS/Models/20131224TMTS_FirstArticle 423
Suspensions/OpsManual/TMTS/Models/20131224TMTS_Production 436
Suspensions/OpsManual/OFIS 449
Suspensions/MathematicaModels 450
Suspensions/MathematicaModels/DirectoryStructure 452
Suspensions/MathematicaModels/SVNInstructions 456
Suspensions/MathematicaModels/Toolkit 460
Suspensions/MathematicaModels/QuadLite2LateralModel 461
Suspensions/MathematicaModels/TripleLite2Model 462
Suspensions/MathematicaModels/DualLite2Model 463
Suspensions/MathematicaModels/DualLite2DBLateralModel 465
Suspensions/MathematicaModels/TwoWireSimpleBladesModel 466

aLIGO SUS Operations Manual

Introduction

This wiki page is the working version of the aLIGO SUS Operation Manual. DCC entry Θ E1200633 is reserved for archiving it periodically. All pages in the list at /ArchiveList will be archived. The system being documented is taken to be all SUS-group suspensions (QUAD, BSFM, HLTS, HSTS and OMCS) as installed in vacuum and interacted with primarily via CDS hardware and software. Non-SUS suspensions (HAUX, HTTS, OFIS, TMTS) are addressed as time, enthusiasm and help from the responsible groups permit. Anything not flagged as site-specific applies to both sites equally.

Before editing this page, see the recommendations and hints at/StyleGuide.

Table of Contents

Sections mandated by $\Theta 1200366-\mathrm{v} 1$:

Lists of Figures/Tables	List of Nomenclature	Contents	Safety, General Warnings, and Cautions
Description and Purpose	Context within aLIGO	Quick Start Guide	Setup
Checkout / Testing	Operating Instructions	Calibration	Maintenance
Storage	Troubleshooting	References	Appendices

Additional Information

Screens	Alarms	Watchdogs	Guardian
Suspensions by Chamber	OSEMs	Optical Levers	Electrostatic Drive
Diagonalization	Damping	Alignments	Projections
Models of Pendulum Dynamics	Computing Tools		Construction Site

Description and Purpose

The SUS subsystem comprises 5 major types of suspension (QUAD, BSFM, HLTS, HSTS, OFMC) for various optical payloads. Each suspension provides addition vibration isolation (relative to that provided by the SEI subsystem), and allows for sensing of the position of the optics and actuation on them.

The SUS subsystem does not include 4 other types of suspension (Tip-Tilt, HAUX, TransMon and OFI Suspension), which are the scope of other groups. However the overall purpose (isolation, sensing, actuation) is the same and much of the infrastructure was designed by the same people, so they are covered here as time permits.

SUS suspensions

aLIGO, SUS DCC Document Tree, © E1200482
A general overview of the SUS suspensions can be found at Θ G1100866 Overview of Advanced LIGO Suspensions. More background information on the five major types is at the following subpages:

- QUAD - Really a combination of two quadruple pendulums side by side, the main chain supporting an ITM or ETM, and the reaction chain both supporting a TCP or ERM and doubling as a quiet platform for applying actuation to the main chain.
- BSFM - A triple pendulum supporting the beamsplitter, or in the original H2 design, a folding mirror.
- HLTS - HAM Large Triple: a triple pendulum supporting a PR3 or SR3, the largest of the optics used in HAM chambers.
- HSTS - HAM Small Triple: a triple pendulum supporting optics such as MC1, MC2, MC3, smaller optics used in HAM chambers.
- OMCS - A double pendulum supporting the output mode cleaner bench.
of Suspensions in Chambers.

Non-SUS suspensions (don't hassle SUS about these!)

These suspensions are the responsibility of other groups but have to varying extents been incorporated as honorary SUS.

- HAUX - HAM Auxiliary suspension. A single pendulum similar to the iLIGO SOS but with blade springs for extra vertical isolation, supporting IO optics IM1 through IM4. Responsibility of IOO.
- HTTS - Tip-tilt. A single pendulum with blade springs similar to HAUX but with more powerful BOSEM actuators for high pitch and yaw actuation bandwidth. Supports IO optics RM1, RM2, OM1, OM2 and OM3. Responsibility of ISC.
- TMTS - TransMon suspension. A double pendulum somewhat similar to OMCS but with two rather than four blade springs on the top mass, supporting the Transmission Monitor behind the ETM/ERM QUAD. Responsibility of ISC.
- OFIS - Output Faraday Isolator Suspension. This is a totally passive suspension with no electronic damping or CDS interface. Responsibility of AOS.

Related Systems

- Optical Levers Signals from these are used by or plumbed through SUS front-end models.

Subsystems

- OSEMs are a combination of shadow sensor and voice coil, and are used extensively across the suspensions for global and local control. There are two types: the AOSEM is a refined ILIGO OSEM and the BOSEM is a larger version accommodating a much larger magnet.
- Electrostatic Drive (ESD) is used on the bottom stage of the QUAD as feeble but very low noise actuation.
- Electronics Suspensions are interacted with through electronics supplied by CDS.
- Watchdogs are modules inserted at three different levels in the software (at the sensor-actuator group level, the user model level and the IOP model level) that shut down outputs in the event of inputs or outputs exceeding defined thresholds. (A hardware watchdog is planned that will absorb some of this functionality.) Since the SEI system is the primary potential cause of damage to SUS, the SUS watchdogs also take inputs from the SEI watchdogs.

Context within aLIGO

aLIGO Seismic Isolation and Suspension Cartoon, G1200071
SUS physically supports optical payloads belonging to COS (ITM, ETM, BS, FM), IOO (MC1, MC2, MC3, PRM, PR2, PR3, SRM, SR2, SR3), TCS (the TCP) and ISC (the output modecleaner bench). Honorary SUS suspensions support payloads for IOO (IM1-4) and ISC (TMS, RM1-2, OM1-3).

SUS is physically supported by vibration isolation platforms provided by SEI (BSC-ISI, HAM-ISI, HEPI).
SUS is electrically connected to the outside world by cables provided by CDS to designs negotiated with SUS and SEI. The SUS group is responsible for routing the cable segments running up the suspension structure, SEI is responsible for routing the segments that weave through the ISI system to the vacuum feedthrough, and CDS is responsible for the remainder.

SUS is electrically integrated into the CDS computing system via cables, satellite amps, coil drivers, AA/AI/whitening/dewhitening boards, ADC/DAC boards, and computers supplied by Birmingham and CDS and maintained by CDS.

SUS is integrated into the CDS computing system via "models" (in Matlab/Simulink) compiled by the CDS-supplied RTCDS software package to run on CDS front-end computers and process high-bandwidth data to/from the sensors and actuators. A system of slow controls connecting different models and the user interfaces for this are constructed with EPICS/MEDM.

The SUS control system implements local control for each suspension (taking as input just the OSEM sensor signals giving the position of the suspended masses relative to the suspension structure and attempting to minimize those motions without regard to the state of other optics). It also channels and processes various signals that will be used to construct a global control system, including actuation requests from ISC and QPD signals from optical levers impinging on the optics.

Return to Contents

aLIGO SUS Operations Manual - Nomenclature

Back to Operation Manual main page

Groups	
SUS	SUSpensions group
CDS	Control and Data Systems group
SEI	SEIsmic isolation group
COS	Core Optics Subsystem
AOS	Auxiliary Optics Subsystem
IOO	Input/Output Optics
ISC	Interferometer Sensing and Control
LSC	Length Sensing and Control
ASC	Angular Sensing and Control
Suspension Types	
QUAD	Quadruple suspension
BSFM	Beam-Splitter and/or Folding Mirror suspension
HLTS	HAM Large Triple Suspension (for PR3 and SR3 optics)
HSTS	HAM Small Triple Suspension (for MC1, MC2, MC3, PR2, PRM, SR2 and SRM optics)
OMCS	Output Mode-Cleaner Suspension
HAUX	HAM Auxiliary Suspension
HTTS	HAM Tip-Tilt Suspension
TMTS	TransMon Telescope Suspension
OFIS	Output Faraday Isolator Suspension
Suspension Components/Concepts	
OSEM	Optical Sensor and Electro-Magnetic actuator
BOSEM	"Birmingham"-style large OSEM
AOSEM	"Advanced"-style small OSEM
SAG	Sensor-Actuator Group
QUAD Mass Names	
Top mass	Top mass (no abbreviation) of the main or reaction chains in a quad
UIM	Upper Intermediate Mass - second top mass of the main or reaction chains in a quad
PUM	PenUltimate Mass - second bottom mass of the main chain in a quad
PRM	Penultimate Reaction Mass - second bottom mass of the reaction chain in a quad
ITM	Input Test Mass - one type of bottom mass of the main chain in a quad
ETM	End Test Mass - second type of bottom mass of the main chain in a quad
TCP or CP	Thermal Compensation Plate - one type of bottom mass of the reaction chain in a quad, paired with ITM
ERM	End Reaction Mass - second type of bottom mass of the reaction chain in a quad, paired with ETM
Triple Suspension Mass Names	
UM	Upper Mass of a BSFM, HLTS or HSTS triple
IM	Intermediate Mass of a BSFM, HLTS or HSTS triple
$\begin{aligned} & \mathrm{MC1}, \mathrm{MC} 2, \\ & \text { MC3 } \end{aligned}$	Mode Cleaner mirrors 1, 2 and 3, payload for HSTS

Software	
MEDM	Θ Motif Editor and Display Manager
EPICS	Θ Experimental Physics and Industrial Control System
BURT	BackUp and Restore Tool
DTT	Diagnostic Test Tool

aLIGO SUS Operations Manual - Safety, General Warnings and Cautions

Back to Operation Manual main page

When the suspensions are installed in vacuum, as assumed for the primary scope of this manual, they present negligible danger to personnel, being totally contained by the vacuum system. Hazard analyses for installation are linked at the end for reference in case they are useful in maintenance/retrofit/repair scenarios.

The main potential sources of damage to SUS and interacting systems during operation are:

- Gross external disturbance as from earthquake or crane accident.
- Runaway control system on SUS, ISI or HEPI, due to hardware/software/user error.
- Damage to ESD system if left energized through pumpdown or vent.

The SUS structures have earthquake stops fitted at many points, so as to contain the optics in the event of a disturbance or wire/fibre failure. The nominal gap between each EQ stop tip and the optic is 0.75 mm , so an optic should never move more than a few mm within the structure. However the stops have been designed purely as emergency measures and should never contact the optic in normal operations. To prevent recurrence of iLIGO issues with electrostatic charging due to Viton/Fluorel-tipped stops, many of the stops are tipped with silica pieces in Viton/Fluorel mounts. Temporary Teflon shields are used to prevent them touching the optic during installation. If worst comes to worst and the optic is pushed into the stops forcibly or repeatedly there is some risk of damaging the coating and/or generating glass dust.

Ideally, the fibres in the lower stage of the QUAD will be be well-protected by the earthquake stops and their own compliance (they are about three times more compliant than steel of the same breaking strength, and stretch by 6 mm under normal load, so the additional stretch before the earthquake stops are contacted should be less than a 15% overload). However the fibres are extremely sensitive to surface damage and there has already been an incident where the fibres on ITMy broke after about 1 hour of pounding from a runaway HEPI control system, so there may be vulnerabilities to be discovered.

The nominal clearance of the stops of 0.75 mm was chosen to protect magnets, OSEM flags and other items stuck to the optic from contacting OSEMs and other items on the structure. However some of the gaps are very difficult to set due to poor visibility and so some stops may not be close enough to prevent all damage. Also, some degree of twist is possible, so laser beams reflecting off optics may be diverted to sensitive items such as suspension wires or electrical cables.

For all these reasons it is important to be extremely careful about avoidable gross disturbances and runaway controls. There is a system of software watchdogs and a planned hardware watchdog to protect against runaway controls, and it is vital to make sure the software matches the installed hardware and that it is never disabled or defeated without appropriate highlevel approvals.

The ESD subsystem has not yet been fully installed but will use high voltages (up to 500 V). It can be energized in air at atmospheric pressure or high vacuum, but there is an intermediate range of pressures (per Θ Paschen's law) where the conductivity of air is high and the system will be destroyed if not powered off. A Θ hardware lockout is being prepared to make this impossible but the underlying danger should be kept in mind.

References

Θ DCC Search for SUS safety docs

BSC

- E1000030 QUAD Suspension Metal Assembly Hazard Analysis
- E1100814 Cartridge Assembly Hazard Analysis
- © E1000489 Hazard Analysis for Silica Fiber Pulling and Welding In the LHO Fiber Lab and In the LHO and LLO LVEAs and VEAs
- © E1000558 aLIGO SUS Quad Suspension Installation/Initial Alignment Hazard Analysis
- © M1000334 LHO_CO2 Silica Fiber Welding Machine Operating in the LVEAs and END Station, Standard Operating Procedure
- EE0900163 Beamsplitter/Folding Mirror Suspension Assembly Hazard Analysis
- Θ E1200925 BSC Cartridge Installation (Universal) Hazard Analysis, aLIGO

HAM Triple

- Θ E1000043 HLTS Assembly and Installation Hazard Analysis
- E0900332 HSTS Assembly and Installation Hazard Analysis

Other SUS suspensions

- E E0900042 AdvLIGO Output Mode Cleaner Hazard Analysis
- Θ E1300537 Addendum to E0900042 aLIGO OMC Hazard Analysis

Non-SUS suspensions

- T1000311 aLIGO TransMonSUS Assembly \& Installation Hazards Analysis
- Θ E1101232 HAM Auxiliary Suspension Hazard Analysis
- (HTTS Hazard Analysis?)
- © E1300283 OFI Assembly \& Installation Hazard Analysis

Related

- Θ M1 100297 SOP - 5 Watt 808 nm Autocollimator Lasers Operating in the LVEA under the Test Stand
- E1100070 aLIGO COS/IAS Laser Autocollimator Hazard Analysis
- T080231 ERGO Arm Hazard Analysis

aLIGO SUS Operations Manual - Quick Start Guide

Back to Operation Manual main page
OM1200366-v1 mandates a quick start guide but the SUS system is of such complexity that such a document is not feasible. Instead, see Suspensions/OpsManual/OperatingInstructions.

References

© E1300860, Janeen's Quick Start Guide.

aLIGO Operations Manual - Setup

Back to Operation Manual main page
By the time the suspension are installed in vacuum, per the assumed scope of this manual, pretty much all setup will have been done. However references to installation procedures and the like are given below.

The part of the setup that is most likely to be relevant to operators and scimons concerns the OSEMs. The OSEM sensors are set up by measuring their output in the "open light" condition (flag fully retracted), calculating and setting gains and offsets that map each OSEM's range to a standard $\pm 15 \mathrm{~K}$ counts, and then mechanically adjusting each OSEM to the midpoint of its range. The magnets associated with the OSEMs need to be set in a certain pattern of N and S poles. See the OSEMs page.

References

- © E1100290 aLIGO SUS QUAD Assembly and Installation Documentation
- Θ E1100599 aLIGO SUS BSFM Assembly and Installation Documentation
- Θ E1 100472 aLIGO SUS HLTS Assembly and Installation Documentation
- EE1100471 aLIGO SUS HSTS Assembly and Installation Documentation
- E1300429 aLIGO SUS OMCS Assembly and Installation Documentation
- $\operatorname{e} 1100304$ TMS ASSEMBLY and ALIGNMENT DOCUMENTATION
- © T1300029 IO HAUX Material and Assembly Documents
- E1100440 aLIGO HAM Tip-Tilt Suspension Assembly Procedure
- E E1201074 Output Faraday Isolator Assembly and Alignment Procedure
- E1300056 Output Faraday Isolator Installation and Final Alignment Procedure

aLIGO Operations Manual - Checkout/Testing

Back to Operation Manual main page
The overall testing procedure for SUS is documented in Θ G 1100693 (QUAD) and $\Theta 1200070$ (BSFM/HLTS/HSTS).
An index of alogs with key measurements used for installation acceptance is maintained at E1400187.
Key procedures are documented on the following subpages:

- Suspensions/OpsManual/TFs - Transfer functions
- Suspensions/OpsManual/Spectra - Spectra of sensors without actuation (besides damping)
- TransferFunctionColoringBook - Rogues' gallery of bad TFs with diagnoses
- Suspensions/OpsManual/B\&K - B\&K Hammer Tests on structures
- Suspensions/OpsManual/Diagonalization - Coil Balancing/Diagonalization

aLIGO SUS Operations Manual - Taking and Plotting SUS Transfer Functions

Back to Operation Manual main page

There are two ways to take data for transfer functions: with Diagnostic Test Tools (DTT) templates, and with a Matlab script. DTT is quicker overall and gives partial results immediately. However it requires a lot of operator time. The Matlab script is very quick to set up but requires about five times as long to run.

Data taking

1. Choose either DTT or Matlab, follow the instructions on the corresponding page (which will involve taking data and doing Stage 1 plots), and then return here for the Stage 2 plotting and cleanup steps.
```
DTT Matlab
```


Plotting - Stage 2

2. If Matlab is not already open from having used it for data taking, open it from the terminal and navigate to the ^/trunk/\$\{susType\}/Common/MatlabTools directory, e.g, for QUAD,
\$ matlab\&
>> cd /ligo.svncommon/SusSVN/sus/trunk/QUAD/Common/MatlabTools
3. In the Matlab command window, do another svn update. (Unlike the Stage 1 script, where edits are mostly disposable, the Stage 2 script accumulates important information from both sites, and it's very painful to recover if you edit a stale version because the other site has committed a new one while you were working on Stage 1.)
4. Still in the MatlabTools directory for the suspension type, open the plotall...tfs.m script for the suspension, e.g., plotallquad_dtttfs.m (QUAD), plotallbsfm_tfs.m (BSFM), plotallhlts_tfs.m (HLTS), etc. Note that the name of the QUAD one is a misnomer - it's not specific to DTT.
5. Identify the sections near the top that look like this (from plotallquad_dtttfs.m):
```
printFigs = false;
```

and

```
useMeasts.M0 = [85 95 97];
useMeasts.R0 = [86 96 98];
figFileTag = '130125_H1SUSITMY_Phase3a';
```



```
measType measNum quadID chainType measPhase isiState loopState level
aLOG # Notes
measList = { 'X2', 'QUAD11', 'BUILD01', 'wire', 'thincp','2011-07-31','2011-07-
```



```
PASS | | (No Lacing Cables)
    'L1', 'ITMX', '', 'wire', 'thincp','2012-10-31','2012-10-
```



```
FAIL | LLO5142 | M0 good, R0 bad, weak R0-F2 BOSEM?
```

6. Edit the assignment to printFigs to false for now.
7. Edit the assignment for figFileTag to include the date, the suspension and the phase of testing for the new measurement.
8. Copy one of the lines of the cell array being assigned to measDat a, paste it into a logical spot in the array, and edit it to reflect the newest measurement. The columns on the left are active code; the columns on the right are Matlab comments but should still be updated. The QUAD case illustrated above is more complicated than the others because it allows for both an M0 set and an R0 set but most of the columns for it and the simpler BSFM/HLTS/etc cases should be obvious. measType is DTTTF for DTT TFs (i.e., according to these instructions) or MATTF for Matlab

TFs.
9. measNum is one of the columns in the commented-out half but needs to equal the index of each result in the array. Edit the measNum of the added line and all subsequent lines so that the entire column forms a smoothly incrementing sequence. (This is unbelievably inelegant and tedious, but that's the way it is.)
10. When the measNum column has been updated, identify approximately 2-4 measurements including the current one that would be of interest to compare, and copy their measNum values to the assignment to useMeasts. For QUAD you need to do useMeasts.M0 and useMeasts. R0 separately; for other suspension types there will be just useMeasts.M1.
11. Click the green run button and check the command window for log messages that all . mat files from Stage 1 have been successfully located and read. If there have ever been multiple measurements on a single day, you may be asked to choose one or other of them.
12. As with Stage 1, when everything is set up correctly, a series of plots will appear. When success is achieved, change the assignment to printFigs to true and rerun the script. This will write PDF versions to
^/trunk/\$\{susType\}/Common/Data, e.g., ^/trunk/QUAD/Common/Data, i.e., a different Data directory than above, common to the whole suspension type.
13. Do a comment to the alog from above. If you didn't do an earlier comment announcing the end of data taking, mention that it has finished and give the data file names now. Upload the PDF from the previous step as an attachment (the figFileTag you specified will be in the filename but unfortunately not at the beginning so you may have to
 plots are good and the suspension passes, or whether there are issues, and if so, what.

Typical set of Stage 2 plots, for H1 ITMy:
© (1) attachment:allquads_130124_H1SUSITMY_Phase3a_ALLM0_TFs.pdf

Cleanup

Cleanup involves submitting all the new stuff to the SVN. The following example assumes QUAD (H1:ITMy) but other suspension types will be similar. The example assumes the cleanup is done within the Matlab command window but can just as easily be done from a terminal window - just omit the !'s.

1. Commit the modified scripts:
```
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/Common/MatlabTools # (or navigate there with
the Matlab file browser)
>> !svn commit -m "New data for H1 ITMy"
```

2. Commit the comparison plots:
```
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/Common/Data # (or navigate there with the
Matlab file browser)
>> !svn add * # harmless warnings will be generated for previously-added files
>> !svn commit -m "New data for H1 ITMy"
```

3. Commit the raw data and exported text files:
```
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/H1/ITMY/SAGMO/Data # (or navigate there with
the Matlab file browser)
>> !svn add * # harmless warnings will be generated for previously-added files
>> !svn commit -m "New data for H1 ITMy"
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/H1/ITMY/SAGRO/Data # (or navigate there with
the Matlab file browser)
>> !svn add * # harmless warnings will be generated for previously-added files
>> !svn commit -m "New data for H1 ITMy"
```

4. Commit the single measurement plots.
```
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/H1/ITMY/SAGMO/Results # (or navigate there with
the Matlab file browser)
>> !svn add * # harmless warnings will be generated for previously-added files
>> !svn commit -m "New data for H1 ITMy"
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/H1/ITMY/SAGRO/Results # (or navigate there
with the Matlab file browser)
>> !svn add * # harmless warnings will be generated for previously-added files
>> !svn commit -m "New data for H1 ITMy"
```

5. Check you haven't missed anything.
```
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/ # (or navigate there with the Matlab file
```

browser)

aLIGO SUS Operations Manual - Taking TF Data with Matlab

Back to Operations Manual main page.
Back to TFs main page.
You should be here if you want to take the data for your transfer functions using Matlab. If you wanted to do it with DTT, go to Suspensions/OpsManual/TFs/DTT.

Data Taking

1. Check with users of the suspension that it's available for testing, which will involve applying excitations and usually involve changing the damping state.
2. Do an alog announcing that you're commencing TFs. Make a note of the alog entry number.
3. Open the MEDM screen for the suspension.
4. Check that the TEST FILTERS for M0 (QUAD) or M1 (all others) are all ON (green).
5. For QUAD, check the RO TEST FILTERS and DAMP FILTERS as well (these are on a subscreen accessed by a button).
6. Check that the Master Switch is ON.
7. Check that the M0 (QUAD) or M1 (all others) watchdog is not tripped, and reset it if necessary.
8. For QUAD, check that the R0 watchdog is not tripped, and reset it if necessary.
9. Check that the USER DACKILL watchdog is not tripped, and reset it if necessary.
10. Check that the IOP watchdog is not tripped, and reset it if necessary.
11. Open Matlab:
```
matlab &
```

5. Navigate to ^trunk/Common/MatlabTools/SchroederPhaseTools:
```
cd /ligo/svncommon/SusSVN/sus/trunk/Common/MatlabTools/SchroederPhaseTools
```

6. Open LHO_Matlab_TFs.m (at LHO) or LHO_Matlab_TFs.m (at LLO) in the Matlab editor.
7. Check that all sections not relevant to the optic you are working with are commented out.
8. Find an existing section that does what you need and uncomment it, or create a new one based on the following pattern for H1 ITMY.
```
% ITMY
switch_dampcomm('H1','ITMY','MOOFF','ON')
Matlab_TFs('H1','ITMY','','','3A','MO','wire_rehang','TFSettingsLHOQUADPhase3a'); % H1 ITMY
main chain, damping off
switch_dampcomm('H1','ITMY','MOON','NC')
Matlab_TFs('H1','ITMY','','','3A','MO','wire_rehang','TFSettingsLHOQUADPhase3a'); % H1 ITMY
main chain, damping on
switch_dampcomm('H1','ITMY','ROOFF','NC')
Matlab_TFs('H1','ITMY','','','3A','RO','thincp','TFSettingsLHOQUADPhase3a'); % H1 ITMY
reaction chain, damping off
switch_dampcomm('H1','ITMY','ROON', 'NC')
Matlab_TFs('H1','ITMY','','','3A','RO','thincp','TFSettingsLHOQUADPhase3a'); % H1 ITMY
reaction chain, damping on
switch_dampcomm('H1','ITMY','NC','OFF')
```

The switch_dampcomm() function allows convenient switching of the damping (3rd argument) and the measurement status or commissioning switch (4th argument). The Matlab_TFs () function makes the measurement. Both functions have documentation in internal comments and will print more info if run without arguments.
9. When the script has been edited, click the green run button.
10. Wait about a minute and then check that excitations are being applied, as indicated by messages in the Matlab Command Window, and changing numbers emerging from the TEST FILTERS section on the MEDM screen and making their way past the IOP DACKILL block.
11. Settle down for a long wait (about 6 hours per call to Matlab_TFs()). Note that the estimated total time peris typically off by about 1.5 hours, so towards the end you may see estimated times to completion such as -70 minutes.
12. Check from time to time that nobody has decided to work on or near the suspension and that the watchdog is not trinned The watchdno is reset antomatically at the end of each frenuency hand for each actuatinn DOF hut micsed
bands are not repeated and will show up as dropouts in the final data. If the watchdog trips consistently or without external cause, the amplitude values defined in the settings script ('TFSettingsLHOHSTSPhase3a' or the like are probably too high.)
13. If it's not convenient to proceed immediately to generating plots, add a comment to the alog entry from above announcing that the suspension is free and that plots are pending. Mention the location of the data files in the SVN, e.g., ^/trunk/QUAD/H1/ITMY/SAGM0/2012-1210_1600_H1SUSITMY_M0_*_WhiteNoise.xml.

Plotting - Stage 1

This stage generates a set of plots with data from just the most recent set of measurements. In Stage 2 later, a common script can generate comparison plots involving measurements that were taken with DTT and ones that were taking with Matlab.
14. Navigate to the $\wedge /$ trunk/\$\{susType\}/Common/MatlabTools directory for the suspension type, e.g., $\wedge /$ trunk/QUAD/Common/MatlabTools for QUAD.
>> cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/Common/MatlabTools
15. In the Matlab command window, do an svn update to make sure all the software is up to date (! is used to execute shell commands from Matlab):

```
> !svn update
```

16. In the Matlab editor, open the script for Stage 1 plotting: plotquad_dtttfs.m (QUAD), plotBSFM_dtttfs.m (BSFM), plotHLTS_dtttfs.m (HLTS), plotHSTS_dtttfs.m (HSTS) etc. Identify the section near the top that looks like the following:
```
printFigs = true;
saveData = true;
ifo = 'H1'; % ['H1' 'H2' 'L1' 'M1' 'X1' 'X2']
quadID = 'ITMY'; % Optic Name or "QUAD" if on a test stand
['QUAD','ETMX','ITMY']
quadNum = ''; % Must be two digits, or empty string ['02','03','']
buildNum = ''; Must be two digits, or empty string ['01','02']
sagLevel = 'M0'; % ['MO', 'RO', 'L1', 'L2', 'L3'] -- no damping anywhere
else!
buildType = 'wirerehang';
    % ['wire','fiber','erm','thincp','wirerehang']
meas.yyyymmdd = '2013-01-25'; % e.g. 2012-04-23 for April 23rd 2012
meas.hhmm = '1330'; % e.g. 1003 for 10:03AM
meas.sensCalib = false; % true or false -- are sensors calibrated?
meas.author = 'M. Barton'; % Let us know who did all the work!
```

17. Edit the assignments to printFigs and saveData to false (or 0) to begin with. Edit the rest of the assignments to match the measurements just taken. buildType is the name of the model parameter set that will be used for model comparisons. meas. sensCalib records whether the filter in the OSEMINF block that converts from counts to $\mu \mathrm{m}$ had been enabled. (As of $1 / 28 / 13$, LHO was running with this off but LLO had enabled it for some or all suspensions.)
18. Click the green run button and check the command window for log messages that all exported files have been successfully read. A failure at this point is most likely due to not having visited all three pages in the Export dialog so that the exported file doesn't have the full complement of columns, normally 25 : frequency plus real and imaginary parts of 12 signals. If this is suspected, reopen the . xml file for the affected excitation channel and re-do the export.
19. When the script runs without errors, review the main plots, $L->L, P->P$ etc and see if any have symptoms that suggest a problem with the measurement rather than the suspension, e.g., small magnitude and high noise level as from a tripped watchdog. If so, consider rerunning the measurement for that excitation channel and re-exporting the data.
20. When any measurement issues have been fixed, edit the assignments to printFigs and saveData to true and re-run the script. This generates the same plots as before but writes them to the Results directory, sibling to the Data directory, e.g., ^/trunk/QUAD/H1/ITMy/SAGM0/Results for M0 of the H1 ITMy. A failure at this point probably means the Results directory does not exist, in which case it should be created.

Typical set of Stage 1 plots, for H1 ITMy:
凹 | attachment:2013-01-24_H1SUSITMY_M0_ALL_TFs.pdf

aLIGO SUS Operations Manual - Taking TF Data with DTT

Back to Operations Manual main page.
Back to TFs main page.
You should be here if you want to take the data for your transfer functions using DTT. If you wanted to do it with Matlab, go to Suspensions/OpsManual/TFs/Matlab.

Data Taking

1. Check with users of the suspension that it's available for testing, which will involve applying excitations and usually involve changing the damping state.
2. Do an alog announcing that you're commencing TFs. Make a note of the alog entry number.
3. Open the MEDM screen for the suspension.
4. Turn the Measurement Status (QUAD/BSFM/HxTS) or Commissioning (HAUX) switch ON.
5. Check that the TEST FILTERS for M0 (QUAD) or M1 (all others) are all ON (green).
6. Check that DAMP FILTERS for M0 (QUAD) or M1 (all others) are all in the desired state (ON for damped, OFF for undamped).
7. For QUAD, check the RO TEST FILTERS and DAMP FILTERS as well (these are on a subscreen accessed by a button).
8. Check that the Master Switch is ON.
9. Check that the M0 (QUAD) or M1 (all others) watchdog is not tripped, and reset it if necessary.
10. For QUAD, check that the R0 watchdog is not tripped, and reset it if necessary.
11. Check that the USER DACKILL watchdog is not tripped, and reset it if necessary.
12. Check that the IOP watchdog is not tripped, and reset it if necessary.
13. Open DTT. For QUAD you will normally want to get TFs for both M0 and R0, in which case it is convenient to open two instances of DTT and work in parallel.
\$ diaggui \&
14. Choose Open from the File menu and navigate to the Dat a directory for the suspension and sensor-actuator group: ^/trunk/\$\{susType\}/\$\{ifo\}/\$\{optic\}/SAG\$\{sag\}/Data, e.g.,
^/trunk/QUAD/H1/ITMy/SAGM0/Data for M0 of the H1 ITMy.
15. Identify the measurement template files, which will have names like yyyy-mmdd_hhmm_H1SUSITMY_M0_*_WhiteNoise.xml for * $=\mathrm{L}, \mathrm{P}, \mathrm{R}, \mathrm{T}, \mathrm{V}$ and Y . (If there aren't any templates, create them by copying a set for another suspension of the same type and doing a search and replace on the IFO, suspension, and sensor-actuator group names with a text editor.)
16. For each of these files, in any convenient order, repeat the following steps. (If time is not pressing, then alphabetical order is easiest: LPRTVY. For a quick go/no-go decision when a mechanical issue is suspected, the most informative order is something like PRVYLT.)
17. Open the template and immediately resave it with the yyyy etc replaced by the year, month, date and start time, e.g., 2012-12-10_1600_H1SUSITMY_M0_L_WhiteNoise.xml. (The start time need only be approximate, e.g., 1200, and should be the same for all files in a group.)
18. Click Start.
19. Check the MEDM screen to see that excitation is appearing (as changing numbers) at the output to the test filters and is making its way across the screen past the Master Switch and watchdogs all the way to the output.
20. When the measurement is done, choose File->Save.
21. Choose File->Export.
22. In the resulting dialog, choose Transfer Function from the Data Type popup menu.
23. In the Column Selection area, for the first 12 columns (extending over pages 0 to 4,5 to 9 and 10 to 14) enable the checkbox and set the A popup to the excitation channel, H1:SUS-ITMY_M0_TEST_L_EXC or the like.
24. In the B popups, select the OSEMINF channels (H1:SUS-ITMY_OSEMINF_F1_OUT_DQ or the like) followed by the DAMP channels (H1: SUS-ITMY_DAMP_L_IN1_DQ or the like). For QUAD AND BSFM, the OSEMINF channels should be in the order F1, F2, F3, LF, RT and SD, and for HxTS, T1, T2, T3, LF, RT and SD. The DAMP channel order should be L, T, V, R, P and Y. For OMCS it is TBD. For HAUX it is UL, LL, UR, LR, L, P and Y. (Unfortunately, DTT doesn't encode export settings in its files, so it's not possible to have all this set up in the templates. If you reuse the same instance of DTT for all templates
in a set, D'I'I will usually update the A channels appropriately and remember the B channels. However for this to happen it is crucial to visit all three pages (0 to 4,5 to 9 and 10 to 14) in the Column Selection area. If you don't force the second and third pages to be displayed, those channels will not be exported and the plotting will fail.) When everything is set up, press Export.
25. Save the exported data in the same Data directory as the raw data, with the same name file name except for _tf.txt at the end instead of . xml. (For the first file in a set it's most convenient and least error-prone to use the "Files of type:" popup to show . xml files, then click on the data file to copy its name into the text field where it can be edited as above. For subsequent files it's easier to leave the "Files of type:" set to . txt then click on the first text file and edit the _ L_{-}part of the name to match the current excitation DOF.)
26. For the QUAD, repeat the above steps for the other chain (R0 or M0).
27. When all TFs have been taken and exported, set the MEASUREMENT STATUS or COMMISSIONING switches back to OFF, and restore the suspension to the working state, e.g., by reenabling damping.
28. If it's not convenient to proceed immediately to generating plots, add a comment to the alog entry from above announcing that the suspension is free and that plots are pending. Mention the location of the data files in the SVN, e.g., $\wedge / t r u n k / Q U A D / H 1 / I T M Y / S A G M 0 / 2012-12-$ 10_1600_H1SUSITMY_M0_*_WhiteNoise.xml.

Typical Measurement, Excitation and Result panes in DTT:

						-avg $=10$		ew=0.0117897	
Aovet	zoorr	Aclve	Now	Oppons	Import.	Expor.	Reframe.	Calleraion.	Fint.
Start		Pause			Ressme			Abort	
				seper	Fsum mos				

Typical Export Dialog settings (3 pages for columns 1-4, 5-9 ad 10-14)

Plotting - Stage 1

This stage generates a set of plots with data from just the most recent set of measurements. The plotting script for DTT data reexports the data in a more convenient form, so that in Stage 2 later, a common script can generate comparison plots involving measurements that were taken with DTT and one that were taking with Matlab.
11. Open a copy of Matlab:

```
$ matlab &
```

12. Navigate to the $\wedge /$ trunk/\$\{susType\}/Common/MatlabTools directory for the suspension type, e.g., ^/trunk/QUAD/Common/MatlabTools for QUAD.
13. In the Matlab command window, do an svn update to make sure all the software is up to date (! is used to execute shell commands from Matlab):
```
> !svn update
```

14. In the Matlab editor, open the script for Stage 1 plotting: plotquad_dtttfs.m (QUAD), plotBSFM_dtttfs.m (BSFM), plotHLTS_dtttfs.m(HLTS), plotHSTS_dtttfs.m (HSTS) etc. Identify the section near the top that looks like the following:
```
printFigs = true;
saveData = true;
ifo = 'H1'; % ['H1' 'H2' 'L1' 'M1' 'X1' 'X2']
quadID = 'ITMY'; % Optic Name or "QUAD" if on a test stand
```

```
['QUAD','ETMX','ITMY']
quadNum = ''; % Must be two digits, or empty string ['02','03','']
buildNum = ''; % Must be two digits, or empty string ['01','02']
sagLevel = 'M0'; % ['MO', 'R0', 'L1', 'L2', 'L3'] -- no damping anywhere
else!
buildType = 'wirerehang'; % ['wire','fiber','erm','thincp','wirerehang']
meas.yyyymmdd = '2013-01-25'; % e.g. 2012-04-23 for April 23rd 2012
meas.hhmm = '1330'; % e.g. 1003 for 10:03AM
meas.sensCalib = false; % true or false -- are sensors calibrated?
meas.author = 'M. Barton'; % Let us know who did all the work!
```

15. Edit the assignments to printFigs and saveData to false (or 0) to begin with. Edit the rest of the assignments to match the measurements just taken. buildType is the name of the model parameter set that will be used for model comparisons. meas. sensCalib records whether the filter in the OSEMINF block that converts from counts to $\mu \mathrm{m}$ had been enabled. (As of $1 / 28 / 13$, LHO was running with this off but LLO had enabled it for some or all suspensions.)
16. Click the green run button and check the command window for log messages that all exported files have been successfully read. A failure at this point is most likely due to not having visited all three pages in the Export dialog so that the exported file doesn't have the full complement of columns, normally 25 : frequency plus real and imaginary parts of 12 signals. If this is suspected, reopen the.$x m l$ file for the affected excitation channel and re-do the export.
17. When the script runs without errors, review the main plots, $L->L, P->P$ etc and see if any have symptoms that suggest a problem with the measurement rather than the suspension, e.g., small magnitude and high noise level as from a tripped watchdog. If so, consider rerunning the measurement for that excitation channel and re-exporting the data.
18. When any measurement issues have been fixed, edit the assignments to printFigs and saveData to true and re-run the script. This generates the same plots as before but writes them to the Results directory, sibling to the Dat a directory, e.g., ^/trunk/QUAD/H1/ITMy/SAGM0/Results for M0 of the H1 ITMy. A failure at this point probably means the Results directory does not exist, in which case it should be created.

Typical set of Stage 1 plots, for H1 ITMy:
(1)2013-01-24_H1SUSITMY_M0_ALL_TFs.pdf

1. Continue with Stage 2 Plotting on the TFs main page.

aLIGO SUS Operations Manual - Taking Spectra with Matlab

Back to Operation Manual main page

Taking damped and undamped spectra of all the raw OSEM signals and derived DOFs is a standard part of testing per G1100693 (QUAD) and Θ G1200070 (BSFM/HLTS/HSTS), as well as official testing on OMCS and the unofficial testing done on non-SUS suspensions (TMTS/HAUX/HTTS). It takes much less time than a set of transfer functions and is convenient for diagnosing gross mechanical and electrical problems.

Measurement and Initial Plotting

Before taking spectra, be sure to inform people who may be using the suspension and do an alog announcing that spectra are about to be taken. Disable any feedback or excitation other than local damping.

For each suspension type there is a Matlab script which grabs the damped and undamped time series:

- ^/trunk/QUAD/Common/MatlabTools/plotquad_spectra.m
- ^/trunk/BSFM/Common/MatlabTools/plotbsfm_spectra.m
- ^/trunk/HLTS/Common/MatlabTools/plothlts_spectra.m
- ^/trunk/HSTS/Common/MatlabTools/plothsts_spectra.m
- ^/trunk/OMCS/Common/MatlabTools/plotomcs_spectra.m
- ^/trunk/TMTS/Common/MatlabTools/plottmts_spectra.m
- ^/trunk/HAUX/Common/MatlabTools/plothaux_spectra.m
- ^/trunk/HTTS/Common/MatlabTools/plothtts_spectra.m

Before using any of these scripts it is prudent to do an SVN update of the appropriate directory, e.g.:

```
cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/Common/MatlabTools
svn up
} }
Typically the only changes will be to the configuration section described below, and of no long-
term significance, but occasionally there will be improvements to the body of the script.
Settings near the top of the appropriate script need to be edited for the particular IFO and
suspension, e.g., for QUAD:
{ {{
%% Configuration parameters
printFigs = 1; % Save PDF plots?
saveData = 1; % Save data file (*.mat)?
plotOsemComparison = 1; % If you want to plot individual osems ASD in one figure (comparing
osems/level), instead of the 38 individual figures ! It does not save the pdf though.
ifo = 'H1'; % Interferometer name ('X1','X2','L1','H1','H2')
opticID = 'ETMY'; % Optic name or "BSFM" if on a test stand
['BSFM','ETMX','ITMY','MC2']
susType = 'QUAD'; % Type of suspension ('HSTS')
meas.sensCalib = true; % true or false -- are sensors calibrated?
meas.author = 'A.P'; % Let us know who did all the work!
automatic_gps_saving = true; % true/false -> "true" if you want to automate the process
svnDir = '/ligo/svncommon/SusSVN/sus/trunk/'; % LLO and everything except LHO triple test stand
% svnDir = '/ligo3/svncommon/SusSVN/sus/trunk/'; % ONLY LHO triple test stand
% svnDir = 'C:\svn\sus\trunk\'; % SMA local working directory
resultsDirName = 'Results'; % Results directory name
figFileTag = '2014-03-29_1900'; % Output filename, use to differentiate plots of different
collections of data (date_time)
%% Measurement parameters
numAvgs = 5;
freqRes = 0.01;
measDuration = 500;
freqRange = [0.01 900];
damping_on_gps=tconvert('02/06/2014 21:23:24'); % GPS Start Time Damping ON = RES
damping_off_gps=tconvert('02/06/2014 21:23:24'); % GPS Start Time Damping OFF = REF
```

There are two modes of operation:

1. automatic_gps_saving = true turns on the damping, waits, turns off the damping, waits again and then reenables the damping and grabs the data.
2. automatic_gps_saving = false expects damping_on_gps and damping_off_gps to be the GPS times of previously identified time intervals with the damping on and off respectively.
figFileTag should be set to a date/time string in the form yyyy-mm-dd_hhmm (it is just used as a unique identifier for the data set and doesn't have to be exact).
printFigs and saveData can be set to 0 if there is any question about the validity of the data, to avoid cluttering up the SVN with broken .pdf and .mat files. The script must be run with saveData=1 before proceeding to generating comparison plots as described below.

When the data has been taken and the first-stage plots have been generated, restore the suspension to its original state and post a comment to the alog saying that data-taking is over. Then do comparison plots as described in the next section.

Comparison Plots

For each suspension type there is a Matlab script which is used to collect historical measurements and generate comparison plots:

- ^/trunk/QUAD/Common/MatlabTools/plotallquad_spectra.m
- ^/trunk/BSFM/Common/MatlabTools/plotallbsfm_spectra.m
- ^/trunk/HLTS/Common/MatlabTools/plotallhlts_spectra.m
- ^/trunk/HSTS/Common/MatlabTools/plotallhsts_spectra.m
- ^/trunk/OMCS/Common/MatlabTools/plotallomcs_spectra.m
- ^/trunk/TMTS/Common/MatlabTools/plotalltmts_spectra.m
- ^/trunk/HAUX/Common/MatlabTools/plotallhaux_spectra.m
- ^/trunk/HTTS/Common/MatlabTools/plotallhtts_spectra.m

Before using any of these scripts it is vital to do an SVN update of the appropriate directory, e.g.:

```
cd /ligo/svncommon/SusSVN/sus/trunk/QUAD/Common/MatlabTools
svn up
} }
The script contains a large array called `measList` which, as explained below, contains
historical data added by SUS personnel at both sites. If the local copy is modified while there
are independent changes that have been committed to the SVN by someone else but not downloaded
via an update, there will be SVN conflicts at the next update which will be a pain to sort out.
As with the first-stage script there is a configuration section that needs to be edited:
{ { {
%% Configuration parameters
printFigs = true;
sensorNoise = true; % Include expected Sensor noise in plots
% . . .
figFileTag = '2014-04-15_Phase3b_L1ETMY'; % Use to differentiate plots of different collections
of data
    %ifo susID measDate | Ref# |Phase| Site |Damping| ISI |Approved?|
Damp ON GPSs | Damp OFF GPSs | aLOG # | Notes
measList = {'L1','ITMY','2012-11-05_1400'; ...% | (1) | 2c | LLO | BOTH | S.S. | FAIL |
1036179387 | 1036179904 |LLO 5170 | Noisey OSEM channels present, R0-F3 and L1-UR.
    'L1','ITMY','2012-11-06_1400'; ... % | (2) | 2c | LLO | BOTH | S.S. | PASS |
1036269000 | 1036269682 |LLO 5186 | No noisey channels.
    };
useMeasts = [\begin{array}{lll}{9}&{15}&{20}\\{27}\end{array}];
```

Data for the new measurement should be added as a new line in measList. Only the first three items on each line are data visible to Matlab, but the columns in the comments should be filled in as well. In particular new lines should be added at a logical spot (keeping all measurements for a particular suspension together), and all subsequent lines should have value in
the Ref\# column incremented, so that the column as a whole is a uniformly increasing sequence from 1 to the number of entries. (This is tedious but no one has thought of a better solution.) The measDate column should be set to the date/time label that was used in the original measurement.

Set useMeasts to be a vector of Ref\# values including the index of the new data and a few other data sets that make for an interesting comparison, such as earlier measurements on the same suspension and measurements on a similar suspension (if possible from the other site).

Set figFileTag to a string like '2014-04-15_Phase3b_L1ETMY' that includes the date of the latest data, the testing phase and the suspension.

Set printFigs $=0$ to begin with until the plots look good, then rerun with printFigs $=1$.
 with the plot as an attachment, explaining the phase of testing, the choice of data sets, the colour code for the legend, and whether the data is a pass or has some particular problem.

Finally, commit all changes to the SVN. This will normally involve checking the appropriate scripts directory (^/trunk/QUAD/Common/MatlabTools/) and the top-level Data directory ($/$ /trunk/QUAD/Common/Data/). This is most easily done by going to the suspension directory, doing an svn status command, doing svn add commands to add anything that shows up as modified, and then doing an svn commit. (It's best to be moderately selective with svn add - it's possible to use the * wildcard operator with entire directories, but then large numbers of informational messages are generated for files that have already been added, making it hard to see what has successfully been freshly added.)

```
$ cd /ligo/svncommon/SusSVN/sus/trunk/QUAD
$ svn status
Common/Data/2014-04-15_0900_L1SUSETMY_R0M0L1L2_Spectra.mat
? Common/Data/allquads_2014-04-15_Phase3b_L1ETMY_ALL_Spectra_Doff.pdf
? Common/Data/allquads_2014-04-15_Phase3b_L1ETMY_ALL_Spectra_Don.pdf
M Common/MatlabTools/plotquad_spectra.m
M Common/MatlabTools/plotallquad_spectra.m
svn add Common/Data/*2014-04-15*
$ svn commit -m "New spectra data and plots"
```


aLIGO SUS Operations Manual - Operating Instructions

Back to Operation Manual main page
The front-end processes that control the suspensions are compiled from Simulink models. See the Suspensions/OpsManual/Startup page for information on (re)starting the models.

Expert-level control of the suspensions is via a large number of user-interface screens created with MEDM. See Suspensions/OpsManual/Screens for links to collections of screenshots and descriptions for controls screens for each suspension type.

Day to day operation of the suspensions will be via Guardian. See the Suspensions/OpsManual/Guardian page for background information, programming details and usage instructions.

The safe. snap file (see BURT) brings the suspension up in a safe state with the master switch off and the watchdogs tripped. By design the Guardian will not attempt to reset the watchdogs, and this must be done manually. See the Suspensions/OpsManual/Watchdogs page for instructions on resetting the watchdogs.

For troubleshooting advice, see the Suspensions/OpsManual/Troubleshooting page.

aLIGO SUS Operations Manual - Calibration

Back to Operation Manual main page
The main SUS-scope items requiring some calibration are the OSEM shadow sensors and coil/magnet actuators. (When the ESD actuators are brought into service, they may need calibration as well.) Calibration is done during installation and should not need revisiting, except for some minor improvements to the coil balancing.

OSEM Calibration

Basic calibration on the OSEMs consists of measuring the "Open Light" counts value of each OSEM shadow sensor and setting the gains and offsets in the OSEMINF block to normalize the output to ± 15000. The gains in the COILOUTF blocks should be set to compensate for the magnet signs.

See Suspensions/OpsManual/OSEMs for information and procedures.

Where a optical lever or the like is available, the actuators in a sensor-actuator group (e.g., QUAD L1) can be tuned to reduce unwanted coupling from longitudinal to pitch or yaw. See Suspensions/OpsManual/Diagonalization.

ESD Calibration

See Suspensions/OpsManual/ESD for information and procedures.

Electronics calibration

Jeff Kissel has done an extensive characterization of the electronics for all suspensions. Together with the OSEM calibration we understand the closed-loop transfer function to much better than a factor 2 . See:

- θ G1100986 Suspensions Control Design Summary Table (covers all SUS and non-SUS suspensions)
- $\Theta 1100378$ QUAD Controls Design Description
- Θ T1100479 BSFM Electronics Design
- T1000061 HAM Triple Suspension Controls Design Description (covers HLTS and HSTS)
- T1300535 OMCS Controls Design Description
- T1300537 TMTS Controls Design Description
- T1400030 HTTS Controls Design Description
- T1400029 HAUX Controls Design Description

aLIGO Operations Manual - Maintenance

Back to Operation Manual main page
Once SUS components are installed in vacuum, no routine maintenance is expected to be required. Failure of components will have to be addressed on a case-by-case basis drawing on experience from assembly and installation. Installation procedures are linked below for reference:

- Add link to SUS spares policy if possible.
- E1100290 aLIGO SUS QUAD Assembly and Installation Documentation
- E1100599 aLIGO SUS BSFM Assembly and Installation Documentation
- E1100472 aLIGO SUS HLTS Assembly and Installation Documentation
- E1100471 aLIGO SUS HSTS Assembly and Installation Documentation
- EE1300429 aLIGO SUS OMCS Assembly and Installation Documentation
- T1100304 TMS ASSEMBLY and ALIGNMENT DOCUMENTATION
- T1300029 IO HAUX Material and Assembly Documents
- E1100440 aLIGO HAM Tip-Tilt Suspension Assembly Procedure
- E1201074 Output Faraday Isolator Assembly and Alignment Procedure
- E1300056 Output Faraday Isolator Installation and Final Alignment Procedure

aLIGO Operations Manual - Storage

Back to Operation Manual main page
Once SUS components are installed in vacuum per the currently assumed scope of this document, no further storage procedures are required. Storage of H 2 components being diverted for LIGO-India will be addressed elsewhere.

Except for wires and blades, spares for H1/L1 are cleaned to Class A and packed per E960022 LIGO Clean and Bake Methods and Procedures.

Blades are cleaned as usual but then stored in a desiccant cabinet unpackaged but interleaved with Contec wipes.
Wires are stored uncleaned on the manufacturer's spool in a desiccant cabinet and then cleaned with a three-stage solvent wipe procedure immediately prior to use in clamp-wire-clamp assemblies.

aLIGO Operations Manual - Troubleshooting

Back to Operation Manual main page

Abstract

Alarms

The suspension and seismic IOP watchdogs are wired into the Alarm Handler system. If you are the operator, see the Alarms page for help on interpreting/silencing/acknowledging alarms. However if you're just trying to troubleshoot a tripped watchdog you're probably better starting with the IOP Watchdog Overview Screen below.

Overview Screens

To tell quickly whether one or more of the suspensions needs troubleshooting, the following screens are helpful (some are probably LHO specific - need to check):

- CDS Overview Screen - are the computers running
- OSEM Overview Screen - are the OSEMs giving sensible readings
- IOP Watchdog Overview Screen - are the watchdogs tripped
- Guardian Overview Screen - is the Guardian reporting a problem

CDS Overview Screen

There is an overview screen for all the computers, including those running the suspensions, which is permanently displayed on one of the wall monitors or can be summoned from the CDS popup menu in the SITEMAP. Glance at this screen every so often and confirm that all the IOP and user processes for suspensions are running normally.

OSEM Overview Screen

There is an overview screen for the top-level OSEMs of all SUS suspensions plus the TMTSs, which is permanently displayed on one of the wall monitors or can be summoned from the CDS popup menu in the SITEMAP. Glance at this screen every so often and confirm that the indicators are roughly mid-range and not waving or jittering.

- Indicators at zero can be due to OSEMs unplugged or electronics powered down.
- Indicators near max can be due to OSEMs not yet mechanically adjusted to half open light (i.e., half-maximum) output.
- Indicators at max can be due to overload in the analog electronics.
- Indicators waving can be due to air currents (if the chamber is open), people working nearby, crane activity, or ISI/HEPI excitations.
- Indicators jittering can be due to high frequency oscillations in the electronics or problems in the DAC software.

IOP Watchdog Overview Screen

There is an overview screen (below left) for all the SEI/SUS watchdogs which can be summoned from the WD popup menu in the SITEMAP. Clicking on one of the buttons for specific chambers gives an overview of that chamber (below right).

If any of the SUS IOP watchdogs, lower-level watchdogs are probably tripped as well. See the Suspensions/OpsManual/Watchdogs page for more information on resetting watchdogs.

Guardian Overview Screen

There is an overview screen for the top-level OSEMs of all SUS suspensions plus the TMTSs, which is permanently displayed on one of the wall monitors or can be summoned from the GRD popup menu in the SITEMAP. Glance at this screen every so often and confirm that none of the SUS Guardian tasks are in states other than EXEC, or reporting errors.

aLIGO SUS Operations Manual - Screens

Back to Operation Manual main page
See the MEDM page for general information on the location and editing of screens.
Each suspension type (except of course OFIS, which is purely passive and has no CDS interface) has its own page describing its MEDM control screens:

- QUAD
- BSFM
- HLTS
- HSTS
- OMCS
- HAUX
- HTTS
- TMTS
(These pages use a lot of common text fragments inlined from Suspensions/OpsManual/Boilerplate.)

aLIGO SUS Operations Manual - Alarms

Back to Operation Manual main page
Currently this page describes alarms for LHO. LLO is probably somewhat different and a section for it will need to be written.

Contents

1. aLIGO SUS Operations Manual - Alarms
2. LHO Alarms Overview
3. H1CDS_IOP_SUS_WATCHDOG 2. CDS
4. LLO Alarms Overview

LHO Alarms Overview

The alarm system monitors run on the iMac alarm0 in the operator station of the control room. Alarms can only be silenced or acknowledged from this machine, but there is an overview screen that can be accessed from any machine via the CDS->Alarm Mgr item in the SITEMAP:

Alarm handlers normally run all the time but if necessary can be started by clicking on the indicated icon in the Dock at the bottom of the screen on alarm0:
(6)

This runs an AppleScript application called ALH . app which asks the operator which handlers should be (re)started and opens a cluster of small windows all called MASTER, one for each group of alarms. Restarting the handlers is done internally by calls to scripts
/opt/rtcds/userapps/release/cds/h1/scripts/restart_*_alarm_handler.bsh
(${ }^{*}=\mathrm{ve} / \mathrm{fmcs} / \mathrm{dust} / \mathrm{iopwatch} \mathrm{cogs} / \mathrm{psl} / \mathrm{cds}$), which in turn call the EPICS alh utility (Θ alh manual) with config file /opt/rtcds/lho/h1/alh/cds/h1*.alhConfig. The two with buttons CDS and H1CDS_IOP_SUS_WATCHDOG are relevant to SUS:

If there is an alarm, there will be a beep and the corresponding button will highlight red.

H1CDS_IOP_SUS_WATCHDOG

(See the CDS Alarm handler section below for examples of alarms being silenced and acknowledged.)
Clicking on the H1CDS_IOP_SUS_WATCHDOG button brings up the SUS watchdog alarm screen. Further clicking on the front end name ((H1)SUSB123 in the example) displays further information in the pane on the right:

Clicking the G button gives guidance information in an alert window:

Currently all the alarms concern chamber-level watchdogs. For instructions on diagnosing and resetting watchdogs see the Suspensions/OpsManual/Watchdogs page.

CDS

Clicking on the CDS button brings up the alarm screen for the front end computers:


```
\squaresilenceCurrent
    Chamnel Alarm Data: <Status,Severity),\Unack Severity>
    Chamel flarm Data: <Status
Silence Forever: of
```

（1）

Clicking on the triangle next to FRONTENDS opens a view with more detail：

OOO X Alarm Handler：CDS			
Eile Action $\underline{V}_{\text {iew }}$ Setup			Help
	\square	$\text { RR FRONTENDS }\langle--->\quad(0,0,7,2,96)$	
Execution Status：Local Active Mask 〈CDATL〉：〈Cancel，Disable，noAck，noackT，noLog〉 H＝noAck 1hr timer Group Alarm Counts：（ERROR，INvaLID，MAJOR，MINOR，NOALARH） Channel Alarm Data：〈Status，Severity〉，＜Unack Severity〉 Filename：h1ods．alhConfig			\square SilenceOneHour －SilenceCurrent Silence Forever：Off ALH Beep Severity：MAJOR

The list in the pane at the left is arranged by front end computer．Clicking on the triangle next to the alarming front end （＂SUS56A＂in the example）shows more detail in the pane at the right：

Clicking on the G button next to a channel shows guidance information in an alert dialog．Most／all of the guidance for CDS alarms says to go and see CDS personnel and that is the recommendation of this Operations Manual as well：

All alarms can be temporarily or indefinitely silenced by clicking on the control in the lower right in which case the background turns pink：

OOO X Alarm Handler：CDS		
Eile Action View Setup		Help
R R CDS L R R FRONTENDS$>(0,-\cdots,->(0,0,7,2,96)$		

An individual alarm can be permanently acknowledged by clicking on the red R button (the corresponding R indicator next to it remains while the alarm is still retriggering):

LLO Alarms Overview

Needs content.

aLIGO SUS Operations Manual - Watchdogs

Back to Operation Manual main page
As of 4/20/14 at LHO, the user interface to the watchdogs for QUAD/BSFM/HxTS/OMCS/TMTS was drastically simplified, as well as some of the underlying logic. This change will be rolled out to HAUX/HTTS and LLO soon. The description below is for the new, simpler version. (It will probably change further when the forthcoming hardware watchdog is introduced.) Each suspension is protected by a master switch and two levels of watchdog, and these feed into further watchdogs for the SEI. These can be seen in the output section of the main MEDM screen for the suspension, e.g., for BS:

The master switch can simply be switched on or off at any time. The suspension watchdog feeds into the IOP watchdog, so in the case of a trip the suspension watchdog must be reset first.

The suspension watchdog screen (accessible via the WATCHDOGS button) merges what were originally separate watchdogs for each of the sensor-actuator groups (M1 and M2 for BS) plus one for the user model as a whole. However, the SAG watchdogs no longer have independent screens or independent reset buttons. Each SAG watchdog checks for excess AC band-limited RMS excitation at any of its sensors. The top-level watchdog triggers if ALL the SAG watchdogs are tripped (formerly the logic was ANY, but this proved too sensitive):

Threshold values around 8000 allow for typical excursions when the SEI group are doing ISI transfer functions.
To reset, check that none of the triggers are active (diagnose/correct as necessary) and then click RESET ALL, which resets all the SAG watchdogs and the top-level watchdog in one operation.

Last is the IOP watchdog. If triggered, this disables actuation on all user models served by the SUS IOP process, which is to say all suspensions controlled by the same front end (e.g., BS, ITMX and ITMY for H1SUSB123). The control screen for it is accessible via the IOP DACKILL button:

To reset, click RESET.
(Details past here may well be different for $L L O$ - need to check.)
Currently at LHO, none of the SUS IOP watchdogs take trigger inputs from SEI, but they have done in the past and in principle they could again, in which case any SEI triggers would have to be resolved before the SUS IOP watchdog could be reset. (Conversely, the SEI systems do normally take triggers from SUS, so SEI personnel will need the SUS watchdogs to be reset before they can continue work.) To see related watchdogs, click on the OVERVIEW button to see the IOP watchdog overview screen :

Click on the button for the chamber of interest:

The resulting screen shows all the potential triggers:

If necessary, diagnose/resolve any triggers then try clicking the RESET button in the original
SUS_CUST_IOP_DACKILL window again. If one of the triggers cannot be resolved but is known to be harmless (e.g., a SEI system cannot disturb the SUS because it is powered down or mechanically locked) the watchdog can be by passed by clicking the BYPASS button:

aLIGO SUS Operations Manual - Guardian

Back to Operation Manual main page

```
Contents
    1. aLIGO SUS Operations Manual - Guardian
        1. Operation
            1. Normal Operation
            2. Error conditions
            1. Watchdog trip
            2. Manual override
    2. Control Screens
            1. Individual Guardian Screens
            2.Guardian Overview Screen
    3. Programming
            1. Alignment Offsets
    4. Standard States
            1. General purpose states
            1. INIT State
            2. TRIPPED State
            2. Requestable States
            1. SAFE State
            2. UNDAMPED State
            3. DAMPED State
            4. ALIGNED State
            5. MISALIGNED State
            3. Transitioning States
            1. RESET State : Transitions to SAFE
            2. UNDAMPING State:Transitions to UNDAMPED
            3. DAMPING State: Transitions to DAMPED
            4. ALIGNING State:Transitions to ALIGNED
            5. MISALIGNING State : Transitions to MISALIGNED
    5. TMSX and TMSY Special States
            1. ALIGNED_TO_PD1
            2. ALIGNED_TO_PD4
            3. ALIGNING_TO_PD1 : Transitions to ALIGNED_TO_PD1
            4. ALIGNING_TO_PD4 : Transitions to ALIGNED_TO_PD4
```

Guardian is a suite of Python utilities by Jamie Rollins for managing the interferometer, including the suspensions. Each suspension has its own Guardian process, as do many other IFO subsystems, and there is a system of higher-level manager Guardians. A recent overview of the system is G1400016. Each Guardian process is a state machine that attempts to navigate to a requested state via defined state transitions. See the \#Programming section below for details of how these states and transitions are programmed.

Note: By design, the Guardian will warn if there are any tripped watchdogs but does not attempt to reset them. See Suspensions/OpsManual/Watchdogs for instructions on resetting watchdogs. As soon as the watchdogs are manually reset, Guardian detects this and resumes trying to transition to the requested state.

Operation

See the \#ControlScreens section below for more information on the Individual Guardian Screens for individual suspensions and the Guardian Overview Screen.

Normal Operation

Normal operation is very simple: summon the Guardian for the particular suspension using the ! Guardian button on the main control screen for the suspension, then just make sure that the MODE pop-up is set to EXEC and select the desired state (e.g., ALIGNED) from the REQUEST pop-up.

Error conditions

Watchdog trip

If the watchdogs trip, the Guardian will post a notification on the individual Guardian screen and transition to the TRIPPED state. It will also change two of the indicators on the summary screen to indicate that a notification has been posted (and should be read!) and that suspension is no longer in the requested state:

To fix this, investigate why the watchdogs have tripped and, if safe, reset them according to the instructions at Suspensions/OpsManual/Watchdogs. The Guardian will then automatically attempt to transition back to the REQUEST state.

Manual override

If a commissioner manually overrides one of the settings that is considered definitional of a state, especially the alignment settings that define the ALIGNED and MISALIGNED states, the Guardian will detect this and post a notification:

To fix this, either return the settings to the defined values, or, if the new settings are to be permanent, redefine the state to match. To change the alignment offsets that define the ALIGNED and MISALIGNED states, see the \#AlignmentOffsets section below. For other state redefinitions, see the \#Programming section.

Control Screens

Individual Guardian Screens

Each suspension (H1:SR2 in the examples) has a Guardian control screen that can be accessed from the ! Guardian button on the suspension main screen:

The key controls/displays are as follows:

- STATE display field - shows the current state.
- TARGET display field - shows the immediate goal state that Guardian is trying to transition to on its way to the REQUEST state.
- REQUEST pop-up menu - allows the user to select the desired state to transition to. 凹

```
MISALIGNED
SAFE
DAMPED
ALIGNED
```

- REQUEST display field (immediately above the pop-up menu) - shows the most recent request. The default set of states defined in SUS.py is as follows. Note however that states only appear in the popup if they are accessible from the current state via explicitly and implicitly defined transitions.
- INIT - state representing condition immediately after startup
- TRIPPED - state representing condition after a watchdog trip
- SAFE - a state in which watchdogs can safely be reset without initiating drive signals, with ISC input, local damping, and alignment offsets all off.
- DAMPED - damping on, alignment offsets off
- MISALIGNED - damping on, alignment offsets to parking values
- ALIGNED - damping on, alignment offsets to nominal working values
- USERMSG display - highlights yellow and displays text if any notification has been posted by the Guardian.
－The MODE popup allows the execution mode to be set．MANAGED The options are：
－LOAD－the Python code defining the states is（re）loaded
－PAUSE－do nothing
－EXEC－normal execution
－MANAGED－under the control of a higher－level Guardian process
－The LOGLEVEL popup defines the verbosity of logging． \qquad The options are
－INFO－normal
－DEBUG－？？？
－LOOP－？？？
－The STATUS display field shows the progress of attempted transitions．If the Guardian has reached the REQUEST state it shows DONE．
－The GRDMSG shows informational messages from the Guardian．
－The log button brings up a display of \log messages：

－The edit button brings the Guardian source code in an editor window（this is typically not very helpful because currently all individual suspension Guardians do nothing but inherit from the generic SUS ．py）：

```
\ominus ○ O \ SUS_SR2.py (/opt/rtcds/userapps/release/sus/common/guardian)...
File Edit View Search Tools Documents Help
```



```
    New Open Save Print Undo Redo Cut Copy Paste Find
[⿴囗⿱一一⿱\mp@code{SUS_SR2.py X}
# -*- mode: python; tab-width: 4; indent-tabs-mode: nil -*-
# import the base SUS module
from SUS import
prefix = 'SUS-SR2'
##################################################
# SVN $Id$
# $HeadURL$
##################################################
(0) Python * Tab Width: 4 * Ln 1, Col 1 INS //
```

－The graph button brings up a graphical representation of the states，with requestable states colour－coded：

Guardian Overview Screen

The GUARD_OVERVIEW screen (accessible from the GRD popup in the SITEMAP) gives key status details for all Guardians at once, via the three indicator panels and the frame colour:

The frame should normally be dark blue meaning EXEC mode. The three indicators should normally be green and have the following interpretations:

- Notification present - changes to yellow if the Guardian has posted a notification to the user.
- STATE \quad = REQUEST - changes to orange if the Guardian has not yet transitioned to the REQUEST state.
- State status - need to find out what this does

Programming

The main Guardian code lives at

/ligo/svncommon/CdsSVN/guardian

The Guardian for an individual suspension is defined in terms of states and edges (terminology from graph theory). Guardian accepts commands in the form of a request. Guardian then looks at the current state and calculates the shortest path to reach the request. The code for the current state is executed to completion. Once done, Guardian transitions to the next state in the path and executes its code. Once it reaches the requested state it holds there. States can also specify jump transitions that bypass the normal dynamics of the graph. Jump transitions are used for recovery from conditions that are in some sense undesirable (e.g. lock loss, watchdog trip, etc).

Each suspension Guardian is defined by a Python module that lives in

/opt/rtcds/userapps/release/sus/common/guardian/

There is a generic Guardian module SUS . py that is not directly usable but can be inherited from if convenient, and a bunch of suspension-specific Guardian modules, SUS_BS . py, SUS_ETMX . py etc.

Each module should import (directly or via SUS . py) the GuardState class and other useful utilities (i.e. sustools.py):

```
from guardian import GuardState
from guardian.ligopath import userapps_path
import sustools
```

Each module needs to define prefix as a string which is used as the base for constructing channel names:

```
prefix = 'SUS-MC2'
```

It should also define a list edges of (from,to) tuples of state names, representing allowed transitions:

```
edges = [
    ('DAMPED', 'ALIGNED')
]
```

IT may define request to be the name of a state that Guardian should transition to immediately on startup.

```
request = 'SAFE'
```

Each state is defined as a class inheriting from GuardState, with methods main and/or run. The main method is executed when the state is first reached; the run method is executed repeatedly thereafter. It may define the property goto=True to signal that the user can request Guardian to try to go to that state. The methods have access to self.ezca which is an object initialized with prefix that provides methods for channel access. However it is most conveniently used to initialize a sustools. Sus object which then has more suspension-specific methods:

```
class SAFE(GuardState):
    goto = True
    def main(self):
        self.optic = sustools.Sus(self.ezca)
        self.log('Turning off LOCK outputs')
        self.optic.lockOutputSwitchWrite('OFF')
        self.log('Turning off TEST outputs')
        self.optic.testOutputSwitchWrite('OFF')
        self.log('Turning off DAMP outputs')
        self.optic.dampOutputSwitchWrite('OFF')
        self.log('Ramping down ALIGN offsets')
        self.optic.alignRampWrite(rampTime)
        self.optic.alignOffsetSwitchWrite('OFF')
        self.log('Setting LOCK filter bank''s ramp time')
        self.optic.lockRampWrite(rampTime)
        # [FIXME] Add turning off locking excitation switches
        # [FIXME] Charles wrote a function to watch the yellow
        # light on the ramp. Let's watch that instead of sleeping.
        self.log('Waiting %ds for gain ramp ... ' % rampTime)
        self.timer['ramp'] = rampTime
    def run(self):
    # wait for ramp timer to complete
    if not self.timer['ramp']:
        return
    # Turn off Master Switch
    self.optic.masterSwitchWrite('OFF')
    if self.ezca.read('DACKILL_STATE') == 1:
            return True
```


Alignment Offsets

Settings that define the ALIGNED and MISALIGNED and other states with offsets are currently stored in files in BURT syntax in the userapps repository, e.g.:
/opt/rtcds/userapps/release/sus/\$\{ifo\}/burtfiles/h1sussr2_aligned_offsets.snap
(This system of settings files is being re-considered and may be partly or wholly replaced by settings stored in EPICS channels.)

Standard States

The following standard states are defined in SUS . py.

General purpose states

INIT State

This is the initial state when a Guardian process is being started. It tries to determine if the suspension was previously in the ALIGNED, or MISALIGNED states by looking at the alignment offsets that are being applied. Otherwise it brings the suspension to the

RESET state and then transitions to the "INITIAL REQUEST" state (defined for now as the ALIGNED state):

1. Is the masterswitch on/off (if off go to the INIT REQUEST)?
2. Is the suspension aligned/misaligned (if not go to the INIT REQUEST)?
3. Are the output switches of alignment offsets filter banks on (if not go to the INIT REQUEST)?
4. Are both Pitch and Yaw alignment offsets on (if not go to the INIT REQUEST)?
5. If the current offsets are equal to the aligned offsets, go to the ALIGNED state.
6. If the current offsets are equal to the misaligned offsets, go to the MISALIGNED state.
7. Otherwise go to the DAMPED state.

TRIPPED State

This state sits and waits for operator/user to reset the watchdogs. When watchdogs are reset, Guardian brings the suspension back to the REQUEST state.

Requestable States

The following states are "requestable" from the menu:

SAFE State

No signal sent to the DAC. ISC inputs off / damping output off / test filters off / masterswitch off. Constantly checks for WD trips.

UNDAMPED State

No damping engaged / "Test" filter banks on / master Switch ON. Constantly checks for WD trips

DAMPED State

Damping loops on / test filters on / master Switch ON. Constantly checks for WD trips

ALIGNED State

Suspension damped and test mass aligned with respect to its cavity. Constantly checks for WD trips \& compares the alignment offset value with the one saved last.

MISALIGNED State

Suspension damped and test mass misaligned with respect to its cavity. Constantly checks for WD trips \& compares the "mis"alignment offset value with the one saved last.

Transitioning States

The following states represent intermediate states on the way to the requested state:

RESET State : Transitions to SAFE

1. Checks if WD is tripped (if tripped, goes to TRIPPED state).
2. Ramps down ISC control signals inputs.
3. Turns off optical lever damping (for suspensions that have it).
4. Ramps down/turn off alignment offsets.
5. Turns off TEST output switches
6. Turns off DAMPING output switches.
7. Turns off the master switch after ramping down the gains.
8. Constantly checks for WD trips.

UNDAMPING State : Transitions to UNDAMPED

1. Checks if the WD is tripped (if tripped, it goes to the TRIPPED state)
2. Turns on Master Switch
3. Turns on test filters
4. Turns off damping outputs

DAMPING State : Transitions to DAMPED

This state means the suspension is damped and is sitting in its undriven equilibrium position (no alignment offsets or other DC actuation):

1. Checks if the WD is tripped (if tripped, it goes to the TRIPPED state).
2. Turns DAMPING output switches.
3. Turns off optical lever damping (for suspensions that have it).
4. Ramps down/turn off alignment offsets.
5. Ramps down ISC control signals inputs.

ALIGNING State : Transitions to ALIGNED

In this state the suspension is damped and the stored ALIGNED-state offset values are being applied:

1. Checks if the WD is tripped.
2. Turns on Master Switch (redundant since should be ON from DAMPED).
3. Turns on DAMPING output switches (redundant since should be ON from DAMPED).
4. Ramps up ISC input.
5. Loads the alignment offsets from the BURT file.
6. Ramps up/turn on alignment offsets.
7. Constantly checks if the current offsets are matching the saved ones. (If not it sends an error message on the Guardian control screen. You you all the)

MISALIGNING State : Transitions to MISALIGNED

Similar to the ALIGNING state except the values of the offsets are different, the other DC alignments are turned of, and the optical lever damping is turned off for the suspension.

TMSX and TMSY Special States

These are defined in SUS_TMS . py which inherits the standard states from SUS . py and is inherited by SUS_TMSX. py and SUS_TMSY.py.

ALIGNED _TO_PD1

Suspension damped and test mass aligned to "photodiode 1". The pd1 is located on the lower left of itm baffle. Constantly checks for WD trips and alignment values.

ALIGNED_TO_PD4

Suspension damped and test mass aligned to "photodiode 4". The pd4 is located on the upper right of itm baffle. Constantly checks for WD trips and alignment values.

ALIGNING_TO_PD1 : Transitions to ALIGNED_TO_PD1

Similar to the ALIGNING state except the values of the offsets are different

ALIGNING_TO_PD4 : Transitions to ALIGNED_TO_PD4

Similar to the ALIGNING state except the values of the offsets are different

aLIGO SUS Operations Manual - Suspensions By Chamber

Back to Operation Manual main page
This index is derived from T1100073 List of Suspensions in Chambers. Old H2 links have been moved to a subpage and have been replaced with I1 Most of the linked subpages on this wiki have not been created, but can be used if convenient for suspension-specific notes.

The DCC links are to acceptance reports. See the following DCC file cards for up-to-date lists of accepted suspensions with documentation:

Links to sections below:
QUAD \quad BSFM HLTS HSTS OMCS HAUX HTTS TMTS

Quad (ITM, ETM, CP and ERM)

- Info on Quad
- E1201044: aLIGO SUS QUAD Individual Acceptance Reports

H1

- H1:ITMx (BSC3)
- H1:ETMx (BSC9)
- H1:ITMy (BSC1)
- H1:ETMy (BSC10)

L1

- L1:ITMx (BSC3)
- L1:ETMx (BSC4)
- L1:ITMy (BSC1)
- L1:ETMy (BSC5)

I1

- I1:ITMx (BSC3)
- I1:ETMx (BSC4)
- I1:ITMy (BSC1)
- I1:ETMy (BSC5)

BSFM

Info on BSFM
© E1201045: aLIGO SUS BSFM Individual Acceptance Reports

H1

- H1:BS (BSC2) E1300712

L1

- L1:BS (BSC2) E1300699
- $\mathrm{I} 1: \mathrm{BS}(\mathrm{BSC} 2)$

HLTS (HAM Large Triple Suspension - PR3 and SR3)

Background Info on HLTS
© E1201046: aLIGO SUS HLTS Individual Acceptance Reports

H1

- H1:PR3 (HAM2)
- H1:SR3 (HAM5)

L1

- L1:PR3 (HAM2)
- L1:SR3 (HAM5)

I1

- I1:PR3 (HAM2)
- I1:SR3 (HAM5)

HSTS (HAM Small Triple Suspension - MC1, MC2, MC3, PR2, SR2, PRM and SRM)

- Info on HSTS
- Θ E1201047: aLIGO SUS HSTS Individual Acceptance Reports

H1

- H1:MC1 (HAM2)
- H1:MC3 (HAM2)
- H1:PRM (HAM2)
- H1:MC2 (HAM3)
- H1:PR2 (HAM3)
- H1:SR2 (HAM4)
- H1:SRM (HAM5)

L1

- L1:MC1 (HAM2)
- L1:MC3 (HAM2)
- L1:PRM (HAM2)
- L1:MC2 (HAM3) © E1201042
- L1:PR2 (HAM3) © E1300513
- L1:SR2 (HAM4)
- L1:SRM (HAM5)

I1

- I1:MC1 (HAM2) అE1300514
- I1:MC3 (HAM2)
- I1:PRM (HAM2) © E1300497
- I1:MC2 (HAM3)
- I1:PR2 (HAM3)
- I1:SR2 (HAM4)
- I1:SRM (HAM5)

OMCS (Output Mode Cleaner Suspension)

- Info on OMCS
- E1201048: aLIGO SUS OMCS Individual Acceptance Reports

H1

- H2:OMC (HAM6)

L1

- L1:OMC (HAM6)

I1

- I1:OMC (HAM6)

TMTS

- Background Info on TransMon
- TMTS (non-SUS suspension, but link if possible)

H1

- H1:TMSx (BSC9)
- H1:TMSy (BSC10)

L1

- L1:TMSx (BSC4)
- L1:TMSy (BSC5)

I1

- I1:TMSx (BSC4)
- I1:TMSy (BSC5)

HAUX (HAM Auxiliary Suspension)

- Info on HAUX
- HAUX (non-SUS suspension, but link if possible)

H1

- H1:IM1 (HAM2)
- H1:IM2 (HAM2)
- H1:IM3 (HAM2)
- H1:IM4 (HAM2)

L1

- L1:IM1 (HAM2)
- L1:IM2 (HAM2)
- L1:IM3 (HAM2)
- L1:IM4 (HAM2)

I1

- I1:IM1 (HAM2)
- 11:IM2 (HAM2)
- I1:IM3 (HAM2)
- I1:IM4 (HAM2)

HTTS (Tip-Tilt Suspension)

- Info on HTTS
- HTTS (non-SUS suspension, but link if possible)

H1

- H1:RM1 (HAM1)
- H1:RM2 (HAM1)
- H1:OM1 (HAM6)
- H1:OM2 (HAM6)
- H1:OM3 (HAM6)

L1

- L1:RM1 (HAM1)
- L1:RM2 (HAM1)
- L1:OM1 (HAM6)
- L1:OM2 (HAM6)
- L1:OM3 (HAM6)

I1

- I1:RM1 (HAM1)
- I1:RM2 (HAM1)
- I1:OM1 (HAM6)
- I1:OM2 (HAM6)
- I1:OM3 (HAM6)

aLIGO SUS Operations Manual - OSEM Info and Setup

Back to Operation Manual main page

```
Contents
    1. aLIGO SUS Operations Manual - OSEM Info and Setup
    1. Background
    2. Coil/Magnet Calibration
    3. Shadow Sensor Calibration
        1. Procedure
    4. References
```


Background

OSEMs are Optical Sensors, with ElectroMagnetic actuators. That is, they're a combination of a shadow sensor that detects the position of a flag via how much it blocks a light beam, and a coil which acts on a magnet.

There are two varieties of OSEMs used in the suspensions: AOSEMs ($\mathrm{A}=$ " advanced" version of iLIGO design) and BOSEMs ($\mathrm{B}=$ ="Birmingham University", accommodating a much larger magnet).

See the \#References section below for more background.

Coil/Magnet Calibration

There are a variety of different combinations of coils and magnets - see M0900034.
The force per current for each of these combinations has been calculated in $\Theta 1000164$ Calculation and measurement of the OSEM actuator sweet spot position.

For each type of suspension, the magnets are set in a standard orientation pattern which tries to give a zero net dipole moment for each mass as near as practical. See the following:

- E1000617: Quad Suspension Controls Arrangement Poster
- Θ E1100108: Beamsplitter-Folding Mirror Controls Arrangement
- E1100109: HAM Suspensions Controls Arrangement Poster (also covers OMCS)
- E1200045: TMTS Suspension Controls Arrangement Poster
- E1200215: HAM Auxiliary Suspensions Controls Arrangment

Since AOSEMs and BOSEMs are wound oppositely, the correspondence between the outward facing pole specified on the posters and COILOUTF gain is that $\mathrm{N}=+1$ for AOSEM and $\mathrm{S}=+1$ for BOSEM.
 have BOSEMs).

The coils are very consistent in manufacture, and the magnets fairly so, so it was not considered worthwhile to individually calibrate each coil/magnet pair. Information on magnet variation can be found in T1000618 Information on Magnets for BSC Suspensions.

Shadow Sensor Calibration

The response of the AOSEM and BOSEM sensors is a sigmoidal shape which has been characterized in T1200468 and - T1100455. The typical sensitivities to motion are best expressed as $1.6 \mathrm{OL} / \mathrm{mm}$ for AOSEMs and $1.220 \mathrm{OL} / \mathrm{mm}$ for BOSEMs, where OL is the "open light" output (i.e., maximum output, in whatever units). Scaling by the OL value removes most of the variation due to different LED brightnesses and PD sensitivities, leaving only a small scatter thought to be due to geometric variations. However in the software a common value of $1 / 0.7=1.429 \mathrm{OL} / \mathrm{mm}$ has been used for simplicity. The net calibration is applied in two parts:

- During installation, the OL counts at the DAC are measured for each OSEM (a typical value is $22-29 \mathrm{~K}$) and the gain fields in the OSEMINF blocks are set to $30000 / \mathrm{OL}$ and the offset fields to $-\mathrm{OL} / 2$, so as to normalize the input to a standard ± 15000.
- The FM5 filter in the OSEMINF block then applies a gain of $0.0233333(=30000 * 0.7 / 1000)$ to convert to $\mu \mathrm{m}$.

Procedure

Measuring the OL values of OSEMs and calculating the gains and offsets for the OSEMINF blocks is more part of Assembly/Installation than Operations, but operators might well be called to assist because it involves control room tools. The work is naturally a two-person job, one person in the cleanroom or vacuum chamber, and one near a workstation.

1. In the cleanroom or chamber, note the serial numbers of the OSEMs in each position for recording in ICS per the applicable assembly procedure.
2. Wind in the OSEMs to be set up until the flag entirely blocks the light beam and confirm that the ADC values are within a few counts of zero. If the OSEM runs out of range without the count going to zero, it usually means that the flag or magnet is not well centered. (This test may not be practical for the lower stage OSEMs on a quad, because adjusting the OSEMs in and out perturbs the pitch of the reaction chain.)
3. Back out the OSEMs to be set up until they are well clear of the flags. (Again this test may not be practical for the lower stage OSEMs on a quad in situ, in which case it needs to be done before they are installed.)
4. At the workstation, open Matlab and navigate to $\wedge /$ trunk/Common/MatlabTools:
```
$ matlab&
>> cd /ligo/svncommon/SusSVN/sus/trunk/Common/MatlabTools
```

5. The logoLs () function takes a 10 s average of all the OSEMs on a suspension (at the _IN1 test point of the corresponding OSEMINF block, i.e., before any gains or offsets), and prettyOSEMgains () uses this to generate a table with the gains and offsets per the above formulae. Use them as per the following example:
```
>> prettyOSEMgains('H1','PR3')
M1T1 25835 1.161 -12917
M1T2 30072 0.998 -15036
M1T3 28666 1.047 -14333
M1LF 25623 1.171 -12812
M1RT 25798 1.163 -12899
M1SD 28238 1.062 -14119
M2UL 17706 1.694 -8853
M2LL 20285 1.479 -10142
M2UR 18746 1.600 -9373
M2LR 17714 1.694 -8857
M3UL 17313 1.733 -8656
M3LL 22891 1.311 -11445
M3UR 24376 1.231 -12188
M3LR 17159 1.748 -8580
```

6. Open up the MEDM screen for the suspension, click on the appropriate OSEM INPUT FILTERS button(s) and enter the gains and offsets in the fields of the OSEMINF screens. If the OSEMs are still physically at the OL position, the outputs on the right of the OSEMINF screen should be almost exactly 15000. Ignore any rows that are invalid because the corresponding OSEMs were not fully backed out (e.g., because they had already been set up earlier).
7. In the cleanroom or chamber, wind the OSEMs in until the output from the OSEMINF screen is near zero (try for ± 600). (For vertically mounted OSEMs, aim off by the buoyancy correction from Θ T1100616 so that the value will be near zero after the suspension sags during pump-down.) It may be convenient to use the panel meter displays accessed from the light blue CENTERING buttons on the suspension main screen.
8. At the workstation, update the safe. snap file per the instructions at ../BURT.
9. Do an alog with the table from Matlab. If any rows are invalid because those OSEMs were not fully backed out be sure to delete them before posting. Mention, if true, that the gains and offsets were entered and the safe. snap updated.
10. Download the spreadsheet from © E1200343 OSEM Chart, enter the new OL values, and upload the modified spreadsheet as a new version.

References

- E1100337: Suspension Electronics Drawing Tree
- © E1000617: QUAD input/output electronics summary
- E E1100108: BSFM input/output electronics summary
- © E1100109: HxTS input/output electronics summary
- T1200468: OSEM calibration
- T1100616: Buoyancy correction (for vertically mounted OSEMs)
- Θ M0900034: Magnet sizes and types and OSEM types in Adv. LIGO suspensions
- Θ T1200015: SUS Sensor/Actuator Sign Conventions
- E1000617: Quad Suspension Controls Arrangement Poster
- E1100108: Beamsplitter-Folding Mirror Controls Arrangement Poster
- © E1100109: HAM Suspensions Controls Arrangement Poster

aLIGO SUS Operations Manual - Optical Levers

Back to Operation Manual main page

References

- © D1201069: Optical Lever System Wiring
- © D1100022: aLIGO SUS ITM and BS Wiring Diagrams (for H1/L1)
- D1001725: aLIGO SUS ITM, BS, and FM System Wiring Diagrams (for H2)
- © D1002741: aLIGO SUS ETM System Wiring Diagrams
- © D0902810: aLIGO HAM2 Suspension Controls Wiring Diagrams
- © D1000599: aLIGO HAM 3-4 Suspension Controls Wiring Diagram
- © D1002740: aLIGO SUS HAM 5-6 Wiring Diagrams

Overview

The signals from the optical levers are plumbed through SUS front ends and models and used variously by SUS and SEI models.

The quadrant signals for each optical lever come in through one of the SUS controls front ends, whereas the associated laser power monitor signal comes in through one of the SUS "aux" front ends.

The signals destined for other suspensions or SEI are sent across IPC to the model that needs them.
The following tables show the intended scheme for H1. (L1 should be identical, except with h1->11 and H1->L1.) A "*" denotes items that (as of $4 / 24 / 14$ at LHO) need to be updated to provide the necessary support.

There doesn't appear to be support for the SR3 oplev in © D1002740 (HAM5-6) or anywhere else in the SUS wiring diagrams. Jeff Kissel and Mohana Mageswaran are working on this. Some software support has appeared, presumably based on prerelease versions of D1002740.

Optical Lever Segment ADC Info

This table shows which IOP and user models read the optical lever quadrant signals. The ADC and channel numbers are for quadrant \#1, but in all cases \#2, \#3 and \#4 follow in sequence. Where an IPC channel is given, the model that ultimately uses the signals is different - see next section.

Opt Lev	Quadrant IOP Model	Quadrant User Model	Quadrant ADC Num	Quadrant \#1 Chan Num	Quadrant \#1 IPC Name	Wiring Diagram
ITMx	h1iopsusb123	h1susitmx	0	0	N/A	OD1100022
ITMy	h1iopsusb123	h1susitmy	0	4	N/A	© D1100022
ETMx	h1iopsusb9	h1 susetmx	1	12	N/A	© D1002741
ETMy	h1iopsusb10	h1susetmy	1	12	N/A	© D1002741
BS	h1iopsusb123	h1susbs	0	8	N/A	© D1100022
PR3	h1iopsus 2 b	h1susim	0	20	H1:SUS-IM_PR3_OPLEVSIG_QUAD1	© D0902810
SR3	h1iopsush56	h1 sussrm	1	12	H1:SUS- SRM_2_SR3_OPLEVSIG_QUAD1	D1002740??
HAM2	h1iopsush2b	h1susim	0	16	H1:SUS- IM_2_ISIHAM2_OPLEVSIG_QUAD1	© D0902810
HAM3	h1iopsush34	h1susmc2	1	16	H1:SUS- MC2_2_ISIHAM3_OPLEVSIG_QUAD1	© D1000599
HAM4	h1iopsush34	h1susmc2	1	20	H1:SUS- MC2_2_ISIHAM4_OPLEVSIG_QUAD1	© D1000599
リッx	ar	1.	.	\bigcirc	H1:SUS-	aninmoran

Optical Lever Client Model Info

The following models use the optical lever signals.

Opt Lev	Quadrant \#1 Client Model	Quadrant \#1 EPICS Name
ITMx	h1susitmx	H1:SUS-ITMX_L3_OPLEV_SEG1_IN1
ITMy	h1susitmy	H1:SUS-ITMY_L3_OPLEV_SEG1_IN1
ETMx	h1susetmx	H1:SUS-ETMX_L3_OPLEV_SEG1_IN1
ETMy	h1susetmy	H1:SUS-ETMY_L3_OPLEV_SEG1_IN1
BS	h1susbs	H1:SUS-BS_M3_OPLEV_SEG1_IN1
PR3	h1suspr3	H1:SUS-PR3_M3_OPLEV_SEG1_IN1
SR3	h1sussr3	H1:SUS-SR3_M3_OPLEV_SEG1_IN1
HAM2	h1isiham2	H1:ISI-HAM2_OPLEV_QUAD1_IN1
HAM3	h1isiham3	H1:ISI-HAM3_OPLEV_QUAD1_IN1
HAM4	hlisiham4	H1:ISI-HAM4_OPLEV_QUAD1_IN1
HAM5	hlisiham5	H1:ISI-HAM5_OPLEV_QUAD1_IN1

Optical Lever Power Monitor ADC Info

There is provision in the hardware for laser power monitor signals. The ADC for these signals is sometimes done by different front ends from those that read the quadrant signals (physically convenient to the laser rather than the QPD). At LHO almost none of this has been wired up in either hardware or software yet.

Opt Lev	Pwr Mon IOP Model	Pwr Mon User Model	Pwr Mon ADC Num	Pwr Mon Channel Num	Pwr Mon EPICS Name	Wiring Diagram			
ITMx	h1iopsusauxb123	h1susauxb123*	6	20	$? ?$? D1100022			
ITMy	h1iopsusauxb123	h1susauxb123*	6	21	$? ?$? D1100022			
ETMx	h1iopsusauxex	h1susauxex*	1	16	$? ?$? D1002741			
ETMy	h1iopsusauxey	h1susauxey*	1	16	$? ?$? D1002741			
BS	h1iopsusauxb123	h1susauxb123*	6	22	$? ?$? D1100022			
PR3	h1iopsusauxh2	h1susauxh2*	0	20	$? ?$? 0902810	$	$??
:---									

aLIGO SUS Operations Manual - Electrostatic Drive

Back to Operation Manual main page
See

- Θ E1300848: aLIGO SUS QUAD ESD Design Documentation

aLIGO SUS Operations Manual - Diagonalization

Back to Operation Manual main page
Add more stuff on procedures for diagonalizing actuators.

The actuator electronics, coil, and magnet chains for a given isolation stage are specified to be precise to within 5% in hardware. However, to minimize unwanted Longitudinal to angular (Pitch and Yaw) coupling, we desire a balance of better than 1%, such that the longitudinal coupling to angle is less than $0.1[\mathrm{rad} / \mathrm{m}]$ at all frequencies.

Various approaches to tweaking the coils for 4-osem isolation stages can be found in LHO aLOG 9453, and LHO alog 11393 .

For TOP masses (i.e. 6 OSEM configurations), we do not yet have a method for balancing the coils a select frequency. Instead, we measure the frequency dependent cross-coupling, say TOP L to TEST P or TOP L to TOP Y transfer functions, and design filters to stick in off-diagonal elements of the L P Y drive matrix that compensate for this frequency dependence.

aLIGO SUS Operations Manual - Damping

Back to Operation Manual main page
The damping design is described in the following documents:

- T1100232: aLIGO Damping Loop Design and Performance
- G1300537: aLIGO QUAD "Level 2" Damping Loop Design
- Θ G1300561: aLIGO BSFM "Level 2" Damping Loop Design
- G1300621: aLIGO TMTS "Level 2" Damping Loop Design
- G1400151: aLIGO HLTS "Level 2" Damping Loop Design

aLIGO SUS Ops Manual - Alignments

Back to Operation Manual main page
Each suspension has a filter block and associated screen which is used to apply DC offsets in pitch and yaw via the top level OSEMs. The QUAD main chain alignment screen is representative:

The sliders and the associated offset field allow actuation requests in microradians at the optic. (The optic tracks the top mass exactly in yaw, but in pitch the optic moves less than the optic by a factor of order 2 depending on the suspension type.)

The GAIN fields contain appropriate values to convert microradians to counts of actuation and should not normally be touched.

The slider ranges have been set to match the maximum actuation that can be applied given the drive capability of the electronics and the actuators, and the pendulum compliance.

The alignments should normally be turned on and off with the OFFSET buttons rather than the ON/OFF buttons, because this takes advantage of the ramping. A good TRAMP value that avoids triggering watchdogs is 5 seconds.

See T1400293 for information on the calculation of the default gains and offsets.

aLIGO SUS Ops Manual - Projections

Back to Operation Manual main page
This page gives information on the numbers used in various transformation matrices in the MEDM screens.

OSEM2EUL, EUL2OSEM

Information on the appropriate lever arms and averaging to use when converting OSEM signals to and from the Euler basis (e.g., F1/F2/F3/LF/RT/SD <-> L/T/V/R/P/Y for quad M0) is currently scattered about. For now see, the Matlab scripts in the SUS SVN that are used in the various suspension-specific plotting commands:

- QUAD: ^/trunk/QUAD/Common/MatlabTools/make_susquad_projections.m
- BSFM: ^/trunk/HLTS/Common/MatlabTools/make_susbsfm_projections.m
- HLTS: ^/trunk/HLTS/Common/MatlabTools/make_sushlts_projections.m
- HSTS: ^/trunk/HSTS/Common/MatlabTools/make_sushsts_projections.m
- OMCS: ^/trunk/OMCS/Common/MatlabTools/make_susomcs_projections.m
- TMTS: ^/trunk/TMTS/Common/MatlabTools/make_sustmts_projections.m
- HAUX:^/trunk/HAUX/Common/MatlabTools/make_sushaux_projections.m
- HTTS: ^/trunk/HTTS/Common/MatlabTools/make_sushtts_projections.m

Note that the appropriate EUL2OSEM matrix for the actuation is always the transpose (not inverse) of the corresponding OSEM2EUL matrix.

The same numbers have also been added to the sustools.py module in the userapps SVN:

- ^/trunk/sus/common/scripts/sustools.py

The numbers in the above were mostly derived from the top assembly drawings:

- QUAD: D0901346
- BSFM: © D1000392
- HLTS: © D070447
- HSTS: © D020700
- OMCS: © D0900295
- TMTS: © 0901880
- HAUX: © D1000120
- HTTS: © D1001396

CART2EUL

The matrices for transforming from the associated SEI coordinate system to the SUS one have been calculated by Jeff Kissel:

- Θ T1100617 Transformation Matrices Between SEI/SUS Coordinates

aLIGO SUS Operations Manual - Computing Tools

Back to Operation Manual main page

Mathematica/Matlab Models	Dynamical models of the mode shapes and frequencies of the suspensions
Matlab TF scripts	to measure and plot transfer functions
Projection info and scripts	to set OSEM2EUL and other matrices
Alignment slider info and scripts	to set OSEMALIGN gains
sustools.py	a Python module and command line tool for manipulating suspensions
Guardian	a suite of Python programs to manage the IFO generally and SUS specifically
cdscfg	Tools to set up the computing environment
BURT	Backup and restore MEDM/EPICS settings
FOTON	Edit filters
MEDM	Edit user interface screens
Simulink	Edit/build RTCDS Simulink models
ODC	Stuff on ODC
SVN Repository	SUS code/data storage and version management
DTT	Diagnostic Test Tools
dataviewer	Graph signals in real time or retrospectively
diag	All sorts of stuff, esp. monitor/clear test points
Network	Network topology and remote login information

aLIGO SUS Operations Manual - Python Tools

Back to Operation Manual main page

sustools.py

A Python module/script/opt/rtcds/userapps/release/sus/common/scripts/sustools.py provides many functions for reading and writing EPICS settings for the suspensions.

It has been written to support three modes of operation:

- As a standalone utility callable from the command-line or via the system() function in Matlab.
- As a Python module that can be imported into any Python script.
- As a Python module for use with Jamie Rollins' Guardian system.

The master copy of sustools.py lives at/opt/rtcds/userapps/release/sus/common/scripts/. The file sustoolsdev. py in the same directory is a development version which may have more advanced features but may not compile either. The shell script sustools_unittest is a set of unit tests for it (in its usage mode as a command line utility).

To make it easy for Guardian to find, there should be a symlink to it at /opt/rtcds/userapps/release/sus/common/guardian/. It uses the Python ezca module for channel access. Guardian also uses this so it should be available if Guardian has been installed, but if not it will have to be installed manually and the directory where it lives added to the shell variable \$PYTHONPATH. If run under OS X it uses /opt/rtcds/userapps/release/sus/common/scripts/fakeezca.py, which prints diagnostics but does not attempt to do actual channel access.

To make sustools.py available as a module within Python, /opt/rtcds/userapps/release/sus/common/scripts/ needs to be added to the shell variable \$PYTHONPATH before running Python, or to sys. path from within Python before importing. To make sustools. py available as a shell command, /opt/rtcds/userapps/release/sus/common/scripts/ should be added to \$PATH, and the execute bit should be set with chmod $+x$ sustools.py (in the unlikely event that it ever comes unset). These directories will probably be made a standard part of the cdscfg system before long.

Usage within a standalone Python script

The module defines a class Sus which should be instantiated with a string giving the name of a suspension to create an object for accessing that suspension:

```
import sustools
itmx = sustools.Sus('ITMX')
result = itmx.read('M0_DAMP_L_GAIN')
```

By default the interferometer name is read from the shell variable \$IFO. After initialization, methods that take channel names expect them to be specified without the initial prefix, H1: SUS-ITMX_ or the like.

Usage within a Guardian script

Guardian scripts for suspensions are structured as Python class definitions that inherit from Jamie's base class GuardState. In this usage, the Sus class should instead be initialized with the ezca object:

```
from guardian import GuardState
import sustools
class SAFE(GuardState):
    goto = True
    def main(self):
        self.optic = sustools.Sus(ezca)
        self.optic.dampOutputSwitchWrite('OFF')
```

 -••

Usage as a command-line tool

As a shell tool, it takes one positional argument, which represents a command and is typically the name of one of the methods of the Sus class object. (To be invoked from the command line, a method needs to be declared in one the lists with names like callableGlobals, callableSusFunctions etc in the sustools.py code.) Arguments to the method are supplied as switches. It's not required but saves accidents to put the command argument first, lest it get eaten by one of the switches that accept multiple arguments.

Switch	example	meaning
- 0	-o ITMX	optic - required for nearly all commands
-i	-i H1	ifo - defaults to value of shell variable IFO
-1	-1 M0 R0	level (SAG) - defaults to [] meaning all
- C	-c F1 F2 F3	(input) channel (or DOF) - defaults to [] meaning all
- C	-C L T V	output channel (or DOF), for matrix blocks
-f	-f 135	filters (in cdsFilt blocks)
-e	-e	enable (a switch or filter)
-d	-d	disable (a switch or filter)
-n	-n	no change (a switch or filer)
-v	-v 1.0	value
- a	-a 1.02 .03 .0	array of values
-k	k QUAD M0 damp	key - list of dictionary keys for data lookup commands
-s	-s _EXC	suffix to be appended by commands that return PV lists)
-m	-m	Matlab friendly output (everything as nested cell arrays)
-x	-x "2+2"	execute arbitrary Python code before main command
-X	-x "2+2"	execute arbitrary Python code after main command; result will be in result
-b	-b	bare - leave off the H1: SUS-ITMX_ or similar prefix in PV list commands
-B	-B	half-bare - leave off the H1: SUS - but include the ITMX_ in PV list commands
verbose	--verbose	enable debugging output

Examples:

Print the data structure susData which has the reference information about different suspension types:

```
controls@opsws1:scripts $ ./sustools.py susData
{'TMTSR': {'levelorder': ['M1'], 'levels': {'M1': {'osemConfig': {'magnet': {'diameter': 10,
'length': 10, 'material': 'NdFeB', 'force': 1.694},
```

...

Return the suspension type of an ITMx

```
controls@opsws1:scripts $ ./sustools.py suspensionType -o ITMx
QUAD
```

Return DAMP block channels for ITMx:

```
controls@opsws:scripts $ ./sustools.py dampPvs -o ITMx
['H1:SUS-ITMX_M0_DAMP_L', 'H1:SUS-ITMX_MO_DAMP_T', 'H1:SUS-ITMX_MO_DAMP_V', 'H1:SUS-
ITMX_MO_DAMP_R', 'H1:SUS-ITMX_MO_DAMP_P', 'H1:SUS-ITMX_MO_DAMP_Y', 'H1:SUS-ITMX_RO_DAMP_L',
'H1:SUS-ITMX_R0_DAMP_T', 'H1:SUS-ITMX_RO_DAMP_V', 'H1:SUS-ITMX_R0_DAMP_R', 'H1:SUS-
ITMX_R0_DAMP_P', 'H1:SUS-ITMX_R0_DAMP_Y']
```

Return DAMP block channels for just level M0 and DOFs L, P and Y of ITMx:

```
controls@opsws1:scripts 0$ ./sustools.py dampPvs -o ITMx -l M0 -c L P Y
['H1:SUS-ITMX_M0_DAMP_L', 'H1:SUS-ITMX_M0_DAMP_P', 'H1:SUS-ITMX_M0_DAMP_Y']
```

Return DAMP block channels for ITMx with no H1 : SUS-ITMX_ prefix but a _EXC suffix:

```
controls@opsws1:scripts $ ./sustools.py dampPvs -o ITMx -b -s _EXC
['MO_DAMP_L_EXC', 'MO_DAMP_T_EXC', 'MO_DAMP_V_EXC', 'MO_DAMP_R_EXC', 'MO_DAMP_P_EXC',
'MO_DAMP_Y_EXC', 'RO_DAMP_L_EXC', 'RO_DAMP_T_EXC', 'RO_DAMP_V_EXC', 'RO_DAMP_R_EXC',
'R0_DAMP_P_EXC', 'R0_DAMP_Y_EXC']
```

Return "witness" channels (from DAMP and WIT blocks) for ITMx with a _DQ suffix in Matlab-friendly format:

```
controls@opsws1:scripts $ ./sustools.py witPvs -o ITMx -m -s _DQ
{'H1:SUS-ITMX_M0_DAMP_L_IN1_DQ' 'H1:SUS-ITMX_M0_DAMP_T_IN1_DQ' 'H1:SUS-ITMX_M0_DAMP_V_IN1_DQ'
'H1:SUS-ITMX_M0_DAMP_R_IN1_DQ' 'H1:SUS-ITMX_M0_DAMP_P_IN1_DQ' 'H1:SUS-ITMX_M0_DAMP_Y_IN1_DQ'
'H1:SUS-ITMX_R0_DAMP_L_IN1_DQ' 'H1:SUS-ITMX_R0_DAMP_T_IN1_DQ' 'H1:SUS-ITMX_R0_DAMP_V_IN1_DQ'
'H1:SUS-ITMX_R0_DAMP_R_IN1_DQ' 'H1:SUS-ITMX_R0_DAMP_P_IN1_DQ' 'H1:SUS-ITMX_R0_DAMP_Y_IN1_DQ'
'H1:SUS-ITMX_L1_WIT_L_DQ' 'H1:SUS-ITMX_L1_WIT_P_DQ' 'H1:SUS-ITMX_L1_WIT_Y_DQ' 'H1:SUS-
ITMX_L2_WIT_L_DQ' 'H1:SUS-ITMX_L2_WIT_P_DQ' 'H1:SUS-ITMX_L2_WIT_Y_DQ'}
```


aLIGO SUS Operations Manual - Info on cdscfg utilities

Back to Operation Manual main page
The directory /ligo/cdscfg contains utilities to set up a standard environment in several shells and programming environments including bash, csh, Perl and TCL. These are documented further in T1000379

Site/IFO Values

The directories /ligo/cdscfg/site and /ligo/cdscfg/ifo (on some of the front ends it is /opt/cdscfg/site etc) should each contain single files whose names specify the site and interferometer according to the following table:

Location	$\$\{$ site $\}$	$\$\{$ ifo $\}$
Caltech -40 m	cit	c 1
GEO	geo	g 1
LHO Interferometers	lho	h1
	lho	h2
LLO Interferometer	llo	11
MIT - LASTI	mit	m1
Stanford - Engr. Test Facility	stn	s1
Scratch test stands	tst	x 0
LHO Test Stands	tst	x 1
LLO Test Stands	tst	x 2
Caltech Test Stands	tst	x 3

Shell Variables

cdscfg makes available the following shell variables which should be used in scripts.

Variable	Definition
SCRIPTDIR	Directory for IFO scripts
MEDMDIR	Top-level directory for MEDM screens
TARGETDIR	Top-level directory for front-end executables
CHANSDIR	Top-level directory for filters, channel lists
SYSBIN	PATH to system executables
SYSLIB	LD_LIBRARY_PATH to system libraries
EPICSBIN	PATH to EPICS executables
EPICSLIB	LD_LIBRARY_PATH to EPICS libraries
GDSDIR	Top-level GDS directory
GDSBIN	PATH for GDS executables
GDSLIB	LD_LIBRARY_PATH to GDS libraries
MINPATH	Minimal PATH (PATH is set to this)
MINLIB	Minimal LD_LIBRARY_PATH (LD_LIBRARY_PATH is set to this)
MA TDIR	Top-level MATLAB directory
LIGONDSIP	local NDS server for ifo
SITE	LIGO site (upper-case)

site	ligo site (lower-case)
IFO	IFO label (upper-case)
ifo	ifo label (lower-case)
IFOLET	IFO letter from label (upper-case)
IFONUM	IFO number from label
ASC, GDS, HPI, IOO, IMC, ISC, ISI, LSC, OMC, PEM, PSL, SEI, SUS, SYS, TCS, VE	IFO-specific channel prefix for EPICS (i.e. L1:ASC)

aLIGO SUS Operation Manual - Info on BURT

Back to Operation Manual main page

```
Contents
    1. aLIGO SUS Operation Manual - Info on BURT
    1. Background
        1. Directory structure
    2. Saving snapshots
        1. Updating a safe.snap file via Matlab
        2. Creating a snapshot manually
    3. Restoring from snapshots
        1. Restoring to a snap.snap file with the GDS_TP screen
        2. Restoring from an arbitrary saved state with the BURT GUI
        3. Restoring from an hourly backup
```


Background

BURT is a tool for backing up and restoring some or all of the EPICS state of one or more models. There is a GUI interface, burtgooey which invokes two command line tools, burtwb and burtrb. The burtrb tool needs a BURT request file (.req) specifying a list of channels to be backed up and generates a BURT snapshot file (. snap) containing a list of channel names and saved values. The bur twb tool then loads the values back into the model. Each model should have a autoBurt.req file specifying a default list of channels to be backed up (not all will be of interest). A background task backs up all models according to their autoBurt . req files at regular intervals (currently hourly), but additional snapshots can be taken manually. The kill scripts which shut down models in an orderly fashion (e.g., killh1susmc2 for $\mathrm{H} 1: \mathrm{MC} 2$) do a backup first. (Startup scripts, e.g., starth1susmc2 for H1:MC2, invoke the corresponding kill script first and thus also trigger a backup.)

Each model should have a safe. snap file representing a safe state in which the suspension or other system is least likely to be a danger to itself or the rest of the system. Each model is automatically restored to the safe. snap state after a reboot of the front-end computer. The "safe" state is currently defined as having the damping filters ON but the master switch and most other sources of excitation OFF.

The Guardian system will use additional files similar to safe. snap to define standard states. The lock. snap files define the desired state for locking the cavity of which the suspension is a part, with the damping, master switch, alignment offsets and locking filters all on. Need to check this!!!

Directory structure

Many BURT related utilities put or expect to find BURT-related files at

```
/opt/rtcds/${site}/${ifo}/target/,e.g.,/opt/rtcds/lho/h1/target/.
```

These are organized by the name of the Simulink model controlling the suspension:
/opt/rtcds/\$\{site\}/\$\{ifo\}/target/\$\{model\}/\$\{model\}epics/, e.g., for H1:MC2, /opt/rtcds/lho/h1/target/h1susmc2/h1susmc2epics/.

The autoBurt.req file is
/opt/rtcds/\$\{site\}/\$\{ifo\}/target/\$\{model\}/\$\{model\}epics/autoBurt.req, e.g. for H1:MC2, /opt/rtcds/lho/h1/target/h1susmc2/h1susmc2epics/autoBurt.req.

The safe. snap file used when a model is started is

```
/opt/rtcds/${site}/${ifo}/target/${model}/${model}epics/burt/safe.snap e.g., for
``` H1:MC2, /opt/rtcds/lho/h1/target/h1susmc2/h1susmc2epics/burt/safe.snap.

However by convention, all safe. snap files are now symbolic links into the SVN-controlled area at /opt/rtcds/userapps/release/sus/\$\{ifo\}/burtfiles/, e.g,

Because BURT (burtgooey etc) is not smart enough to follow a symbolic link and write to the location pointed to (rather, it replaces the link with a plain data file), it is important always to give it a explicit path into the userapps area so as not to break the link.

Snapshot files generated by kill scripts are at
/opt/rtcds/\$\{site\}/\$\{ifo\}/target/\$\{model\}/\$\{model\}epics/burt, e.g., for H1:MC2, /opt/rtcds/lho/h1/target/h1susmc2/h1susmc2epics/burt/.
with names like h1susmc2_burt_121204_124643.snap (i.e., with a yymmdd_hhmmss date/time stamp).
Hourly backups live at/ligo/cds/\$\{site\}/\$\{ifo\}/burt organized by year, month, day, time, and model, e.g., /ligo/cds/lho/h1/burt/2013/01/04/09:00/h1susmc2epics.snap.

\section*{Saving snapshots}

The following sections explain several different tools for making snapshots.

\section*{Updating a safe.snap file via Matlab}

There is a Matlab function save_safe_snap() to make new safe. snap files conveniently. (Currently there is no equivalent save_lock_snap (), but stay tuned.) It saves the current state of a suspension, puts it into the safe state, saves the state again with the appropriate name in the userapps working copy area, restores the original state and prints an svn command that can be used to commit the new file to the userapps repository.
1. Run Matlab and navigate to the `^trunk/Common/MatlabTools directory.
```

\$ matlab\&
> cd /ligo/svncommon/SusSVN/sus/trunk/Common/MatlabTools

```
2. Invoke save_safe_snap() with the desired ifo and suspension.
```

> save_safe_snap('H1','ITMY')

```
3. Copy and paste the svn command that is printed by the function and paste it into the Matlab window. (Note the use of ! to execute shell commands within Matlab - omit it if you prefer to use a regular terminal window.)
```

> !svn commit -m "New safe.snap file for H1:ITMY"
/opt/rtcds/userapps/release/sus/h1/burtfiles/h1susitmy_safe.snap

```

\section*{Creating a snapshot manually}
1. Put the suspension in the desired state. For safe . snap files, check the following:
- [DAMP] filter outputs should be ON.
- [MASTER_SWITCH] should be OFF.
- [TEST] filter outputs should be OFF.
- [LOCK] filter outputs should be OFF.
- [OPTICALIGN] filter outputs should be OFF.

For lock. snap files check the following [Need to check this!]:
- [DAMP] filter outputs should be ON.
- [MASTER_SWITCH] should be ON.
- [TEST] filter outputs should be OFF.
- [LOCK] filter outputs should be ???.
- [OPTICALIGN] filter outputs should be ON.
2. Open burtgooey in the command window:
```

burtgooey \&

```
3. Click [Backup]. In the new window, click [Request Files]. The Request File Selector dialog appears.
4. Navigate to the /opt/rtcds/\$\{site\}/\$\{ifo\}/target/ area for your site and ifo, and go down two levale to lneate the autnRurt ran file forvour cimencinn a or
/opt/rtcds/lho/h1/target/h1susmc2/h1susmc2epics/for H1 MC2. Click on autoBurt . req, then [OK] and [Cancel] (the UI allows for adding more than one file, hence the need for [Cancel]).
5. In the [Snapshot Filename] field, enter in THE ENTIRE PATH and desired filename for the snapshot. For safe. snap and lock. snap files, this should be in the part of the userapps directory containing the suspension's individual safe. snap file, e.g.,
/opt/rtcds/userapps/release/sus/h1/burtfiles/h1susmc2_safe.snap.

6. Click the [Backup] then the [Done] buttons.
7. If the snapshot is in the userapps SVN directory sure to commit the newly-written file:
```

\$ cd /opt/rtcds/userapps/release/sus/h1/burtfiles/
\$ svn commit -m "New safe.snap for MC2"

```

\section*{Restoring from snapshots}

\section*{Restoring to a snap.snap file with the GDS_TP screen}
1. Open the SITEMAP.
2. Open the screen for the suspension.
3. Click on the button which opens the GDS TP screen for the user model, e.g., for H1:MC2, [H1SUSMC2 GDS TP].
4. Click on the [BURT] button.

\section*{Restoring from an arbitrary saved state with the BURT GUI}
1. Open burtgooey in the command window:
```

\$ burtgooey \&

```
2. Click on [Restore]. The Restore window appears.
3. Click on [Snapshot Files ...]. The Snapshot File Selector dialog appears.
4. Navigate to the directory with the backup file
- For kill script backups, navigate to /opt/rtcds/\$\{site\}/\$\{ifo\}/target/\$\{model\}/\$\{model\}epics/burt/e.g., for H1 MC2, /opt/rtcds/lho/h1/target/h1susmc2/h1susmc2epics/burt/.
- For hourly backups, navigate to /ligo/cds/\$\{site\}/\$\{ifo\}/burt/\$\{YYYY\}/\$\{MM\}/\$\{DD\}/\$\{hh\}:\{mm\}/
5. Identify and a select a file from a known good time, then click [OK] and [Cancel] (the UI allows for adding more than one file, hence the need for [Cancel]).
- Kill script snapshots have a date/time in yymmdd_hhmmss format at the end of their name, e.g.,
```

h1susmc2_burt_121204_124643.snap.

```
- Hourly backups are called \$\{model\}epics. snap, e.g, for H1:MC2, h1susmcsepics. snap.
6. Check that the file selected in the previous step is the only one in the list. If not clear unwanted files from the list with [Remove Selected].
7. Click [Restore]. After a few seconds the indicator immediately to the right should turn green and display "OK". If there is a problem (the indicator turns red and says "Not OK"), in which clear the file from the list and choose a better one.

\section*{Restoring from an hourly backup}

The bur trestore utility is a convenient way of restoring to an hourly backup. It takes the hourly snapshot file name for a particular model (i.e., the name of the model plus "epics") and as many of time, day, month and year as are necessary:
```

\$ burtrestore h1susmc2epics 09:00
\$ burtrestore h1susmc2epics 09:00 02 % restore to 9 o'clock on the 2nd of this month
\$ burtrestore h1susmc2epics 09:00 02 01 % restore to 9 o'clock on the 2nd of January this
year
\$ burtrestore h1susmc2epics 09:00 02 01 2012 % restore to 9 o'clock on 1/2/12

```

\section*{aLIGO SUS Ops Manual - Info on Foton and filter files}

Back to Operation Manual main page
The CDSFilt part can used in a model to represent a bank of ten filters. When the model is compiled and run, filter definitions for all the CDSFilt blocks are looked for in /opt/rtcds/\$\{site\}/\$\{ifo\}/chans/\$\{MODEL\}.txt, e.g., /opt/rtcds/lho/h1/chans/H1SUSMC2.txt.

Currently there is no consistent system for the use of symbolic links. Some of the . txt files are symlinks to files of the same name in /opt/rtcds/release/sus/\$\{ifo\}/filterfiles/, whereas others are plain files.

Foton follows symbolic links consistently, so there should be no problems with wiping out a link in the process of editing it.

\title{
Information on MEDM screens for Suspensions
}

Back to Operation Manual main page
MEDM is a system for creating user interface screens that can display and set EPICS channels. It provides for many standard UI elements including read-only and read-write text fields, dials, sliders, buttons, etc. See the © MEDM documentation for detailed info. Screens are defined by text files with extension . adl. The medm program allows screens to be edited in a GUI which is approximately WYSIWYG (what-you-see-is-what-you-get). (However due to limited support for cut and paste, some changes are more easily made with a plain text editor such as gedit.)

MEDM supports generic screens, which are customized on the fly by arguments passed in by the screen which invokes them. See [[\#CallingConventions]|Calling Conventions] below for information on the recommended argument list for SUS screens. The medm main window has an Execute button which is meant to make a newly created/edited screen live and start it displaying EPICS data. However because of the extensive use of generic screens, it is rarely much use. Rather it is necessary to start at the so-called SITEMAP screen for a site in a separate, execute-only instance of medm and click through to the screen being edited. See below.

\section*{Screens of Importance}

\section*{SITEMAP}

The SITEMAP is the master MEDM screen for an entire site. It can be accessed with the sitemap command, or via various GUI shortcuts. It has a large number of buttons linking to screens for individual suspensions and other subsystems of interest.

The traditional location for the SITEMAP at/opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP. adl. The terminal command sitemap is defined to open the screen at that location. However it should not be edited directly because it is a symlink to a version-controlled file at
/opt/rtcds/userapps/release/cds/\$\{ifo\}/medm/SITEMAP.adl.
The version-controlled copy should only be edited with extreme care and following consultation with CDS personnel. Most other screens cannot usefully be opened except directly or indirectly from the SITEMAP, because they rely on macro arguments passed in, so breaking the SITEMAP breaks MEDM for everyone.

As of 4/4/13 at \(\Theta\) LLO and 4/30/13 at \(\Theta\) LHO, most of the macro arguments for SUS screens were offloaded from the SITEMAP.adl file to separate per-suspension files (see below). (However the location of those files is still specified in the SITEMAP.)

For more, see \(\Theta\) HowToEditTheSitemapMedmScreen

\section*{Custom Screens}

Most SUS MEDM screens are hand-made custom ones which are generic to all suspensions of the same type (QUAD/BSFM/etc) and are particularized to an individual suspension by macro arguments. The common screens for most suspension types live at/opt/rtcds/userapps/release/sus/common/medm/ in subdirectories quad, bsfm, hxts, omcs, tmts and haux.

Tip-Tilts (HTTS) are owned by ASC and files for them live at /opt/rtcds/userapps/release/asc/common/medm/asctt (note: asc).

HSTS and HLTS are similar enough to be handled by a single set of "HXTS" screens.
The macro files live in the top-level directory/opt/rtcds/userapps/trunk/sus/common/medm and have names of the form sus\$\{susid\}_overview_macro.txt, e.g., susetmx_overview_macro.txt.
```

Automatically Generated Screens (especially *_GDS_TP and *_IOP_TP)
When a model is compiled, a large number of MEDM screens are automatically generated by RCG and placed in directories
e.g.,

```

Most of the custom screens were created originally by cutting and pasting elements from the automatically generated screens into more convenient arrangements.

Of the automatically generated screens about the only one that is normally used as-is is the GDS_TP screen, which gives an overview of housekeeping info like the CPU ID of the computer running the model, the loop time, the GPS time (as reported by the model), the ADC, DAC and test point status, etc:
/opt/rtcds/\$\{site\}/\$\{ifo\}/medm/\$\{site\}sus\$\{susid\}/\$\{SITE\}SUS\$\{SUSID\}_GDS_TP.adl
/opt/rtcds/lho/h1/medm/h1susmc2/H1SUSMC2_GDS_TP.adl
The IOP_TP screen gives similar information for the IOP process running on the same computer, and can be found in the automatically generated screens for the IOP model, e.g.,
/opt/rtcds/lho/h1/medm/h1iopsush34/H1IOPSUSH34_GDS_TP.adl for h1susmc2.
See the [Detailed Overview] link on the SITEMAP for info on which IOP model corresponds to which suspension model.

\section*{Calling Conventions}

An MEDM screen can allow for the opening of a second one by having a "Related Display" button (or a popup menu of them). In the dialog that allows setting the properties of the button/popup, there are fields "Display File" and "Arguments". These show up in the underlying adl file as a pair of lines that look like
```

name="\$(USERAPPS)/sus/common/medm/hxts/SUS_CUST_HXTS_MONITOR_OVERVIEW.adl"
args="% (read
$(USERAPPS)/sus/common/medm/susmc1_overview_macro.txt),USERAPPS=$(USERAPPS),SITE=$(SITE),si
te=$(site), IFO=$(IFO),ifo=$(ifo)"

```

Note:
- Here and in the sections below, we use the text-editor view.
- The \(\$\) (macro) syntax represents substitution of the value of the macro variable macro.
- The macro=value syntax represents macro values being passed to a related screen.
- The related screen inherits no macros by default, and any that need to be passed unchanged need to be specified explicitly with IFO=\$ (IFO) or the like.
- The macro names and values are case sensitive, and often come in pairs with different capitalization, e.g., IFO=H1 and ifo=h1.
- \$(USERAPPS) is a macro defined as the path to the release section of the checkout of the cds_user_apps SVN, /opt/rtcds/userapps/release.
- Most screens are suspension-type-specific and live in the following directories (some chamber-specific screens, e.g., SUS_AUX_EX_OVERVIEW.adl live one level above):
- \$(USERAPPS)/sus/common/medm/quad
- \$(USERAPPS)/sus/common/medm/bsfm
- \$(USERAPPS)/sus/common/medm/hxts
- \$(USERAPPS)/sus/common/medm/omcs
- \$(USERAPPS)/sus/common/medm/tmts
- \$(USERAPPS)/sus/common/medm/haux
- \$(USERAPPS)/asc/common/medm/asctt (note: asc)
- Most screens are generic to a whole suspension type and are particularized for individual suspensions via a combination of macro text files and macros=value.
- The \% (read ...) syntax in the args=". . ." line reads argument values from a text file.
- The macro files live at:
- \$(USERAPPS)/sus/common/medm/ for SUS except TipTilt
- \$(USERAPPS)/asc/common/medm/for TipTilt
- The macro files have names like
- sus*_overview_macro.txt for SUS except TipTilt, *=name of suspension, e.g., itmx
- asc*_overview_macro.txt for TipTilt, *=name of suspension, e.g., rm1
- The macro files are site-independent and do not contain values for SITE/site/IF0/ifo. These need to be passed in nuministlo,

\section*{in expuciny.}
- Currently USERAPPS is the only macro guaranteed to be defined in SITEMAP.adl (it is passed in with the -macro argument of medm by the sitemap alias). SITE/site/IFO/ifo have to be given explicit values (LHO/lho/H1/h1 or the like). There is a proposal afoot to add more macros to the standard set, but since the SITEMAPs are highly site-specific in any case, it's not a big deal.

\section*{From the SITEMAP to a generic screen particularized for a single suspension}

SUS screens in the SITEMAP should be called per the following example (the main screen for ITMx):
```

name="\$(USERAPPS)/sus/common/medm/quad/SUS_CUST_QUAD_OVERVIEW.adl"
args="% (read
$(USERAPPS)/sus/common/medm/susitmx_overview_macro.txt),USERAPPS=$(USERAPPS),SITE=LHO,site=
lho, IFO=H1, ifo=h1"

```

\section*{From the SITEMAP to a summary screen for all suspensions of the same type}

Some suspension types like HAUX have summary screens showing an overview of all suspensions of that type. These have special macro text files with only the common information:
```

name="\$(USERAPPS)/sus/common/medm/haux/SUS_CUST_HAUX_OVERVIEW_all.adl"
args="% (read
$(USERAPPS)/sus/common/medm/susimall_overview_macro.txt),USERAPPS=$(USERAPPS),SITE=LHO,site
=lho, IFO=H1, ifo=h1"

```

\section*{From one generic suspension screen to another}

Copy the following example (SUS_CUST_HSTS_OVERVIEW.adl, with say, optic=mc1, is calling SUS_CUST_HXTS_MONITOR_OVERVIEW.adl):
```

name="SUS_CUST_HXTS_MONITOR_OVERVIEW.adl"
args="%(read
$(USERAPPS)/sus/common/medm/sus$(optic)_overview_macro.txt),USERAPPS=$(USERAPPS),SITE=$(SIT
E),site=$(site), IFO=$(IFO),ifo=\$(ifo)"

```

\section*{Note:}
- Since the called screen lives in the same directory, the path information can be omitted.
- In addition to the suspension-specific macros in the macro file, USERAPPS and the four standard site-specific macros need to be passed in unchanged.

\section*{From a generic suspension screen to a summary screen}

Some suspension types like HAUX have summary screens showing an overview of all suspensions of that type. These have special macro text files with only the common information:
```

name="SUS_CUST_HAUX_OVERVIEW_all.adl"
args="% (read
$(USERAPPS)/sus/common/medm/susmcl_overview_macro.txt),USERAPPS=$(USERAPPS),SITE=$(SITE),si
te=$(site), IFO=$(IFO), ifo=$(ifo)"

```

Note:
- In the usual case that the called screen lives in the same directory, the path information can be omitted.
- In addition to the suspension-specific macros in the macro file, USERAPPS and the four standard site-specific macros need to be passed in unchanged.

\title{
aLIGO SUS Operations Manual - Developing models in Simulink
}

\section*{Back to Operation Manual main page}

Software running on front end computers is written in Simulink per © T080135 AdvLigo CDS Realtime Code Generator (RCG) Application Developer's Guide.

Simulink models live in the userapps repository, which by convention is checked out as /opt/rtcds/userapps. SUS models can be found at
/opt/rtcds/userapps/release/sus/\$\{ifo\}/models, e.g,
/opt/rtcds/userapps/release/sus/h1/models (sus->asc for Tip-Tilt/HTTS)
Only certain computers (h1build, l1build etc) are configured for building models from the Simulink source - they also have the appropriate release of the \(r\) tbuild system linked to as
/opt/rtcds/\$\{site\}/\$\{ifo\}/release
and \(r\) tbuild knows to look in userapps for models.

\section*{Models currently running}

The most recent rebuild of each Simulink model is archived at one of the following locations and can be accessed from outside the CDS network with ligo.org credentials:
- \(\Theta\) Snapshots of LLO models
- \(\Theta\) Snapshots of LHO models

\section*{Building models}
1. Get advice from the CDS system manager (Dave Barker or Keith Thorne) on what other parts of the CDS system are likely to be affected. For example:
1. Restarting a SUS model may interfere with commissioning of the physical suspension, or the ISI that it is on, or the beam path that it is a part of.
2. Restarting a SUS model may interfere with SEI or ISC models that receive IPC signals from it.
3. If new channels are to be added, it may be necessary to restart the DAC, which is disruptive to people needing trend data.
2. Check with users who may be working on the suspension or may be otherwise affected and confirm that it is OK to proceed.
3. Open a work permit and get all necessary signoffs.
4. Open a fresh terminal window and \(\log\) into a build machine (h1build, l1build etc).
```

\$ ssh h1build

```
5. Go to the build directory for the most recent release of rtcds.
```

\$ cd /opt/rtcds/lho/h1/release % or the like

```
6. Do a make with the model name less . mdl:
```

\$ make h1susbs

```
7. Diagnose and correct any errors. If the model depends on IPC from other models that have not yet been compiled, compile those at this point and try again.
8. Do a make install-with the model name less .mdl:
```

\$ make install-h1susbs

```
9. Open the CDS Overview screen (SITEMAP->CDS->Overview at LHO, ??? at LLO), and identify the computer that runs the model.
10. Click on the associated button to open the GDS TP screen for the model.
11. Also open the main control screen for the suspension.
12. Let potentially affected users know that the model is about to be restarted and check that this is still OK.
13. Alert the operator that you are about to restart a model, and which one, so that the alarm generated in the next step does not come as a surprise.
14. Open a second fresh terminal window and log into the front end that is to run the model and (re)start the model from the newly compiled version.
```

\$ ssh h1susb123
\$ starth1susbs

```
15. Check that the GDS TP screen and the main MEDM screen for the suspension go white briefly and then recovers after a few tens of seconds.
16. As soon as the GDS TP screen recovers, click the BURT button.
17. Check that the line for the model on the CDS Detailed Overview screen goes white briefly and then recovers (this normally takes a few tens of seconds longer to come back than the MEDM screen for the suspension).
18. Check that the terminal window says that the safe. snap file has been loaded.
19. If the safe. snap file is not known to be up to date, open a third fresh terminal window (on one of the ops workstations) and, without logging onto anywhere else, load a more recent BURT snapshot, e.g., the most recent hourly backup:
\$ burtrestore h1susbsepics 09:00
20. If everything looks OK on the MEDM screen for the suspension, reenable the master switch, the watchdogs and the damping.
21. On the CDS Detailed Overview screen, press the [DR] button to clear any transitory errors, and debug any that persist.
22. When all looks OK, close the work permit and do an alog describing the changes.

\section*{Inserting SVN revision numbers}

Note that Simulink models can have a macro string in a text box which inserts the SVN revision number when the model is compiled, so it can be displayed later and serve as documentation of which revision was most recently compiled (this is usually the one running). See InsertingSvnVersionStringIntoSimulinkModels.

\section*{aLIGO SUS Operations Manual - Network Info}

Back to Operation Manual main page

\section*{References}
- \(\Theta\) T1000588 AdvLigo CDS Computer/Networking Rack Layouts And Real-Time Code Assignments
- \(\operatorname{T} 080135\) Real-time Code Generator (RCG) Application Developer's Guide
- T1000248 aLIGO CDS File System Directories
- © D1001173 LHO Test Stands Network Overview
- © D1001614 LLO Test Stands Network Overview
- D1200664 LIGO Hanford Observatory aLIGO CDS Networks
- D1102217 LLO CDS Network Diagram

\section*{Network layout}

The various SUS (and SEI) test stands are on individual private networks described in \(\Theta\) D1001173 for LHO, (D1001614 for LLO. These require a single stage login for most operations.

The main interferometer computer systems are on more complicated private networks which require a multi-stage login for added security.

\section*{Logging in from outside}

See separate wiki page.

\section*{H1 System}

To access the H 1 system from outside requires a two stage login. The first stage requires ligo. org credentials (albert.einstein or the like, with associated password), plus a one-time password generated by a YubiKey dongle.

To do a first-stage login from outside the private network, use the following terminal command:
```

ssh -Y albert.einstein@cdsssh.ligo-wa.caltech.edu \# your ligo.org name in place of
albert.einstein

```
when prompted supply first your ligo. org password and then the passcode from your YubiKey.
At LHO the gateway computer cdsssh is not usable for commissioning work and you need to do a second-stage login to some other computer, typically one of the control room workstations, opsws0 through opsws7. At LHO it has been usual to login as user controls using the open-secret password from \(\Theta\) https://secrets.ligo.org/secrets/, but it is now recommended to login with your ligo. org credentials.

To do a second-stage login:
```

ssh -Y albert.einstein@opsws0 \# pick opsws0 through opsws7 or another workstation

```

Note: it is important to use the -Y switch (trusted X 11 forwarding) rather than the more familiar -X (regular X11 forwarding) because the security settings cause -X to time out after 20 minutes, so that existing X11 windows (e.g., MEDM screens) continue to work but new ones can't be opened.

\section*{L1 System}

To access the L1 system from outside requires ligo. org credentials (albert. einstein or the like, with associated password), plus a one-time password generated by a YubiKey dongle. Use the following terminal command:
```

ssh -Y albert.einstein@cdsssh.ligo-la.caltech.edu \# your ligo.org name in place of
albert.einstein

```
when prompted supply tırst your \(\perp 1\) go. org password and then the passcode trom your YubiKey.
At LLO the gateway computer cdsssh is usable for commissioning work, but you can also login to another workstation with your ligo. org credentials.

Note: it is important to use the -Y switch (trusted X11 forwarding) rather than the more familiar - X (regular X11 forwarding) because the security settings cause \(-X\) to time out after 20 minutes, so that existing X 11 windows (e.g., MEDM screens) continue to work but new ones can't be opened.

\section*{X1 Test Stands (LHO)}

The X1 test stand topology is given © D1001173. However note that -v 4 is out of date:
1. The active front end is bscteststand2 with IP number 10.11.0.26. This is the number shown as reserved for hamteststand in the SUS Triple Test Stand. The old front end (bscteststand/10.11.0.25) is still on the network - don't use it by accident!
2. The "laptop", with IP number 10.11.0.96, is actually the SUS workstation in the office area.
3. Port 22 on the router now goes to the workstation. That is, if you log into bisbee.ligo-wa.caltech.edu from the outside, you get to the workstation, not the front end as formerly.
4. There is no separate workstation for the triples test stand. Rather, login as user controls3 to the quad workstation.

To \(\log\) in from outside the private network to the workstation, use the following terminal command:
```

ssh -Y controls@bisbee.ligo-wa.caltech.edu \# use controls3 for access to the triple

```

To get to the front end from the workstation or iMac, do
```

ssh -Y controls@bscteststand2

```

To get to the iMac from the workstation or front end, do
```

ssh -X cleanroom@10.11.0.95

```
or
```

ssh -X controls@10.11.0.95

```

To get to the workstation from the iMac or front end, do
```

ssh -X controls@10.11.0.96

```

\section*{X2 Test Stands (LLO)}

The X2 network topology is given in © D1001614. The various
To \(\log\) in from outside the private network to the workstation, use the following terminal command:
```

ssh -Y controls@llosus1.ligo-la.caltech.edu \# or llosus2, llosus3, llosus4

```

\section*{aLIGO SUS Operations Manual - Stuff on ODC}

Back to Operation Manual main page
- G1300270 Data Quality For aLIGO: ODC Channels

\section*{aLIGO SUS Operations Manual - DTT}

Back to Operation Manual main page
DTT is a standard CDS utility for taking time series and FFT data on EPICS channels. The underlying command line utility is diag (see Suspensions/OpsManual/diag), but the GUI version used most of the time is diaggui. DTT is one of two tools that can be used for taking transfer functions for testing (see Suspensions/OpsManual/TFs,
Suspensions/OpsManual/TFs/DTT). (It requires rather more operator involvement but much less total time than the alternative involving Matlab scripts.)

The DTT user manual is T990013.

\section*{aLIGO SUS Operations Manual - dataviewer}

Back to Operation Manual main page

\section*{aLIGO SUS Operations Manual - diag}

Back to Operation Manual main page
diag is the command-line CDS utility underlying DTT. See © T990013 for a full description.

\section*{Clearing Excitation Testpoints}

A mundane but important use for it is clearing excitation test points when AWG (or the excitation function of DTT) has become confused.

If this is suspected,
1. Open the overview screen and identify the user and IOP GDS TP screen buttons in the top right:

2. Open the user GDS TP screen (e.g., H1SUSBS GDS TP for \(\mathrm{H} 1: \mathrm{BS}\)):

3. Note the processor number (next to DAQ STATUS; 31 for H1SUSBS) and check if there are any non-zero entries in the Test Points area.
4. If there are test points active when they shouldn't be, open a terminal window and enter diag in local (-1) mode and use the tpclear command:
```

controls@opsws1:~ 0\$ diag -1
supported capabilities: testing testpoints awg
diag> tpclear * 31
test point cleared
diag> quit
EXIT KERNEL

```

The number 31 in the example should be replaced by the processor number identified in step 3 . Note that it comes after the

\footnotetext{
* meaning all test points.
}

\title{
aLIGO SUS Operators Manual - Information on SVN
}

\section*{Contents}
1. aLIGO SUS Operators Manual - Information on SVN
1. Subversion Overview
2. SUS SVN Layout

\section*{Subversion Overview}

Subversion, a.k.a. SVN, is a client/server system for version control of files, especially software but also data. See © http://subversion.apache.org/ for software and \(\theta\) http://svnbook.red-bean.com/ for documentation. Dave Barker has a nice summary on this wiki at CDSSubVersion and a shorter one on the LHO CDS wiki. The server hosts one or more repositories, each of which contains the current reference copy of a set of directories and files, as well as all past versions. Clients can "checkout" a repository or selected directories to create "working copies" on other machines, make modifications, and then "commit" changed files back to the server. They can also "update" to get files that may have changed on the server since the last checkout or update, and they can "revert" files back to the state at the last checkout.

The server is a specialized HTTP server and can in a pinch be browsed with an ordinary web browser, but advanced features such as commit and update can only be accessed with the special purpose client. The server may also support a separate websvn interface, which optimized for read-only access with a web browser and doesn't support client access at all.

The main repositories of interest to SUS are:
\begin{tabular}{|l|l|l|}
\hline Description & Client Access URL & WebSVN URL \\
\hline \begin{tabular}{l}
SUS SVN (SUS data and \\
analysis software)
\end{tabular} & \begin{tabular}{l}
Ө https://redoubt.ligo- \\
wa.caltech.edu/svn/sus
\end{tabular} & \begin{tabular}{l}
Ө https://redoubt.ligo- \\
wa.caltech.edu/websvn/listing.php? \\
repname=sus\&
\end{tabular} \\
\hline \begin{tabular}{l}
userapps (RTCDS models \\
for SUS and other clients)
\end{tabular} & \begin{tabular}{l}
ध https://redoubt.ligo- \\
wa.caltech.edu/svn/cds_user_apps
\end{tabular} & \begin{tabular}{l}
Ө https://redoubt.ligo- \\
wa.caltech.edu/websvn/listing.php? \\
repname=cds_user_apps\&
\end{tabular} \\
\hline Lots of others & \begin{tabular}{l}
Ө https://redoubt.ligo- \\
wa.caltech.edu/svn/?
\end{tabular} & Ө https://redoubt.ligo-wa.caltech.edu/websvn/? \\
\hline
\end{tabular}

The repositories hosted at redoubt. ligo-wa.caltech. edu can be accessed in read-only mode with ligo. org (albert.einstein) credentials. Users needing write access must apply to David Barker.

ON CDS machines it is standard to check these repositories out from their roots at the following locations (on GC or personal machines, the user is free to check out any subtree of interest to anywhere convenient on their local disk):
\begin{tabular}{|l|l|}
\hline SUS & /ligo/svncommon/SusSVN/sus/(or /ligo3... on the X1 triples test stand) \\
\hline userapps & /opt/rtcds/userapps/ \\
\hline
\end{tabular}

The root of the repository or the checked-out section is often denoted \(\wedge\) in documentation and commands. It is common (but not at all required) for the root to have three top-level folders branches, tags and trunk, with the main files in \(\wedge / \operatorname{trunk} /\). The tags directory is for frozen copies of part or all of trunk at key milestone points (one might create v3. 0 to define, well, v3.0), and branches is for copies that are being worked on independently and may possibly be "merged" back into the trunk. (SVN uses lazy copies, so it's very cheap in time and disk space to copy an entire directory within the repository - cost is only incurred if/when files in a branch are modified.) For the SUS repository, everything is in \(\wedge /\) trunk, but userapps makes use of tags as well as trunk. See \#sussvnlayout for further information on the SUS SVN Layout.

Note that Simulink models and other files can have a macro string in a text box which inserts the SVN revision number when the model is committed, so it can be displayed later and serve as documentation of which revision was most recently committed (this is usually the one running). See InsertingSvnVersionStringIntoSimulinkModels.

As noted above, the SUS svn is checked out at /ligo/svncommon/SusSVN/sus/, hereafter denoted \(\wedge\). The main set of files is contained in \(\wedge / t r u n k\). Within that are directories for the various suspension types along with a /Common directory. Each suspension-specific directory is organized according to first IFO, then optic, then sensor-actuator level. Some of the key directories are as follows:
trunk
```

Common
MatlabTools
DoubleModel_Production
SingleModel_Production
TripleModel_Production
SchroederPhaseTools
QUAD
Common
MatlabTools
QuadModel_Production
MathematicaModels
Data
H1
ITMX
SAGM0
Data
Results
SAGR0
Data
Results
SAGL1
Data
Results
SAGL2
Data
Results
SAGL3
Data
Results
HSTS
H1
MC1
SAGM1
etc

```

Notes:
- Many useful Matlab scripts are contained in ^/trunk/Common/MatlabTools, or in the similar areas for specific suspension types, e.g., ^/trunk/QUAD/MatlabTools, ^/trunk/BSFM/MatlabTools etc.
- The scripts for taking transfer data via Matlab (see Suspensions/OpsManual/TFs/Matlab) live at ^/trunk/Common/MatlabTools/SchroederPhaseTools.
- The Mathematica pendulum dynamics models live at ^/trunk/Common/MathematicaModels. Instructions for using them are at Suspensions/MathematicaModels. Relative to early versions of the models which used many hard-coded paths, the file structure for the models has ben optimized for use with the SVN, but is still tricky. Therefore see especially Suspensions/MathematicaModels/SVNInstructions.
- The Matlab pendulum dynamics model for the QUAD lives in the QUAD/Common area at ^/trunk/QUAD/Common/MatlabTools/QuadModel_Production/ (QUAD) whereas those for the other suspensions live in the top-level Common directory: ^/trunk/Common/MatlabTools/XxxxxxModel_Production/.
- Measured data for suspensions is filed by IFO or test stand (H1/L1/X1/X1), suspension (ITMX etc), sensor-actuator group (SAGM0/SAGR0 etc), e.g., ^/trunk/QUAD/H1/ITMX/SAGM0/Data. Semi-processed .mat file versions and nlots of raw data live in the sibling Results direstorv e o o
^/trunk/QUAD/H1/ITMX/SAGM0/Results. Some very old data is filed by build number instead of suspension name but this system is obsolete.
- Comparison plots between various suspensions of a particular type live in the Dat a directory for that type, e.g., ^/trunk/QUAD/Data.

\title{
aLIGO SUS Operations Manual - Dynamical Models in Mathematica and Matlab
}

\author{
Back to Operation Manual main page
}

\section*{Modeling Software}

There are two families of models of suspensions, in Mathematica and Matlab. These have been maintained in parallel, take parameters of almost identical names, and should give the same results to 3-4 decimal places for symmetrical suspension configurations. (In fact the Matlab uses state-space matrices originally exported from Mathematica.) Both have advantages for certain tasks. The Mathematica models the damping more accurately and can calculate thermal noise. It can also handle more types of asymmetry, such as wires of uneven length. The Matlab runs more quickly and interfaces to Simulink as well as many control room utilities in Matlab.

Within each family there are versions for quad (ETM, ITM and their reaction chains), triple (BSFM, HLTS and HSTS), dual (OMCS) dual-blade dual-mass (TMTS), single (HAUX) and single with blades (HTTS).

The Mathematica software is described in \(\Theta\) T020205. Guidance on installing and running it is at Suspensions/MathematicaModels. Cases of the models representing suspensions of interest live in the SUS SVN at \(\wedge /\) trunk/Common/MathematicaModels (\(\boldsymbol{\omega}\) web interface, \(\Theta\) SVN client interface). See also the list of links below.

The Matlab software is described in T080188. A version of most of the key models can be downloaded from the same link. Adapted versions live in the SUS SVN - see below.

\section*{Mathematica Models of Specific Suspension Types}
- QUAD: Suspensions/OpsManual/QUAD/Models
- BSFM: Suspensions/OpsManual/BSFM/Models
- HLTS: Suspensions/OpsManual/HLTS/Models
- HSTS: Suspensions/OpsManual/HSTS/Models
- OMCS: Suspensions/OpsManual/OMCS/Models
- TMTS: Suspensions/OpsManual/TMTS/Models
- HAUX: Suspensions/OpsManual/HAUX/Models
- HTTS: Suspensions/OpsManual/HTTS/Models

\section*{Matlab Models of Specific Suspension Types}

The models for the various suspensions live at the following locations in the SUS SVN (\(\Theta\) web interface, \(\Theta\) SVN client interface). For more on usage see OpsManual/MatlabModels.
- QUAD: ^/trunk/QUAD/Common/MatlabTools/QuadModel_Production
- BSFM: ^/trunk/Common/MatlabTools/TripleModel_Production
- HLTS: ^/trunk/Common/MatlabTools/TripleModel_Production
- HSTS:^/trunk/Common/MatlabTools/TripleModel_Production
- OMCS:^/trunk/Common/MatlabTools/DoubleModel_Production
- TMTS:^/trunk/Common/MatlabTools/DoubleModel_Production
- HAUX: ^/trunk/Common/MatlabTools/SingleModel_Production
- HTTS:^/trunk/Common/MatlabTools/SingleModel_Production

\title{
aLIGO SUS Operation Manual - Info on QUAD Suspensions
}

Back to Operation Manual main page

\section*{Overview}

Each "quad" suspension actually consists of two four-mass chains, the main chain and the reaction chain. The main chain supports a test mass (ITM or ETM) as its lowest level, and above that are in order the penultimate mass (PUM), upper intermediate mass (UIM), and the top mass (no abbreviated form; TM = test mass). The PUM and the ITM/ETM are fused silica and are connected by fused silica fibres for low thermal noise - this subassembly is called the monolithic stage. The upper masses and all other wires are metal.

The reaction chain has non-contacting actuators on the bottom three levels that can apply force to the corresponding masses of the main chain. The lowest reaction mass in the ITM configuration is also the compensation plate (CP); the lowest reaction mass in the ETM configuration is purely a reaction mass (the end reaction mass or ERM).

To do: get better diagram, with mass labels (UIM etc), front/back labels, coordinate system marker.
From the point of view of an operator/scimon, the quad appears as 5 sensor/actuator groups (SAGs): M0, R0, L1, L2, and L3 (see figure).

M0 consists of 6 BOSEMs mounted on the structure, which sense and actuate all 6 DOFs of the top mass of the main chain.
\(R 0\) is the same as M0 except for the reaction chain.
M0 and R0 are specific to a particular chain, as are the control loops that use them. They provide local control, whereby each chain is damped purely relative to the support structure, without reference to either the other chain in the same quad or the other quad in the same arm. The M0 and R0 actuators are also where static pitch and yaw corrections are added.

L1 consists of 4 BOSEMs mounted on the second top mass (a.k.a. upper intermediate mass, UIM) of the reaction chain. These sense the relative longitudinal, pitch and yaw of the UIM of the main chain.

L2 consists of 4 BOSEMs mounted on the PRM (2nd bottom mass of the reaction chain). These sense the relative longitudinal, pitch and yaw of the PUM of the main chain.

L3 consists 4 electrostatic drive (ESD) electrodes, which can actuate in longitudinal, pitch and yaw on the test mass. The optical lever is grouped with L3 on the control screens, although it's not officially part of SUS.

L1, L2 and L3 are joint to the two chains. They sense differential displacements and apply equal and opposite forces/torques. The cabling for L1/L2/L3 runs down the reaction chain, making it a little stiff, but leaving the main chain unencumbered. The actuators towards the bottom of the chain are chosen to be weaker but less noisy, so as to enable a hierarchical control strategy where control is applied as remotely as feasible from the payload, so actuator noise will be filtered by the intermediate stages.

\section*{References}
- Q Quad Suspensions Wiki Page (old)
- T010103: aLIGO Suspension System Conceptual Design
- \(\Theta\) P020001: Quadruple Suspension Design for Advanced LIGO
- Ө P1200056: Update on Quadruple Suspension Design for Advanced LIGO
- D0901346: Advanced LIGO Quadruple Suspension
- E1000617: Quad Suspension Controls Arrangement Poster
- T1100595: ETM/ITM Quad Suspension Control Ranges
- © T1100378: aLIGO QUAD Controls Design Description
- \(\Theta\) D1100022: aLIGO SUS ITM and BS Wiring Diagrams (for H1/L1)
- © 1001725: aLIGO SUS ITM, BS, and FM System Wiring Diagrams (for H2)
- D1002741: aLIGO SUS ETM System Wiring Diagrams

\section*{Models}

The quad suspension has been extensively modelled. Key results are at Suspensions/OpsManual/QUAD/Models .

\section*{Screens}

Quad MEDM screens are documented at/Screens.

\section*{aLIGO SUS Operations Manual - Overview of QUAD MEDM screens}

Back to Operations Manual main page
Back to QUAD main page
Except where noted, the quad screens described below live at
/opt/rtcds/userapps/release/sus/common/medm/quad/. They are all generic screens which rely for their execution on site-, interferometer- and suspension-specific arguments passed in when they are called. They can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP. adl. See the MEDM page for further information.

\section*{Overview Screen}

Screen SUS_CUST_QUAD_OVERVIEW
(1)

This is the overview screen. The functionality is divided up according to the five sensor-actuator groups, plus an odds-andends area at the top:
- Other - Placeholders for ISI feedforward stuff, links to CDS utility screens.
- M0-6 BOSEMs on the structure engaging the main chain top mass
- R0-6 BOSEMs on the structure engaging the reaction chain top mass (most of the UI for this is hidden in a subscreen accessed by a button)
- L1-4 BOSEMs on the reaction chain upper intermediate mass engaging the main chain upper intermediate mass
- L2-4 AOSEMs on the reaction chain penultimate mass engaging the main chain penultimate mass
- L3 - 4 ESD quadrants on the CP or ERM engaging the ITM or ETM, plus optical lever channels.

M0 and R0 are used for local damping (relative to the structure) and the control loops are already functional. DC pitch and yaw offsets are also injected at M0 or R0. L1, L2 and L3 are intended for implementing global control (relative to other optics) and have placeholder inputs for actuation requests from ISC. The L3 level also processes optical lever signals.

\section*{Other Screens}

- MEASUREMENT STATUS - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- HIERARCHY SWITCH - enables various ISC inputs and outputs
- MASTER SWITCH - switches all actuation
- ADC - a monitor screen (common to all sensor-actuator groups) for the semi-raw ADC values as reported by the IOP process after downsampling.
- DAC - a popup allowing access to all the DAC outputs as reported by the IOP process.
- H1SUSETMX Aux Ch - monitors for the voltage, current, etc readbacks as reported by the AUX process
- WATCHDOGS - a block implementing the watchdog on the various sensor actuator groups.

\section*{groups)}
- IOP DACKILL - a screen for the watchdog on the IOP process serving all suspensions on the same front end.
- OVERVIEW of SUS WATCHDOGS - accessed via IOP DACKILL; a screen for watchdogs on all IOP processes serving SUS models
- EX BSC9 (ETMX) (or the like) - accessed via above OVERVIEW; a screen for watchdogs for the current chamber (including SEI).
- H1SUSETMX BINARY I/O (or the like) - the binary input-output controls
- H1SUSETMX GDS TP (or the like) - the monitor screen for the user model process
- H1IOPSUSEX GDS TP (or the like) - the monitor screen for the IOP model process
- IPC - interprocess control signals monitor (diagnostic only)
- CART2EUL - matrix converting IPC signals from SEI into SUS basis (diagnostic only)
- ODC STATUS - ODC status
- !GUARDIAN Guardian controls

\section*{Screen SUS_CUST_QUAD_ADC_MONITOR}

Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Screen SUS_CUST_QUAD_DAC_MONITOR
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{H1 EmW} & \multicolumn{3}{|c|}{dac_monitor} & Hed Mar & 15:27:02 \\
\hline \(\stackrel{\text { IOP-DIAG }}{\square}\) & \[
\begin{aligned}
& \text { outo } \\
& \text { offeo } \\
& \square
\end{aligned}
\] & \[
\begin{aligned}
& \text { OUT1 } \\
& \text { OFC1 } \\
& \text { OFI }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ouT2 } \\
& \square{ }^{\circ}{ }^{2+C 2} \\
& \square
\end{aligned}
\] & \[
\begin{aligned}
& \text { ouT4 } \\
& \text { oif } 4 \\
& \square
\end{aligned}
\] & \(\stackrel{\text { OUT4 }}{\text { OFCC4 }}\) & \\
\hline \(\stackrel{\text { USER-DIAG }}{\square}\) & \[
\stackrel{\text { оито }}{\square} \stackrel{0}{\text { ofco }}
\] & \[
\begin{aligned}
& \text { ourt } \\
& { }_{\text {OFC1 }}
\end{aligned}
\] & \[
\begin{aligned}
& \text { OUT2 } \\
& \begin{array}{l}
\text { OFC2 } 2 \\
0
\end{array}
\end{aligned}
\] & \[
\begin{gathered}
\text { out3 } \\
\text { ofl } \\
\text { ofl3 }
\end{gathered}
\] & \[
\stackrel{\substack{\text { OuT3 } \\ 0 \\ \text { ofrc } \\ \square}}{ }
\] & \\
\hline \multicolumn{2}{|l|}{} & OUTPUT
SIGNEL & \[
\begin{gathered}
\text { Over } \\
\text { FLous }
\end{gathered}
\] & & Output
SIGNaL & \[
\begin{gathered}
\text { OVER } \\
\text { FLous }
\end{gathered}
\] \\
\hline ETMX_MO_COIL_F1_OUT & user_0_0 & -73532 & 0 & iop_0_0 & -74715 & 0 \\
\hline ETMX_MO_COIL_F2_OUT & user_0_1 & -53441 & 0 & iop_0_1 & -54280 & 0 \\
\hline ETMX_MOCOIL_F3_OUT & user_0_2 & 20118 & 0 & iop_0 2 & 20441 & 0 \\
\hline ETMX_MO_COIL_LF_OUT & user_0_4 & 2 & 0 & 10p_0_4 & 2 & 0 \\
\hline ETMX_Mo_COIL_RT_OUT & user_0.5 & -1 & 0 & iop_0.5 & -1 & 0 \\
\hline ETMX_MO_COIL_SD_OUT & user_0_3 & 4 & 0 & iop_0.3 & 11 & 0 \\
\hline \multirow[t]{6}{*}{ETMX_RO_COIL_F1_OUT ETHX_Ro_COIL_F2_OUT ETMX_RO_COIL_F3_OUT ETMX_RO_COIL_LF_OUT ETMX_RO_COIL_RT_OUT ETHX_RO_COIL_SD_OUT} & user_1_0 & -9 & 0 & 10p_1_0 & -28 & 0 \\
\hline & user_1_1 & -21362 & 0 & iop_1_1 & -21693 & 0 \\
\hline & user_1_2 & -21369 & 0 & iop_1_2 & -21725 & 0 \\
\hline & user_0_6 & 1 & 0 & iop_0_6 & 0 & 0 \\
\hline & user_0_7 & 3 & 0 & iop_07 & 2 & 0 \\
\hline & user_1_3 & -181 & 0 & iop_1_3 & -173 & 0 \\
\hline \multirow[t]{4}{*}{ETMX_L1_COIL_UL_OUT ETMX_L1_COIL_LL_OUT ETMX_L1_COIL_UR_OUT ETMX_L1_COIL_LR_OUT} & user_1-4 & 0 & 174297 & iop_1_4 & -18836 & 0 \\
\hline & user_1_5 & 0 & 187212 & iop_1_5 & -13971 & 0 \\
\hline & user_1_6 & 0 & 184558 & iop-1_6 & 18421 & 0 \\
\hline & user-1_7 & 0 & 156533 & iop_1_7 & 20162 & 0 \\
\hline \multirow[t]{4}{*}{ETMX_L2_COIL_UL_OUT ETMX_L2_COIL_LL_OUT ETMX_L2_COIL_UR_OUT ETMX_L2_COIL_LR_OUT} & user_20 & 0 & 0 & iop_2_0 & -18836 & 0 \\
\hline & user_2_1 & 0 & 0 & iop_2.1 & -15971 & 0 \\
\hline & user_2.2 & 0 & 0 & iop_22 & 19421 & 0 \\
\hline & user_2_3 & 0 & 0 & iop_2.3 & 20162 & 0 \\
\hline \multirow[t]{4}{*}{ETMX_L3_EsD_Ul_OUT ETMX_L_ESED_LL_OUT ETMX_L3_ESD_UR_OUT ETMX_L3_ESD_LR_OUT} & user_3_1 & 0 & 0 & iop-44 & 0 & 0 \\
\hline & user_3_2 & 0 & 0 & iop-4.2 & 0 & 0 \\
\hline & user_3.3 & 0 & 0 & iop-4-3 & 0 & 0 \\
\hline & user_3_4 & 0 & 0 & iop-44 & 0 & \\
\hline
\end{tabular}

Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Screen SUS_CUST_QUAD_MONITOR_OVERVIEW

Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.
- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.

Screen SUS_CUST_QUAD_WD

Suspensions/OpsManual/Boilerplate/WD:
This screen allows for setting the watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.

\section*{Screen SUS CUST IOP DACKILL}

Suspensions/OpsManual/Boilerplate/IOP_DACKILL:
The watchdog controls for the IOP process. If this WD is tripped it disables IO to/from all user models on the front end RESET resets from the tripped state if there are no outstanding triggers. BYPASS is a manual override that allows for operation of the suspension if there is a trigger condition that is known by the operator to be harmless.

Screen H1CDS_SOFTWARE_SUS_WATCHDOGS

Suspensions/OpsManual/Boilerplate/SUS_WATCHDOGS:
The overview screen for all SUS/SEI watchdogs, organized by chamber. (LHO version shown - LLO may be very different - need to check.)

Screen H1CDS_SOFTWARE_SUS_WATCHDOGS_EX

Suspensions/OpsManual/Boilerplate/SUS_WATCHDOGS_CHAMBER:
The overview screen for all the SUS/SEI watchdogs in the same chamber.

\section*{Screen SUS_CUST_QUAD_BIO}

The Binary Input-Output control screen. State Requests for the various sensor-actuator groups can be input. Positive state values lock out manual control of the filters on the COILOUTF screen and set the digital dewhitening filters to match the analog whitening filters selected via the binary outputs. Negative state values allow the dewhitening filters to be manually overridden.

\section*{Screen H1SUSETMX_GDS_TP}

Suspensions/OpsManual/Boilerplate/USER_GDS_TP:
This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPU, e.g., "37", can be read from this screen just to the right of the "DAQ STATUS" heading
The Coeff Load button reloads all the filters for the model

If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

Screen H1IOPSUSEX_GDS_TP

Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., " 33 ", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

Screen SUS_CUST_QUAD_IPC

Suspensions/OpsManual/Boilerplate/IPC:
Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).

\section*{Screen SUS_CUST_QUAD_M0_CART2EUL}

Suspensions/OpsManual/Boilerplate/M0_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face,+T left and + V up). See Suspensions/OpsManual/Projections and © T1100617.

\section*{Screen GUARD.adl}

The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.

\section*{Screen SUS_CUST_QUAD_ODC.adl}

Suspensions/OpsManual/Boilerplate/ODC:
ODC Status.

\section*{Sensor Actuator Group M0 - Main Chain Top Mass}

4

The M0 section of the main QUAD screen is excerpted above. Most of the items on it correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the main chain local control loop, which involves the following elements:
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a * OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- DAMP FILTERS - a filter bank applying the damping filters.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- L2O-????.
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.
- MASTER SWITCH - a manual on/off switch for all actuation (common to all sensor-actuator groups).

There are the following auxiliary inputs:
- TEST - a filter bank (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw.
- LOCK FILTERS - filters for global control signals.
- REACTION CHAIN - the reaction chain controls

\section*{Screen SUS_CUST_QUAD_M0_OSEMINF}

Suspensions/OpsManual/Boilerplate/M0_OSEMINF:
This block has 6 filter groups corresponding to the 6 M0 BOSEMs, F1/F2/F3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

\section*{Screen SUS_CUST_QUAD_M0_CENTERING}

Suspensions/OpsManual/Boilerplate/M0_CENTERING:
This screen gives various views of the M0 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

\section*{Screen SUS_CUST_QUAD_M0_OSEM2EUL}

Suspensions/OpsManual/Boilerplate/M0_OSEM2EUL:
This screen allows entry of the matrix which converts from the M0 OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^-1 and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

\section*{Screen SUS_CUST_QUAD_M0_SENSALIGN}

Suspensions/OpsManual/Boilerplate/M0_SENSALIGN:
This screen is reserved for tweaking the M0 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_QUAD_M0_DAMP}

Suspensions/OpsManual/Boilerplate/M0_DAMP:
These filters implement the local damping. See Suspensions/OpsManual/Damping.

\section*{Screen SUS_CUST_QUAD_M0_DRIVEALIGN}

Suspensions/OpsManual/Boilerplate/M0_DRIVEALIGN:
This screen is reserved for tweaking the M0 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_QUAD_M0_EUL2OSEM}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{H1 ETMX Mo Euler20sem Matrix} \\
\hline & & & & ULER & B A S I S & & \\
\hline & & L & T & \(V\) & R & P & Y \\
\hline 0 & F1 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & -12.820 & 0.00000 \\
\hline S & F2 & -0.5000 & 10.00000 & 0.00000 & 0.00000 & 6.41030 & 4.16670 \\
\hline M & F3 & -0.5000 & 0.00000 & 0.00000 & 0.00000 & 6.41030 & -4.1667 \\
\hline B & LF & 0.00000 & 0.00000 & -0.5000 & -2.7778 & 0.00000 & 0.00000 \\
\hline I & RT & 0.00000 & 0.00000 & -0.5000 & 2.77780 & 0.00000 & 0,00000 \\
\hline s & SD & 0.00000 & 1.0000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M0_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the M0 OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_QUAD_M0_LKIN2OSEM.adI

Suspensions/OpsManual/Boilerplate/M0_LKIN2OSEM:

\section*{Screen SUS_CUST_QUAD_M0_COILOUTF}

Suspensions/OpsManual/Boilerplate/M0_COILOUTF:
This screen applies compensation for the hardware filters in the M0 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of \(\approx 10000[\mathrm{TBC}]\) can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{Screen SUS_CUST_QUAD_M0_OPTICALIGN}

Suspensions/OpsManual/Boilerplate/M0_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets for the quad main chain. See Suspensions/OpsManual/Alignments for more info.

\section*{Screen SUS_CUST_QUAD_MO_TEST}

Suspensions/OpsManual/Boilerplate/M0_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the M0 Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. However offsets of \(\approx 10000\) in \(\mathrm{L} / \mathrm{T} / \mathrm{V}\) or \(\approx 1000\) in \(\mathrm{R} / \mathrm{P} / \mathrm{Y}\) can be applied temporarily to check that actuation is taking effect (and with the right sign). In such cases a Ramp Time of 10 s or so is often helpful. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

Suspensions/OpsManual/Boilerplate/M0_LOCK:
Filters for the locking signals to be applied at M0.

\section*{Sensor Actuator Group R0 - Reaction Chain Top Mass}

\section*{Screen SUS_CUST_QUAD_R0}
\(』\)

The R0 controls are accessed via a button in the M0 section of the main QUAD screen above, and appear on a separate screen very similar to the M0. Most of the items on it correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the reaction chain local control loop, which involves the following elements:
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- DAMP FILTERS - a filter bank applying the damping filters.
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.
- MASTER SWITCH - a manual on/off switch for all actuation (common to all sensor-actuator groups).
- WATCHDOGS - same watchdog screen for all watchdogs as accessible from the \#Other section of the main overview screen.
- IOP DACKILL - same watchdog screen for the IOP process as accessible from the \#Other section of the main overview screen.

There are the following auxiliary inputs:
- TEST FILTERS - a filter bank (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw.

\section*{Screen SUS_CUST_QUAD_R0_OSEMINF}

Suspensions/OpsManual/Boilerplate/R0_OSEMINF:
This block has 6 filter groups corresponding to the 6 R0 BOSEMs, F1/F2/F3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

Suspensions/OpsManual/Boilerplate/R0_CENTERING:
This screen gives various views of the R0 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

\section*{Screen SUS_CUST_QUAD_R0_OSEM2EUL}

Suspensions/OpsManual/Boilerplate/R0_OSEM2EUL:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

\section*{Screen SUS_CUST_QUAD_R0_SENSALIGN}

Suspensions/OpsManual/Boilerplate/R0_SENSALIGN:
This screen is reserved for tweaking the R0 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_QUAD_R0_DAMP}

Suspensions/OpsManual/Boilerplate/R0_DAMP:
These filters implement the local damping for the reaction chain.

\section*{Screen SUS_CUST_QUAD_R0_EUL2OSEM}

Suspensions/OpsManual/Boilerplate/R0_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the R0 OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_QUAD_R0_COILOUTF

Suspensions/OpsManual/Boilerplate/R0_COILOUTF:
This screen applies compensation for the hardware filters in the R0 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{Screen SUS_CUST_QUAD_R0_OPTICALIGN}

Suspensions/OpsManual/Boilerplate/R0_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets for the quad reaction chain. See Suspensions/OpsManual/Alignments for more info.

Screen SUS_CUST_QUAD_R0_TEST

Suspensions/OpsManual/Boilerplate/R0_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the R0 Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. However offsets of \(\approx 10000\) in \(\mathrm{L} / \mathrm{T} / \mathrm{V}\) or \(\approx 1000\) in \(\mathrm{R} / \mathrm{P} / \mathrm{Y}\) can be applied temporarily to check that actuation is taking effect (and with the right sign). In such cases a Ramp Time of 10 s or so is often helpful. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

\section*{Sensor Actuator Group L1 - Between Upper Intermediate Masses}

- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\)
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- TEST - a filter bank (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- LOCK - filters for global control signals.
- OLDAMP FILTERS - filters for optical lever damping.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ????.
- [[\#SUS_CUST_QUAD_L1_COILOUTFI COIL OUTPUT FILTERS]) - a filter bank that corrects for hardware run/acquisition mode filters and
for magnet polarity.

\section*{Screen SUS_CUST_QUAD_L1_OSEMINF}

Suspensions/OpsManual/Boilerplate/L1_OSEMINF:
This block has 4 filter groups corresponding to the 4 L1 BOSEMs, UL/LL/UR/LR. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_QUAD_L1_CENTERING

Suspensions/OpsManual/Boilerplate/L1_CENTERING:
This screen gives various views of the L1 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

Suspensions/OpsManual/Boilerplate/L1_OSEM2EUL:
This screen allows entry of the matrix which converts from the L1 OSEM basis to the L1 Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^-1 and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

Screen SUS_CUST_QUAD_L1_SENSALIGN

Suspensions/OpsManual/Boilerplate/L1_SENSALIGN:
This screen is reserved for tweaking the L1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_QUAD_L1_TEST

Suspensions/OpsManual/Boilerplate/L1_TEST:
This is a deliberately empty set of 3 filter banks corresponding to the L1 L, P and Y DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

Screen SUS_CUST_QUAD_L1_LOCK

Suspensions/OpsManual/Boilerplate/L1_LOCK:
Filters for the locking signals to be applied at L1.
Screen SUS_CUST_QUAD_L1_OLDAMP_ALL.adI

Suspensions/OpsManual/Boilerplate/L1_OLDAMP:
Filters for the optical lever locking signals.

\section*{Screen SUS_CUST_QUAD_L1_DRIVEALIGN}

Suspensions/OpsManual/Boilerplate/L1_DRIVEALIGN:
This screen is reserved for tweaking the L1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info

Screen SUS_CUST_QUAD_L1_EUL2OSEM

Suspensions/OpsManual/Boilerplate/L1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the L1 Euler basis to the L1 OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_QUAD_L1_LKIN2OSEM.adI

Suspensions/OpsManual/Boilerplate/L1_LKIN2OSEM:
This screen displays the transformation matrix from the lock-in request signals to the L1 OSEM actuation basis. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_QUAD_L1_COILOUTF}

Suspensions/OpsManual/Boilerplate/L1_COILOUTF:
This screen applies compensation for the hardware filters in the L1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{Sensor Actuator Group L2 - Between Penultimate Masses}

- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signals to signals in a longitudinal/pitch/yaw (L/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- TEST - a filter bank (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- LOCK - filters for global control signals.
- OLDAMP FILTERS - filters for optical lever damping.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ????.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and
for magnet polarity.
Screen SUS_CUST_QUAD_L2_OSEMINF

Suspensions/OpsManual/Boilerplate/L2_OSEMINF:
This block has 4 filter groups corresponding to the 4 L2 AOSEMs, UL/LL/UR/LR. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_QUAD_L2_CENTERING

Suspensions/OpsManual/Boilerplate/L2_CENTERING:
This screen gives various views of the L2 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

Screen SUS_CUST_QUAD_L2_OSEM2EUL
Ө○○ Х SUS_CUST_QUAD_L2_OSEM2E...
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{H1 ETMX L2 OSEM2EULER MATRIX} \\
\hline & & & 0 SEM & B AS I & \\
\hline & & UL & LL & UR & LR \\
\hline \(\mathrm{U}^{\mathrm{E}}\) B & L & 0.25000 & 0, 25000 & 0.25000 & 0. 25000 \\
\hline \({ }^{\text {A }}\) & & & & & \\
\hline E \({ }^{\text {S }}\) & P & 3.53550 & -3.5355 & 3.53550 & -3.5355 \\
\hline \(\mathrm{R}_{5}\) & Y & -3.5355 & -3.5355 & 3.53550 & 3.53550 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/L2_OSEM2EUL:
This screen allows entry of the matrix which converts from the L2 OSEM basis to the L2 Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^\({ }^{\wedge}-1\) and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

Screen SUS_CUST_QUAD_L2_SENSALIGN

Suspensions/OpsManual/Boilerplate/L2_SENSALIGN:
This screen is reserved for tweaking the L2 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_QUAD_L2_TEST

Suspensions/OpsManual/Boilerplate/L2_TEST:
This is a deliberately empty set of 3 filter banks corresponding to the L2 L, P and Y DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

\section*{Screen SUS_CUST_QUAD_L2_LOCK}

Suspensions/OpsManual/Boilerplate/L2_LOCK:

\section*{Screen SUS_CUST_QUAD_L2_OLDAMP_ALL.adI}

Suspensions/OpsManual/Boilerplate/L2_OLDAMP:
Filters for the optical lever locking signals.
Screen SUS_CUST_QUAD_L2_DRIVEALIGN

Suspensions/OpsManual/Boilerplate/L2_DRIVEALIGN:
This screen is reserved for tweaking the L2 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_QUAD_L2_EUL2OSEM

Suspensions/OpsManual/Boilerplate/L2_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the L2 Euler basis to the L2 OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_QUAD_L2_LKIN2OSEM.adI

Suspensions/OpsManual/Boilerplate/L2_LKIN2OSEM:
This screen displays the transformation matrix from the lock-in request signals to the L2 OSEM actuation basis. See

Screen SUS_CUST_QUAD_L2_COILOUTF

Suspensions/OpsManual/Boilerplate/L2_COILOUTF:
This screen applies compensation for the hardware filters in the L2 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{Sensor Actuator Group L3 - Between ITM and CP or ETM and ERM}

- ISCINF - input filters for ISC signals.
- OPLEV INPUT FILTERS - OL QPD segment signal filters
- OL2EUL - transformation from OL segment basis to P/Y/SUM
- FULL OL CHAIN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- LOCKIN_DEMOD - ????
- TEST - a filter bank (with no filters!) serving as a place to apply AWG actuation in the L/P/Y basis without it having to go through the damping filters.
- LOCK - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2ESD - a block that de-diagonalizes the damping signals back to per-ESD-quadrant signals.
- L2O - ????.
- ESD OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters.

Screen SUS_CUST_QUAD_L3_ISCINF

Suspensions/OpsManual/Boilerplate/L3_ISCINF:
Filters for the locking signals from ISC.
Screen SUS_CUST_QUAD_L3_OPLEV_SEGS

Suspensions/OpsManual/Boilerplate/L3_OPLEV_SEGS:
This block has 4 filter groups for the 4 L3 optical lever segments.

\section*{Screen SUS_CUST_QUAD_L3_OPLEV_MTRX}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{H1 ETMX L3 OPTICAL LEVER MATRIX} \\
\hline & & & QP D & BASIS & \\
\hline & & S1 & S2 & S3 & 54 \\
\hline \({ }_{U}^{\text {E }}\) B & P & -1.0000 & 1.00000 & -1.0000 & 1.00000 \\
\hline \(L^{\text {A }}\) & & & & & \\
\hline \(\mathrm{E}^{\text {S }}\) & Y & 1.00000 & -1.0000 & -1.0000 & 1.00000 \\
\hline \(\mathrm{R}_{\mathrm{S}}^{\text {I }}\) & SUM & 1.00000 & 1.00000 & 1.00000 & 1.00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/L3_OPLEV_MTRX:
This screen displays the transformation matrix from optical lever segments to the pitch/yaw/sum basis. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_QUAD_L3_OPLEV}

Suspensions/OpsManual/Boilerplate/L3_OPLEV:
This screen has the optical lever overview. It has some of the same buttons (for OPLEV_SEGS and OPLEV_MTRX) as on the main quad screen, and also shows the filters for the pitch, yaw and sum signals.

Screen LOCKIN_DEMOD.adl (two versions: \(P\) and Y)

Suspensions/OpsManual/Boilerplate/LOCKIN_DEMOD:
Controls for the lockin demodulation. Comes in P and Y versions for pitch and yaw.
Screen SUS_CUST_QUAD_L3_TEST

Suspensions/OpsManual/Boilerplate/L3_TEST:
This is a deliberately empty set of 4 filter banks corresponding to the ESD L, P, Y and BIAS channels. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1 . The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

Suspensions/OpsManual/Boilerplate/L3_LOCK:
Filters for just the components of the locking signals to be applied at L3.
Screen SUS_CUST_QUAD_L3_DRIVEALIGN

Suspensions/OpsManual/Boilerplate/L3_DRIVEALIGN:
This screen is reserved for tweaking the L3 ESD actuator diagonalization and frequency response. There is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_QUAD_L3_EUL2ESD
Ө O O X SUS_CUST_QUAD_L...

Suspensions/OpsManual/Boilerplate/L3_EUL2ESD:
This screen allows entry of the matrix which converts force/torque requests from the L3 Euler basis to the L3 ESD quadrant basis. See Suspensions/OpsManual/Projections for more info. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_QUAD_L3_LKIN2ESD.adl

\footnotetext{
Suspensions/OpsManual/Boilerplate/L3_LKIN2ESD
This screen displays the transformation matrix from the lock-in request signals to the L3 ESD actuation basis. See Suspensions/OpsManual/Projections for more info.
}

\section*{Screen SUS_CUST_QUAD_L3_ESDOUTF}

Suspensions/OpsManual/Boilerplate/L3_ESDOUTF:
This screen applies compensation for the hardware filters in the L3 ESD actuation electronics. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary or testing purposes, this automatic control can be disabled in the QUAD_BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets can be applied temporarily to check that actuation is taking effect (and with the right sign).

\title{
aLIGO SUS Operations Manual - Models for QUAD Suspensions
}

Back to Operation Manual main page
The quad suspensions have been extensively modelled. There are Mathematica (\(\Theta\) T020205) and Matlab (\(\operatorname{T} 080188\)) programs that take a parameter set describing a single chain and calculate the dynamics. The parameter set needs to be formatted differently for Mathematica vs Matlab, but the parameter names are the same as far as was practical.

The quad Mathematica model and parameter sets for it live in the SUS SVN at
^/trunk/Common/MathematicaModels/QuadLite2Lateral/. Parameter sets for Matlab live at ^/trunk/QUAD/Common/MatlabTools/QuadModel_Production. Mark Barton maintains the Mathematica, Jeff Kissel maintains the Matlab. Unfortunately two different naming conventions are in use and it's difficult to tell what corresponds to what - if in doubt, ask. References given below are to Mathematica versions as subdirectories of \(\wedge /\) trunk/Common/MathematicaModels/QuadLite2Lateral/.

Key cases of the quad model are given below, with results such as mode frequencies and mode shapes. © T1200404 has transfer functions for many of the same models.

Explanation of the standard result set is at .../Key. Instructions for generating wiki pages for new cases of Mathematica models is at .../HowTo.

\section*{Main Chain (Monolithic)}
.../mark.barton/20140304TMproductionTM is based on 20120601TMproductionTM but has many fitted numbers by Brett.

\section*{Main Chain (Wire Rehang of Broken Monolithic)}
.../mark.barton/20120831TMproductionTMrehang is the LHO ITMy as rehung on wires after the fibre break incident.

\section*{Reaction Chain CP Version}
.../mark.barton/20120831TMproductionCP is the CP-type reaction chain.

\section*{Reaction Chain ERM Version}
.../mark.barton/20120831TMproductionERM is the ERM-type reaction chain.

\section*{Main Chain Metal Build}
.../20121115TMproductionWire is the old-style metal build of the main chain.
.../20130523TMproductionWireLoop is the new-style metal build of the main chain, with prisms on the PUM and a wire loop under it.

\section*{Old Models}
.../mark.barton/20120601TMproductionTM is the current production monolithic main chain.

\section*{Case 20140304TMproductionTM of Mathematica model QuadLite2Lateral}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

{"mark.barton", "20140304TMproductionTM"}
20140304TMproductionTM, equivalent to
^trunk/QUAD/Common/MatlabTools/QuadModel_Production/quadopt_fiber.m r6374 of 3/14/14, with
mostly Brett's fitted numbers.

```

\section*{Links to Result Sections}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Pendulum Mode Summary & \multicolumn{2}{|c|}{ Violin Mode Summary } & Pendulum Mode Shapes & Parameters \\
\begin{tabular}{|l|l|l|l|l|l|}
\hline modeL1 & modeT1 & modeP1 & modeV1 & modeY1 & modeR1 \\
\hline modeL2 & modeT2 & modeP2 & modeY2 & modeP3 & modeL3 \\
\hline modeT3 & modeV2 & modeY3 & modeR2 & modeP4 & modeY4 \\
\hline modeR3 & modeL4 & modeV3 & modeT4 & modeV4 & modeR4 \\
\hline
\end{tabular}
\end{tabular}\(>.\)\begin{tabular}{l}
mon
\end{tabular}

\section*{Pendulum Mode Summary}

Back to Top
\begin{tabular}{|llllll|}
\hline\(N\) & f & name & type & & \\
1 & 0.432096 & modeL1 & pitch3 & pitch2 & pitch1 \\
2 & 0.461778 & modeT1 & y3 & roll3 & roll2 \\
3 & 0.522439 & modeP1 & pitch3 & pitch2 & \\
4 & 0.552861 & modeV1 & z3 & z2 & \\
5 & 0.599185 & modeY1 & yaw3 & yaw2 & \\
6 & 0.86847 & modeR1 & roll1 & roll3 & roll2 \\
7 & 0.99234 & modeL2 & pitch0 & pitch1 & x2 \\
8 & 1.04328 & modeT2 & y2 & y1 & y3 \\
9 & 1.33906 & modeP2 & pitch0 & pitch1 & \\
10 & 1.34913 & modeY2 & yaw3 & yaw1 & \\
11 & 1.59901 & modeP3 & pitch0 & pitch2 & \\
12 & 1.98325 & modeL3 & pitch0 & x0 & x1 \\
13 & 2.10062 & modeT3 & roll1 & y0 & y1 \\
14 & 2.22968 & 2.39081 & modeV2 & z0 & z1
\end{tabular}
\begin{tabular}{|llllll}
19 & 3.30053 & modeR3 & pitch0 & roll0 & roll1 \\
20 & 3.39905 & modeL4 & x0 & x1 & pitch0 \\
21 & 3.56066 & modeV3 & z1 & z0 & \\
22 & 5.08788 & modet4 & roll0 & pitch0 & \\
23 & 9.68987 & modeV4 & z2 & z3 & \\
24 & 13.8069 & modeR4 & roll2 & roll3 &
\end{tabular}

\section*{Violin Mode Summary}

Back to Top
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
Violin \\
Modes
\end{tabular} & Top & UIM & PUM/PRM & TM/CP/ERM \\
\hline \(\mathrm{f}(\mathrm{Hz})\), & 335.963672 .964 & 495.47992 .132 & 421.319843 .578 & 268.347537 .034 \\
\(\mathrm{n}=1-4\) & 1012.051354 .29 & 1491.191993 .85 & 1267.731694 .72 & 806.4011076 .79 \\
\hline
\end{tabular}
\(\|Q, n=1-4\| 145974.190003 .187191 .166336 .\|112538.158582 .165672 .153803\| .97703.3145771 .160909 .156453 . \| 9\) \(1.205131091 .102711089 .656931088 .2256410 \|\)

\section*{Mode Shapes}

\section*{Mode \#1 - modeL1}

\section*{Back to Top}
0.432096 Hz
\begin{tabular}{|lllllll|}
\hline\(x\) & \(y\) & z & yaw & pitch & roll \\
Mass N & 0.0446664 & 0 & 0 & 0 & -0.324194 & 0.00109208 \\
Mass U & 0.0791596 & 0.000232412 & 0 & 0 & -0.380551 & 0.00221296 \\
Mass 2 & 0.12786 & 0.000408359 & 0 & 0 & -0.54992 & 0.00186767 \\
optic & 0.244087 & 0.000781052 & 0 & 0 & -0.602881 & 0.00187027 \\
\hline
\end{tabular}

\section*{Mode \#2 - modeT1}

Back to Top

\subsection*{0.461778 Hz}
\begin{tabular}{|lllllll|}
\hline & x & \(y\) & z & yaw & pitch & roll \\
Mass N & 0.000632666 & -0.0968249 & 0 & 0 & 0.0167644 & -0.212624 \\
Mass U & 0.00107719 & -0.183064 & 0 & 0 & 0.0138264 & -0.292702 \\
Mass 2 & 0.00169942 & -0.329919 & 0 & 0.000113724 & 0.0135456 & -0.360056 \\
optic & 0.00300257 & -0.675626 & 0 & 0.000138669 & 0.0143016 & -0.361108 \\
\hline
\end{tabular}

\section*{Mode \#3 - modeP1}

Back to Top
0.522439 Hz
\begin{tabular}{|lllllll|}
\hline x & \(y\) & z & yaw & pitch & roll \\
Mass N & 0.00693332 & 0.000119618 & 0 & 0 & 0.262043 & -0.000983804 \\
Mass U & 0.0114391 & 0.000112371 & 0 & 0 & 0.341725 & -0.00252828 \\
Mass 2 0.0171067 & 0.000207678 & 0 & 0 & 0.593497 & -0.00192483 \\
optic & 0.0216106 & 0.000502315 & 0 & 0 & 0.679238 & -0.00192823 \\
\hline
\end{tabular}

Mode \#4-modeV1

Back to Top

\subsection*{0.552861 Hz}
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass N & 0 & 0 & 0.265486 & 0 & 0 \\
Mass U & 0 & 0 & 0.47436 & 0 & 0 \\
Mass 2 & 0 & 0 & 0.59153 & 0 & 0 \\
optic & 0 & 0 & 0.595477 & 0 & 0
\end{tabular}

\section*{Mode \#5-modeY1}

Back to Top
\begin{tabular}{|lllllll|}
& x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0.170268 & 0 & 0 \\
Mass U & 0 & 0 & 0 & 0.388959 & 0 & 0 \\
Mass 2 & 0 & 0 & 0 & 0.517768 & 0 & 0 \\
optic & 0 & 0 & 0 & 0.742723 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#6 - modeR1}

Back to Top
```

0.86847 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.00025117 & -0.0100391 & 0 & 0 & -0.0513238 & 0.150309 \\
Mass U & 0.000491543 & -0.00633961 & 0 & 0 & -0.0345004 & 0.582232 \\
Mass 2 & 0.000662311 & -0.000190294 & 0 & 0 & 0.00920784 & 0.560864 \\
optic & -0.000582965 & -0.0106522 & 0 & 0.000231782 & 0.0223267 & 0.564962 \\
\hline
\end{tabular}

\section*{Mode \#7 - modeL2}

Back to Top
```

0.99234 Hz

```
\begin{tabular}{|lllllll}
\hline x & y & z & yaw & pitch & roll \\
Mass N & 0.201785 & 0.000831986 & 0 & 0 & -0.60539 & -0.00314325 \\
Mass U & 0.316891 & 0.00137866 & 0 & 0 & -0.442235 & -0.0290051 \\
Mass 2 & 0.379499 & 0.00108046 & 0 & 0 & -0.179399 & -0.0310807 \\
optic & -0.288347 & -0.000458858 & 0 & 0 & -0.186116 & -0.0313911
\end{tabular}

Mode \#8 - modeT2

Back to Top
```

1.04328 Hz

```
\begin{tabular}{|lllllll|}
\hline x & \(y\) & y & yaw & pitch & roll \\
Mass N & 0.00131543 & -0.288727 & 0 & 0.000293014 & 0.11462 & -0.287145 \\
Mass U & 0.00186187 & -0.477464 & 0 & 0.000136709 & 0.0528336 & 0.0912048 \\
Mass 2 & 0.00215679 & -0.640716 & 0 & 0 & -0.00372088 & 0.0472575
\end{tabular}

\section*{Mode \#9 - modeP2}

\section*{Back to Top}
1.33906 Hz
\begin{tabular}{|lllllll|}
\hline x & \(y\) & z & yaw & pitch & roll \\
Mass N & 0.00261482 & 0.000549308 & 0 & -0.000188425 & 0.774792 & -0.00681833 \\
Mass U & 0.00228783 & -0.000309567 & 0 & -0.000286895 & 0.543672 & 0.0103221 \\
Mass 2 & 0.00110235 & 0.000668843 & 0 & -0.000192884 & 0.153168 & 0.0186825 \\
optic & -0.000316125 & -0.000294776 & 0 & 0.000376224 & -0.28245 & 0.0190362 \\
\hline
\end{tabular}

Mode \#10-modeY2

Back to Top
```

1.34913 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0.314305 & 0.00157893 & -0.000168972 \\
Mass U & 0 & 0 & 0 & 0.53664 & 0.00117278 & 0.000121751 \\
Mass 2 & 0 & 0 & 0 & 0.36969 & 0.000356302 & 0.000230763 \\
optic & 0 & 0 & 0 & -0.690329 & -0.00062761 & 0.000235194 \\
\hline
\end{tabular}

\section*{Mode \#11-modeP3}

Back to Top
1.59901 Hz
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.00234652 & -0.00105381 & 0 & 0 & -0.797996 & 0.0149651 \\
Mass U & -0.00168769 & 0.000669621 & 0 & 0 & -0.32356 & -0.00298686 \\
Mass 2 & -0.00063393 & -0.00058753 & 0 & 0 & 0.397123 & -0.0156049 \\
optic & 0.000591277 & 0.000163941 & 0 & 0 & -0.316323 & -0.0160371
\end{tabular}

Mode \#12-modeL3

Back to Top
```

1.98325 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.480711 & 0.00294573 & 0 & 0 & 0.674011 & -0.0269927 \\
Mass U -0.413098 & -0.000345081 & 0 & 0 & -0.215982 & -0.0036095 \\
Mass 2 0.306682 & 0 & 0 & 0 & 0.00538404 & 0.00948682 \\
optic & -0.0370101 & 0 & 0 & 0 & -0.0306104 & 0.00990393 \\
\hline
\end{tabular}

Mode \#13-modeT3
n............
```

2.10062 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & -0.00161698 & -0.480414 & 0 & -0.000435999 & -0.129032 & 0.0616061 \\
Mass U & -0.00116536 & -0.456548 & 0 & 0 & 0.0888022 & -0.668225 \\
Mass 2 & 0.000919667 & 0.287952 & 0 & 0.000353871 & -0.013452 & 0.0299615 \\
optic & -0.000109474 & -0.0306128 & 0 & -0.000129977 & 0.00443716 & 0.0309064 \\
\hline
\end{tabular}

Mode \#14-modeV2

Back to Top
```

2.22968 Hz

```
\begin{tabular}{lllllll|}
\hline & x & y z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0.831597 & 0 & 0 & 0 \\
Mass U & 0 & 0 & 0.471054 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & -0.19586 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.21953 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#15-modeY3}

Back to Top
```

2.39081 Hz

```
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0.000307432 & 0 & 0.743546 & -0.00130682 & -0.00386038 \\
Mass U & 0 & -0.000224069 & 0 & 0.125576 & -0.00216639 & -0.00239203 \\
Mass 2 20 & 0 & 0 & -0.635374 & 0.000212478 & 0.00185445 \\
optic & 0 & 0 & 0 & 0.166237 & 0 & 0.00197618
\end{tabular}

\section*{Mode \#16 - modeR2}

Back to Top
```

2.64322 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.00125698 & 0.0423531 & 0 & -0.0041309 & -0.0373226 & -0.452283 \\
\hline
\end{tabular}
\begin{tabular}{|lllllll}
Mass U & 0.000748585 & -0.0251221 & 0 & -0.00321687 & -0.553322 & -0.541333 \\
Mass 2 & -0.000869167 & 0.0015148 & 0 & 0.00556569 & 0.0407389 & 0.296386 \\
optic & 0 & -0.000395266 & 0 & -0.00113724 & -0.00753511 & 0.320609
\end{tabular}

Mode \#17-modeP4
Back to Top
2.74352 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & -0.00272613 & 0.000801139 & 0 & -0.000108206 & -0.554211 & 0.00470834 \\
\hline Mass U & -0.000274325 & 0.00261765 & 0 & 0 & 0.822741 & -0.0896412 \\
\hline Mass 2 & 0.000942841 & -0.00165665 & 0 & 0 & -0.0548208 & 0.0467624 \\
\hline optic & 0 & 0 & 0 & 0 & 0.00928134 & 0.0509137 \\
\hline
\end{tabular}

\section*{Mode \#18 - modeY4}

Back to Top
```

3.0388 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & -0.000127681 & 0 & -0.535567 & 0.0026218 & 0.00126435 \\
Mass U & 0 & 0.000223349 & 0 & 0.653663 & -0.00450946 & -0.00484177 \\
Mass 2 & 0 & 0 & 0 & -0.528929 & 0.000231535 & 0.00182134 \\
optic & 0 & 0 & 0 & 0.0778953 & 0 & 0.00202428 \\
\hline
\end{tabular}

Mode \#19-modeR3

Back to Top
3.30053 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & -0.00613579 & 0.0729485 & 0 & -0.00608276 & -0.528465 & -0.497251 \\
Mass U & 0.00505715 & -0.0762194 & 0 & 0.00332943 & 0.429175 & 0.472648 \\
Mass 2 & -0.000551833 & 0.0157517 & 0 & -0.00194057 & -0.0180342 & -0.153739 \\
optic & 0 & -0.000538587 & 0 & 0.000236945 & 0.0020129 & -0.17441 \\
\hline
\end{tabular}
\(|=\omega /|\)

Mode \#20 - modeL4

Back to Top
3.39905 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.587773 & 0.0204377 & 0 & -0.00131728 & -0.439788 & -0.120964 \\
Mass U & -0.569142 & -0.0205561 & 0 & 0.000588286 & 0.317492 & 0.103643 \\
Mass 2 & 0.087309 & 0.00382919 & 0 & -0.000308675 & -0.0130804 & -0.0318959 \\
optic & -0.00332659 & -0.000126405 & 0 & 0 & -0.000620275 & -0.0364847 \\
\hline
\end{tabular}

.

\section*{Mode \#21-modeV3}

Back to Top
```

3.56066 Hz

```
\begin{tabular}{|lllllll|}
& x & y & z & yaw & pitch roll \\
Mass N & 0 & 0 & 0.560768 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.812684 & 0 & 0 & 0 \\
Mass 2 20 & 0 & 0.0929675 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.128226 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#22-modeT4}

Back to Top
```

5.08788 Hz

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0.000147808 & -0.0744417 & 0 & -0.00414778 & -0.499286 & -0.835612 \\
\hline Mass U & -0.000263313 & 0.0654167 & 0 & 0.000467317 & 0.0986643 & 0.180529 \\
\hline Mass 2 & 0 & -0.00401371 & 0 & 0 & -0.00158016 & -0.00982513 \\
\hline optic & 0 & 0 & 0 & 0 & 0 & -0.0136866 \\
\hline
\end{tabular}

\section*{Mode \#23-modeV4}

Back to Top
```

9.68987 Hz

```
\begin{tabular}{|lllllll|}
& x & y & zaw & pitch & roll \\
Mass N & 0 & 0 & 0.00209572 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.0475533 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & 0.718812 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.693574 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#24 - modeR4}

Back to Top
```

13.8069 Hz

```
\begin{tabular}{lllllll}
Mass N & 0 & 0 & 0 & 0 & 0.000251475 & 0.00039854 \\
Mass U & 0 & 0.000442164 & 0 & 0 & -0.0033907 & -0.0202281 \\
Mass 2 & 0 & -0.000236631 & 0 & 0 & 0 & 0.735944 \\
optic & 0 & 0 & 0 & 0 & 0 & -0.676731
\end{tabular}

\section*{Parameters}

\section*{Back to Top}
```

g -> 9.81
nx -> 0.13 T040214-01, also T1000405-v1,
BNS 5/15/09 (display only)
ny -> 0.5
nz -> 0.084 T040214-01, also T1000405-v1,
BNS 5/15/09 (display only)
denn -> 683.94
mn -> 21.999
E1000186_v18_QUAD-2_Process_Traveler
Inx -> 0.454897
Gauss-Newton Fit by Brett Shapiro on 14 Feb 2013
Iny -> 0.0749375
Gauss-Newton Fit by Brett Shapiro on 14 Feb 2013
Inz -> 0.468032
Gauss-Newton Fit by Brett Shapiro on 14 Feb 2013
ux -> 0.13 (display only)
luy -> 0.5 (display only)
uz -> 0.084
BNS 5/15/09 (display only)
T040214-01, also T1000405-v1,
T040214-01, also T1000405-v1,
T040214-01, also T1000405-v1,
T1000286-v5 (info only)
T10000286-v9, correction from
T1000286-v9, correction from
T1000286-v9, correction from
T040214-01, also T1000405-v1,
T040214-01, also T1000405-v1,
T040214-01, also T1000405-v1,

```

```

r2 -> 0.0003175
T1000428-v2
r3 -> 0.0002
11
Yn -> 2.12 10
measured, MB, 11/18/05, via
IFOModel v4.1; cf. 2.2 in T010103-05
11
Y1 -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05
1 1
Y2 -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05
1 0
Y3 -> 7.2 10
different from new Ysilica
dm -> -0.00353391 effective value 0.001
dn -> 0.00399036
effective value 0.002 after
blade correction, Jeff's increase of 0.001; % (1-0.22438)/1000 correction from Gauss-Newton Fit
by Brett Shapiro on 14 Feb 2013
d0 -> -0.00175221 effective value 0.001
d1 -> 0.0057902 effective value 0.002 after
blade correction, Jeff's increase of 0.001; (1+1.8536)/1000 correction from Gauss-Newton Fit by
Brett Shapiro on 14 Feb 2013
d2 -> -0.00262327 0.0003 effective per M080134-
v2
d3 -> 0.00614069 0.010 effective per M080134-v2
(equivalent to Brett's d2=0.010, flex3=0)
d4 -> 0.00128109 0.010 effective per M080134-v2
(equivalent to Brett's d3=0.010, flex3=0)
sn -> 0
su -> 0.003
si -> 0.003
sl -> 0.015
nn0 -> 0.25
nn1 -> 0.09
n0 -> 0.2
n1 -> 0.06
n2 -> 0.14
n3 -> 0.1775
2010
n4 -> 0.17025
Email from Marielle to BNS
4/27/10
n5 -> 0.17025
Email from Marielle to BNS
4/27/10
tln -> 0.416
match tlnspec
tl1 -> 0.277 derived from l's, d's, should
match tllspec
tl2 -> 0.341
match tl2spec
tl3 -> 0.602
derived from l's, d's, should
match tl3spec
derived from l's, d's, should
derived from l's, d's, should
T1000405-v1 (unused)
T1000405-v1
T1000405-v1
T1000405-v1
T1000405-v1
T1000405-v1
T1000405-v1
T1000405-v1
T1000405-v1
from drawings, BNS 22 June

```
```

bd -> 0.
unstretched -> False
vertblades -> True
matlabcompat -> False
uln -> 0.447566
ul1 -> 0.307352
ul2 -> 0.338918
ul3 -> 0.589189
sln -> 0.449009
sl1 -> 0.308373
sl2 -> 0.339908
sl3 -> 0.594578
sin -> -0.356341
si1 -> -0.453995
si2 -> 0.110324
si3 -> 0.
cn -> 0.934356
c1 -> 0.891004
c2 -> 0.993896
c3 -> 1.
pitchbul -> 0
pitchbur -> 0
pitchbil -> 0
pitchbir -> 0
pitchbll -> 0
pitchblr -> 0
rollbul -> 0
rollbur -> 0
rollbil -> 0
rollbir -> 0
rollbll -> 0
rollblr -> 0
-7
An -> 9.50332 10
A1 -> 3.97035 10
A2 -> 3.16692 10
A3 -> 1.25664 10
kwn -> 448700.
kw1 -> 272953.

```
```

kwZ -> LY/bZU.
kw3 -> 18034.7 Brett:
grad_descent_fit_z_bfgs_28July2010_part1 divided by 2 wires per side, updated by Gauss-Newton
Fit by Brett Shapiro on 14 Feb 2013
flexn -> 0.00453391 calculated as usual
flex1 -> 0.00275221 calculated as usual
flex2 -> 0.00292327 calculated as usual
flex3 -> 0.00385931 calculated as usual
kbuz -> 1444.29 Gauss-Newton Fit by Brett
Shapiro on 14 Feb 2013
kbiz -> 1666.68 Gauss-Newton Fit by Brett
Shapiro on 14 Feb 2013
kblz -> 2437.53
Shapiro on 14 Feb 2013
kbux -> 100000. as for middle
kbix -> 100000. Justin 11/29/05
kblx -> 80000. Ian 12/09/05
bdu -> 0.418615
bdi -> 0.298015
bdl -> 0.159502
mn3 -> 123.262 calculated as usual
m13 -> 101.263 calculated as usual
m23 -> 79.264 calculated as usual
Inxy -> -0.0375599 T1000286-v9, 11.1 Main Top
Mass, (*1e-6 to get into kg/m^2, rotated into right-handed coordinates (rotate 180deg about Z
axis))
Inyz -> -0.0000465463 T1000286-v9, 11.1 Main Top
Mass, (*1e-6 to get into kg/m^2, rotated into right-handed coordinates (rotate 180deg about Z
axis))
Inzx -> -0.00171841 T1000286-v9, 11.1 Main Top
Mass, (*1e-6 to get into kg/m^2, rotated into right-handed coordinates (rotate l80deg about Z
axis))
COMOx -> 0
COMOy -> 0
COMOz -> 0
FRP0x -> 0
FRP0y -> 0
FRPOz -> 0
I1xy -> -0.0132064
T1000286-v9, 11.5 Main UI
Mass, After Addition of Pitch Adjuster (*1e-6 to get into kg/m^2, rotated into right-handed
coordinates (rotate 180deg about Z axis))
I1yz -> 0.0000137417 T1000286-v9, 11.5 Main UI
Mass, After Addition of Pitch Adjuster (*1e-6 to get into kg/m^2, rotated into right-handed
coordinates (rotate 180deg about Z axis))
I1zx -> -8.08401 10 T1000286-v9, 11.5 Main UI
Mass, After Addition of Pitch Adjuster (*1e-6 to get into kg/m^2, rotated into right-handed
coordinates (rotate 180deg about Z axis))
COM1x -> 0
COM1y -> 0

```
```

COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
I2xy -> 0
I2yz -> 0
I2zx -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0
I3yz -> 0
I3zx -> 0
COM3x -> 0
COM3y -> 0
COM3z -> 0
FRP3x -> 0
FRP3y -> 0
FRP3z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03
-14
Mn1 -> 7.18688 10
Mn2 -> 7.18688 10
M11 -> 1.25444 10
M12 -> 1.25444 10-14
-15
M21 -> 7.98114 10
-15
M22 -> 7.98114 10
M31 -> 2.01062 10
M32 -> 2.01062 10
temperature -> 290.
boltzmann -> 1.38066 10
alphasilica -> 3.9 10
by MB, 3/13/08

```
```

betasilica -> 0.000152
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
1 0
Ysilica -> 7.27 10
-10
phisilica -> 4.1 10
-11
phissilica -> 3. 10
rhosteel -> 7800.
Csteel -> 460.
Ksteel -> 49.
1 1
Ysteel -> 2.12 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0001
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
1 1
Ymarag -> 1.87 10
alphamarag -> 0.000011
betamarag -> -0.00025
wrong
phimarag -> 0.0001
tmU -> 0.0043
tmI -> 0.0046
tmL -> 0.0042
magicnumber -> 0.0737472
99
deltabladeU -> 0.00182883
deltabladeI -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00278559
deltawireI -> 0.00278009
deltawireL -> 0.00277408
deltafibre -> 2.5317 10
taubladeU -> 0.336093
taubladeI -> 0.384626
taubladeL -> 0.320643
tauwireU -> 0.00653413
+auminat -> n กnつ7つ987

```
```

tauwireL -> 0.00217746
taufibre -> 0.058088
damping[imag, bladeUtype] -> (0.0001 + 0.000------------ \& )
1 + 4.45943 \#1
0.00441968 \#1
damping[imag, bladeItype] -> (0.0001 + ------------------- \& )
1 + 5.84032 \#1
0.00368446 \#1
damping[imag, bladeLtype] -> (0.0001 + ----------------- \&)
1 + 4.05884 \#1
damping[imag, wireUtype] -> (0.0001 \& )
damping[imag, wireItype] -> (0.0001 \& )
damping[imag, wireLtype] -> (0.0001 \& )
0.000114363 \#1
damping[imag, wireUatype] -> (0.0001 + --------------------
1 + 0.00168552 \#1
damping[imag, wireIatype] -> (0.0001 + 0.0000476847 \#1
1 + 0.0002942 \#1
0.0000379532 \#1
damping[imag, wireLatype] -> (0.0001 + --------------------- \& )
1 + 0.00018718 \#1
-8
damping[imag, fibretype] -> (3.116 10 \& )
damping[imag, fibreatype] -> (6.191 10 -8 9.24013 10 \#1
1 + 0.133209 \#1
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx0 -> 0
kcony0 -> 0
kconz0 -> 0
kconyaw0 -> 0
kconpitch0 -> 0
kconroll0 -> 0
kconx1 -> 0
kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0

```
```

kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
ribbons -> False
dumbbell -> True
Inxz -> -0.00171841
Inzy -> -0.0000465463
Inyx -> -0.0375599
-6
I1xz -> -8.08401 10
I1zy -> 0.0000137417
I1yx -> -0.0132064
if -> 0.
m2alt -> 39.9667
I2xalt -> 0.577518
I2yalt -> 0.421981
calculated from shape, density, cf. Brett's calc
I2zalt -> 0.421981
tf -> 0.095
m3alt -> 39.5876
I3xalt -> 0.566907
density, cf. Brett's calc
I3zalt -> 0.410278 calculated from shape, density
tlnspec -> 0.416
tl1spec -> 0.277
tl2spec -> 0.341
tl3spec -> 0.602
derived from vertical heights, d's derived from vertical heights, d's derived
from vertical heights, d's derived from vertical heights, d's
r3m -> 0.0002
T1000428-v2, midsection
T1000428-v2, midsection
r3n -> 0.0004
800 \mum diameter end sections
800 \mum diameter end sections
M050397-02/T010103-05
calculated from shape, density
calculated from shape, density
calculated from shape, density
calculated from shape, density
M050397-02/T010103-05 (unused)
calculated from shape, density
calculated from shape,
calculated from shape, density
NR 4/3/06, T010103-05
T1000428-v2, midsection
NR $4 / 3 / 06$, T010103-05
NR $4 / 3 / 06, ~ T 010103-05$
Nertical heights, d's

```
```

t 3m -> t3
W3m -> W3
t3n -> 3.11761 Sqre[--------- ]
optstress
1
W3n -> 31.1761 Sqrt[----------
optstress
r3m -> 0.0002 T1000428-v2, midsection
T1000428-v2, midsection
r3n -> 0.0004
-7
A3n -> 5.02655 10
-7
A3m -> 1.25664 10
nf -> 0.0257732
kw3alt -> 15829.1
roughly match kw3
6
kw3n -> 2.3617 10
longitudinal elasticity of one fibre neck
kw3m -> 16044.2
kw3m -> 16044.2
ffn -> 0.807
linear fit version (not used)
ff1 -> 0.641
linear fit version (not used)
ff2 -> 0.608
kffn -> 0.69223
kff1 -> 0.67339
kff2 -> 1.06749
bend1 -> 0.00496695
bend2 -> 0.00485987
thetan -> -20.8756
theta1 -> -27.0003
theta2 -> 6.33399
theta3 -> 0.
sigmasilica -> 0.17
*
dssilica -> 0.015
1 0
Gsilica -> 3.10684 10

```
shear modulus
```

```
shear modulus
```

```
8 0 0 ~ \mu m ~ d i a m e t e r ~ e n d ~ s e c t i o n s
```

```
8 0 0 ~ \mu m ~ d i a m e t e r ~ e n d ~ s e c t i o n s
```

Back to Top

## Case 20120601TMproductionTMrehang of Mathematica model QuadLite2Lateral

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

## Formal name and description

```
{"mark.barton", "20120601TMproductionTMrehang"}
```

```
20120601TMproductionTMrehang, based on
^trunk/QUAD/Common/MatlabTools/QuadModel_Production/quadopt_fiber.m r2731 of 6/1/12, with
changes for wire rehang. Exported Matlab uploaded as
^trunk/QUAD/Common/MatlabTools/QuadModel_Production/quadopt_wirerehang.m
```


## Links to Result Sections

Mode Summary	Mode Shapes	Parameters			
modeL1 modeT1 modeV1 modeP1 modeY1   modeR1       modeL2 modeT2 modeY2 modeP2 modeL3   modeT3       modeV2 modeY3 modeP3 modeR2 modeP4 modeY4					
modeR3	modeL4	modeV3	modeT4	modeV4	modeR4

## Mode Summary

Back to Top

N	f	name	type			
1	0.434672	modeL1	pitch3	pitch2	pitch1	
2	0.461331	modeT1	y 3	roll3	roll2	
3	0.548679	modeV1	z 3	z 2		
4	0.562986	modeP1	pitch3	pitch2		
5	0.601232	modeY1	yaw3	yaw2		
6	0.838875	modeR1	roll1	roll2	roll3	
7	0.983038	modeL2	x 2	pitch0	x1	$x 3$
8	1.03606	modeT2	$y^{2}$	rollı	roll3	y1
9	1.36168	modeY2	yaw3	yaw1		
10	1.44161	modeP 2	pitch0	pitch1		
11	2.00486	modeL3	$x 0$	pitch0	x1	
12	2.12165	modeT3	roll1	yo	y1	
13	2.22184	modeV2	z 0	z1		
14	2.38749	modeY3	yaw0	yaw2		
15	2.52198	modeP 3	pitch1	pitch2	pitch3	
16	2.63003	modeR2	roll1	rollo	pitch0	
17	2.84646	modeP 4	pitch1			


18	3.03675	modeY4	yaw1	yaw2	
19	3.32094	modeR3	pitch0	pitch1	roll0
20	3.4283	modeL4	x1	x0	
21	3.56765	modeV3	z1	z0	
22	5.08241	modeT4	roll0	pitch0	
23	17.1158	modeV4	z3	z2	
24	24.011	modeR4	roll3	roll2	


Top	UIM	PUM/PRM	TM/CP/ERM
336.193	495.765	434.887	229.703

## Mode Shapes

## Mode \#1-modeL1

Back to Top
0.434672 Hz

	x	y	z	yaw	pitch	roll
Mass N	0.0642433	0	0	0	-0.352924	0.00122569
Mass U	0.113647	0.000276062	0	0	-0.404523	0.00246869
Mass 2	0.185186	0.000493338	0	0	-0.505757	0.00212929
optic	0.342454	0.000916115	0	0	-0.536084	0.00209195



## Mode \#2 - modeT1

Back to Top

	x	y	z	yaw	pitch	roll
Mass N	-0.000473114	0.0983126	0	0	-0.0156734	0.212239
Mass U	-0.000796534	0.185651	0	0	-0.0128238	0.283487
Mass 2	-0.00117472	0.332391	0	-0.000112149	-0.0093873	0.349897
optic	-0.00237665	0.68544	0	-0.000135751	-0.00997622	0.356529



## Mode \#3 - modeV1

Back to Top
0.548679 Hz

	x	y	z	yaw	pitch	roll
Mass N	0	0	-0.265139	0	0	0
Mass U	0	0	-0.473953	0	0	0
Mass 2	0	0	-0.593138	0	0	0
optic	0	0	-0.594354	0	0	0




## Mode \#4 - modeP1

Back to Top

```
0.562986 Hz
```

$x$	$y$	z	yaw	pitch	roll	
Mass N	-0.00461745	-0.000123956	0	0	-0.29791	0.00152298
Mass U	-0.00721975	0	0	0	-0.390559	0.00397715
Mass 2	-0.00522449	-0.000109764	0	0	-0.584804	0.0032626
optic	-0.0170184	-0.000433477	0	0	-0.645205	0.00316299



## Mode \#5-modeY1

Back to Top
0.601232 Hz

	x	y	z	yaw	pitch	roll
Mass N	0	0	0	-0.17159	0	0
Mass U	0	0	0	-0.391659	0	0
Mass 2	0	0	0	-0.520721	0	0
nntin	0	0	$\cap$	$-\cap 738924$	$\cap$	$\cap$



Mode \#6 - modeR1

Back to Top

```
0.838875 Hz
```

x	y	z	yaw	pitch	roll	
Mass N	-0.000116682	0.00714527	0	0	0.0399381	-0.150798
Mass U	-0.000264177	0.00163354	0	0	0.0257692	-0.575457
Mass 2	-0.000145973	-0.010125	0	0	-0.0167192	-0.574572
optic	0.000154311	0.0169859	0	-0.00023419	-0.0213725	-0.559049




## Mode \#7 - modeL2

Back to Top

```
0.983038 Hz
```

$x$	$y$	z	yaw	pitch	roll	
Mass N	0.269198	0.000130037	0	0	-0.479671	-0.0010352
Mass U	0.423505	0.00033879	0	0	-0.263792	-0.015601
Mass 2	0.509847	-0.000156363	0	0	0.109199	-0.0179657
optic	-0.382187	0.000163722	0	0	0.172327	-0.0175184



## Mode \#8 - modeT2

Back to Top

```
1.03606 Hz
```

	x	y	z	yaw	pitch	roll
Mass N	0.000151757	-0.231595	0	0.000131933	0.0255394	-0.136625
Mass U	0.000205531	-0.3771	0	0	-0.00175871	0.406665
Mass 2	0.000282397	-0.501522	0	0	0.000472397	0.352417
optic	-0.00017666	0.314216	0	-0.000241901	0.000719875	0.380797




## Mode \#9 - modeY2

Back to Top
1.36168 Hz

	x	y	z	yaw	pitch	roll
Mass N	0	0	0	0.316017	-0.000335618	-0.000167041
Mass U	0	0	0	0.533703	-0.000166216	0
Mass 2	0	0	0	0.358976	0	0.000169956
optic	0	0	0	-0.697446	0	0.000165743



Mode \#10-modeP2

Back to Top

x	y	z	yaw	pitch	roll	
Mass N	0.00174614	0.00069983	0	0	0.836533	-0.0113063
Mass U	0.000736192	-0.000621847	0	0	0.538097	0.00520078
Mass 2	0.00126232	0.000591362	0	0	-0.0322791	0.0176108
optic	-0.000345623	-0.000169699	0	0	-0.0941025	0.0172121



## Mode \#11-modeL3

Back to Top
2.00486 Hz

x	y	z	yaw	pitch	roll	
Mass N	0.530904	-0.00230943	0	0	-0.480014	0.0206289
Mass U	0.446104	0.00020156	0	0	0.166403	0.0039239
Mass 2	-0.32254	0	0	0	0.109679	-0.006715
optic	0.0370215	0	0	0	-0.378234	-0.00662102




## Mode \#12-modeT3

Back to Top

```
2.12165 Hz
```

	x	y	z	yaw	pitch	roll
Mass N	0.00140359	0.470303	0	0.000575722	0.150619	-0.0738388
Mass U	0.00093564	0.438228	0	0	-0.0997454	0.6877
Mass 2	-0.000704193	-0.269125	0	-0.000466888	-0.00620238	0.0269466
optic	0	0.027236	0	0.00017439	0.014372	0.0400893



Mode \#13-modeV2
Back to Top
2.22184 Hz

	x	y	z	yaw	pitch
Mass N N	0	0	0.834953	0	0
Mass U	0	0	0.469229	0	0
0					


Mass 2	0	0	-0.19982	0	0	0
optic	0	0	-0.206759	0	0	0



Mode \#14-modeY3

Back to Top
2.38749 Hz

	x	y	z	yaw	pitch	roll
Mass N	0	-0.00031376	0	-0.745163	0.00109089	0.00416736
Mass U	0	0.00024736	0	-0.118619	0.00276715	0.00293885
Mass 2	0	0	0	0.632971	0.000607062	-0.00191034
optic	0	0	0	-0.173109	-0.000744421	-0.00188961




## Mode \#15-modeP3

Back to Top

```
2.52198 Hz
```

x	y	z	yaw	pitch	roll	
Mass N	-0.00641497	-0.00646401	0	0.00137481	-0.465402	0.0867923
Mass U	-0.00177261	0.00588962	0	0.000540847	0.538621	0.0607729
Mass 2	0.00264553	-0.00133298	0	-0.00139387	0.496303	-0.031479
optic	-0.000183364	0.000118648	0	0.000332198	-0.483371	-0.0311812



## Mode \#16-modeR2

Back to Top

```
2.63003 Hz
```

	x	y	z	yaw	pitch	roll
Mass N	-0.00174666	0.0420712	0	-0.00461512	-0.368506	-0.464096
Mass U	0.000378233	-0.0247759	0	-0.00324762	-0.191743	-0.624933
Mass 2	0.000203175	0.00103322	0	0.00585205	0.144429	0.30405
optic	0	-0.000311085	0	-0.00125834	-0.119873	0.30229




## Mode \#17-modeP4

Back to Top

```
2.84646 Hz
```

	x	y	z	yaw	pitch	roll
Mass N	0.000282552	0.00322868	0	0	0.494969	-0.0451688
Mass U	0.000213982	-0.00568813	0	-0.000423863	-0.846136	0.0615914
Mass 2	-0.000101188	0.00196933	0	0.000467796	0.150543	-0.0272138
optic	0	0	0	0	-0.09504	-0.027259



Mode \#18-modeY4

	x	y	z	yaw	pitch	roll
Mass N	0	0	0	-0.528735	0.00363168	0.000921891
Mass U	0	0.000180775	0	0.656414	-0.00672999	-0.00455013
Mass 2	0	0	0	-0.531835	0.000734751	0.0015519
optic	0	0	0	0.081402	-0.000378328	0.00155785



## Mode \#19-modeR3

Back to Top
3.32094 Hz

	X	Y	Z	yaw	pitch	roll
Mass N	-0.00381516	0.0646618	0	-0.00518536	-0.547486	-0.451124
Mass U	0.0033445	-0.0703594	0	0.00272544	0.508006	0.43887
Mass 2	-0.00044206	0.0142104	0	-0.00154878	-0.0362463	-0.131731
optic	0	-0.000455074	0	0.000193369	0.0143859	-0.133416




## Mode \#20 - modeL4

Back to Top

```
3.4283 Hz
```

	x	$y$	z	yaw	pitch	roll
Mass N	-0.613005	-0.0161684	0	0.00102226	0.426914	0.0974235
Mass U	0.619447	0.0167534	0	-0.000444192	-0.107337	-0.0714278
Mass 2	-0.0947071	-0.00298692	0	0.000225533	-0.138319	0.0210669
optic	0.00345601	0	0	0	0.0507127	0.0214207



Mode \#21-modeV3

Back to Top
3.56765 Hz

	x	y	z	yaw	pitch	roll
Mass N	0	0	0.548546	0	0	0


Mass U	0	0	-0.821719	0	0	0
Mass 2	0	0	0.104212	0	0	0
optic	0	0	0.114083	0	0	0



## Mode \#22-modeT4

Back to Top
5.08241 Hz

	x	y	z	yaw	pitch	roll
Mass N	-0.000178882	0.0747545	0	0.00404428	0.513565	0.822688
Mass U	0.000284513	-0.0677007	0	-0.000457041	-0.116615	-0.188182
Mass 2 0	0.00422328	0	0	0.00222514	0.010122	
optic 0	0	0	0	-0.000306673	0.010501	




## Mode \#23-modeV4

Back to Top

```
17.1158 Hz
```

	x	y z	yaw	pitch	roll	
Mass N	0	0	-0.000183189	0	0	0
Mass U	0	0	0.0138464	0	0	0
Mass 2	0	0	-0.703992	0	0	0
optic	0	0	0.710073	0	0	0



## Mode \#24-modeR4

Back to Top

```
24.011 Hz
```

	x	y	z	yaw	pitch	roll
Mass N	0	0	0	0	0	0
Mass U	0	-0.000138507	0	0	0.00104449	0.00566447
Mass 2	0	0.000561678	0	0	0	-0.633903
optic	0	-0.000497433	0	0	0	0.773391




## Parameters

Back to Top

```
g -> 9.81
nx -> 0.13 T040214-01, also T1000405-v1,
BNS 5/15/09 (display only)
ny -> 0.5 T040214-01, also T1000405-v1,
BNS 5/15/09 (display only)
nz -> 0.084 T040214-01, also T1000405-v1,
BNS 5/15/09 (display only)
denn -> 683.94
mn -> 21.999
E1000186_v18_QUAD-2_Process_Traveler
Inx -> 0.460035
Iny -> 0.0727234
Inz -> 0.472177
ux -> 0.13
BNS 5/15/09 (display only)
uy -> 0.5
uz -> 0.084 T040214-01, also T1000405-v1,
BNS 5/15/09 (display only)
den1 -> 740.934
m1 -> 21.526
measured value listed in
E1000186_v18_QUAD-2_Process_Traveler (note, this is not the UIM with the pitch adjuster !)
I1x -> 0.50471 T1000286-v9
I1y -> 0.0724024
I1z -> 0.518216
ix -> 0.2
ir -> 0.17
T1000405-v1, BNS 5/15/09
T1000405-v1, BNS 5/15/09
```

```
den2 -> 2201
http://www.sciner.com/Opticsland/FS.htm (T1000405-v1 says 2200)
m2 -> 40.391
 BNS - measured 1/20/09,
+O.761 adjusted April 2009 for PUM magnet installation
I2x -> 0.680066
gradient_descent_fit_y_pitch_roll_Test_locked; BNS 5/9/09
I2y -> 0.439441
gradient_descent_fit_y_pitch_roll_Test_locked; BNS 5/9/09
I2z -> 0.41557
gradient_descent_fit_yaw.m; BNS 7/29/2008
tx -> 0.2
tr -> 0.17
den3 -> 2201
http://www.sciner.com/Opticsland/FS.htm
m3 -> 39.631
2_Process_Traveler - metal mass
I3x -> 0.56779
I3y -> 0.41955
calculated from shape, density
I3z -> 0.410601
ln -> 0.449192
date
from tlnspec, d's, previously 0.449192
11 -> 0.308585
date
from tl1spec, d's, previously 0.308585
12 -> 0.330787
date
from vertical heights, d's, previously 0.5820
l3 -> 0.604322 derived from tl3spec, d's,
previously 0.5820
nwn -> 2
nw1 -> 4
nw2 -> 4
nw3 -> 4
rn -> 0.00055 T1000428-v2
r1 -> 0.0003555 T1000428-v2
r2 -> 0.0003175 T1000428-v2
r3 -> 0.0002285 T1000428-v2
 1 1
Yn -> 2.12 10
measured, MB, 11/18/05, via
IFOModel v4.1; cf. 2.2 in T010103-05
 1 1
Y1 -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05
 1 1
Y2 -> 2.12 10
 1 1
Y3 -> 2.12 10
different from new Ysilica
dm -> -0.00352908
```

```
dn -> 0.00423185
Jeff's increase of 0.001
d0 -> -0.00174908
d1 -> 0.00399068 Jeff's increase of 0.001
d2 -> 0.00708433
d3 -> -0.00116094
d4 -> -0.00116094
sn -> 0
su -> 0.003
si -> 0.003
sl -> 0.015
nn0 -> 0.25
nn1 -> 0.09
n0 -> 0.2
n1 -> 0.06
n2 -> 0.14
n3 -> 0.17195
n4 -> 0.17195
n5 -> 0.17675
tln -> 0.416201
match tlnspec
tl1 -> 0.277482
match tllspec
tl2 -> 0.340315
match tl2spec
tl3 -> 0.601981
match tl3spec
ltotal -> 1.63598
bd -> 0.
unstretched -> False
vertblades -> True
matlabcompat -> False
uln -> 0.447746
ul1 -> 0.30756
ul2 -> 0.329816
ul3 -> 0.602633
sln -> 0.449192
sl1 -> 0.308585
sl2 -> 0.330787
sl3 -> 0.604322
sin -> -0.356195
si1 -> -0.453684
si2 -> 0.0965878
si3 -> 0.00794279
```

```
cn -> 0.934412
c1 -> 0.891163
c2 -> 0.995324
c3 -> 0.999968
pitchbul -> 0
pitchbur -> 0
pitchbil -> 0
pitchbir -> 0
pitchbll -> 0
pitchblr -> 0
collbul -> 0
rollbur -> 0
rollbil -> 0
rollbir -> 0
rollbll -> 0
rollblr -> 0
 -7
An -> 9.50332 10
A1 -> 3.97035 10
A2 -> 3.16692
-7
A3 -> 1.6403 10
kwn -> 448517.
kw1 -> 272766
kw2 -> 202967
kw3 -> 57542.6
flexn -> 0.00452908
flex1 -> 0.00274908
flex2 -> 0.00291567
flex3 -> 0.00216094
kbuz -> 1429.46
grad_descent_fit_z__bfgs_28July2010_part1
kbiz -> 1648.69
grad_descent_fit_z__bfgs_28July2010_part1
kblz -> 2382.97
grad_descent_fit_z__bfgs_28July2010_part1
kbux -> 100000.
kbix -> 100000.
kblx -> 80000.
bdu -> 0.423936
bdi -> 0.302114
bdl -> 0.164714
```

calculated as usual
calculated as usual
calculated as usual
calculated as usual

Brett:

Brett:

Brett:
as for middle

Justin 11/29/05

Ian 12/09/05

```
mn3 -> 123.547
 calculated as usual
m13 -> 101.548
calculated as usual
m23 -> 80.022
Inxy -> -0.0375599
Inyz -> -0.0000465463
change
Inzx -> -0.00171841
change
COMOx -> 0
COMOY -> 0
COMOz -> 0
FRP0x -> 0
FRP0y -> 0
FRPOz -> 0
I1xy -> -0.0132064
I1yz -> 0.0000137417
change
I1zx -> -8.08401 10
change
COM1x -> 0
COM1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
I2xy -> 0
I2yz -> 0
I2zx -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0
I3yz -> 0
I3zx -> 0
COM3x -> 0
COM3y -> 0
COM3z -> 0
FRP3x -> 0
FRP3y -> 0
FRP3z -> 0
```

```
btx -> 0.03
bty -> 0.03
btz -> 0.03
 -14
Mn1 -> 7.18688 10
Mn2 -> 7.18688 10
 -14
M11 -> 1.25444 10
 -14
M12 -> 1.25444 10
 -15
M21 -> 7.98114 10
M22 -> 7.98114 10
 -15
M31 -> 2.14109 10
M32 -> 2.14109 10
temperature -> 290.
 -23
boltzmann -> 1.38066 10
-7
alphasilica -> 5.1 10
betasilica -> 0.000152
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
 10
Ysilica -> 7.27 10
 -10
phisilica -> 4.1 10
 -11
phissilica -> 3. 10
rhosteel -> 7800.
Csteel -> 460.
Ksteel -> 49.
 1 1
Ysteel -> 2.12 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0001
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
 11
Ymarag -> 1.87 10
alphamarag -> 0.000011
```

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1
surface

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1
measured, MB, 11/18/05

IFOModel v4.1
IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

IFOModel v4.1

```
betamarag -> -0.00025
wrong
phimarag -> 0.0001
tmU -> 0.0043
tmI -> 0.0046
tmL -> 0.0042
magicnumber -> 0.0737472
99
deltabladeU -> 0.00182883
deltabladeI -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00278635
deltawireI -> 0.00278099
deltawireL -> 0.0027771
deltafibre -> 0.00276315
taubladeU -> 0.336093
taubladeI -> 0.384626
taubladeL -> 0.320643
tauwireU -> 0.00653413
tauwireI -> 0.00272987
tauwireL -> 0.00217746
taufibre -> 0.00112781
damping[imag, bladeUtype] -> (0.0001 + --------------- &)
 1 + 4.45943 #1
 0.00441968 #1
damping[imag, bladeItype] -> (0.0001 + ---------------- &)
 1 + 5.84032 #1
 0.00368446 #1
damping[imag, bladeLtype] -> (0.0001 + ----------------- &)
 1 + 4.05884 #1
damping[imag, wireUtype] -> (0.0001 &)
damping[imag, wireItype] -> (0.0001 &)
damping[imag, wireLtype] -> (0.0001 &)
damping[imag, wireUatype] -> (0.0001 + --------------------- &)
 2
 1 + 0.00168552 #1
damping[imag, wireIatype] -> (0.0001 + 0.0000477003 #1
 1 + 0.0002942 #1
 0.0000379945 #1
damping[imag, wireLatype] -> (0.0001 + -------------------------
 1 + 0.00018718 #1
damping[imag, fibretype] -> (0.0001 &)
 0.0000195802 #1
```



```
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx0 -> 0
kcony0 -> 0
kconz0 -> 0
kconyaw0 -> 0
kconpitch0 ->
kconroll0 -> 0
kconx1 -> 0
kcony1 -> 0
kconzl -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 ->
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
ribbons -> False
dumbbell -> True
Inxz -> -0.00171841
Inzy -> -0.0000465463
Inyx -> -0.0375599
 -6
I1xz -> -8.08401 10
I1zy -> 0.0000137417
IIyx -> -0.0132064
if -> 0.
```

M050397-02/T010103-05

```
tf -> 0.095
m3alt -> 39.5876
I3xalt -> 0.566907
density, cf. Brett's calc
I3zalt -> 0.410278 calculated from shape, density
tlnspec -> 0.416
tl1spec -> 0.277
tl2spec -> 0.341
tl3spec -> 0.602
l3test -> 0.604322
ffn -> 0.807
linear fit version (not used)
ff1 -> 0.641
linear fit version (not used)
ff2 -> 0.608
linear fit version (not used)
kffn -> 0.692374
kff1 -> 0.673672
kff2 -> 1.059
bend1 -> 0.00498093
bend2 -> 0.00490635
thetan -> -20.8667
theta1 -> -26.9803
theta2 -> 5.54272
theta3 -> 0.455093
sigmasilica -> 0.17
 1 0
Gsilica -> 3.10684 10
dssilica -> 0.015
```

M050397-02/T010103-05 (unused)

```
M050397-02/T010103-05 (unused)
from Ian's data, 11/30/05,
from Ian's data, 11/30/05,
from Ian's data, 11/30/05,
```

from Ian's data, 11/30/05,

```
```

calculated from shape, density

```
calculated from shape, density
calculated from shape,
calculated from shape,
NR 4/3/06, T010103-05
from Ian's data, 11/30/05,
from Ian's data, 11/30/05,
not used
not used
not used
not used
not used
not used
calculated as usual
shear modulus
shear modulus
IFOModel v4.1
```

IFOModel v4.1

```

\section*{Back to Top}

\section*{Case 20120831TMproductionCP of Mathematica model QuadLite2Lateral}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

{"mark.barton", "20120831TMproductionCP" }

```
Corresponds to ^/trunk/QUAD/Common/MatlabTools/QuadModel_Production/quadopt_thincp.m r3304. Some
minor MOI errors in 21020601 TMproductionCP (cf. r2731) were corrected.

\section*{Links to Result Sections}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mode Summary & Mode Shapes & \multicolumn{2}{|c|}{ Parameters } \\
\begin{tabular}{|c|c|c|c|c|}
\hline modeL1 & modeT1 & modeV1 & modeP1 & modeY1
\end{tabular} modeL2 \\
\hline modeT2 & modeR1 & modeY2 & modeP2 & modeL3 & modeT3 \\
\hline modeV2 & modeY3 & modeR2 & modeP3 & modeY4 & modeP4 \\
\hline modeR3 & modeL4 & modeV3 & modeT4 & modeV4 & modeR4 \\
\hline
\end{tabular}

\section*{Mode Summary}

Back to Top
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & f & name & type & & & \\
\hline 1 & 0.459444 & modeL1 & pitch3 & pitch2 & pitch1 & pitch0 \\
\hline 2 & 0.489339 & modeT1 & y 3 & roll3 & roll2 & \\
\hline 3 & 0.550098 & modeV1 & z 3 & z 2 & & \\
\hline 4 & 0.611664 & modeP1 & pitch 3 & pitch2 & pitch1 & \\
\hline 5 & 0.664019 & modeY1 & yaw3 & yaw2 & & \\
\hline 6 & 0.80953 & modeL2 & x3 & pitch3 & \(x 2\) & \\
\hline 7 & 0.815788 & modeT2 & roll1 & roll3 & roll2 & \\
\hline 8 & 0.87408 & modeR1 & roll1 & roll3 & roll2 & \\
\hline 9 & 1.34216 & modeY2 & yaw3 & & & \\
\hline 10 & 1.34265 & modeP 2 & pitch0 & & & \\
\hline 11 & 1.90484 & modeL3 & x 0 & x 1 & pitch3 & \\
\hline 12 & 2.02972 & modeT3 & roll1 & y1 & & \\
\hline 13 & 2.22781 & modeV2 & z 0 & & & \\
\hline 14 & 2.23941 & modeY3 & yaw0 & yaw2 & & \\
\hline 15 & 2.63028 & modeR2 & pitch1 & rolll & rollo & \\
\hline 16 & 2.72736 & modeP 3 & pitch1 & pitch0 & & \\
\hline 17 & 2.95764 & modeY4 & yaw1 & yaw0 & & \\
\hline 18 & 3.28416 & modeP 4 & pitch 3 & & & \\
\hline
\end{tabular}
\begin{tabular}{|lllllll}
19 & 3.31786 & modeR3 & pitch3 & pitch1 & pitch0 roll1 \\
20 & 3.40497 & modeL4 & pitch3 & x0 & x1 & \\
21 & 3.58115 & modeV3 & z1 & z0 & & \\
22 & 5.04888 & modeT4 & roll0 & pitch0 & & \\
23 & 19.7505 & modeV4 & z3 & & & \\
24 & 27.8594 & modeR4 & roll3 & & &
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
Violin \\
Modes
\end{tabular} & Top & UIM & PUM/PRM & TM/CP/ERM \\
\hline \(\mathrm{f}(\mathrm{Hz})\), & 335.2671 .4391009 .76 \\
\(\mathrm{n}=1-4\) & 1351.25 & \begin{tabular}{l}
494.64990 .4671488 .68 \\
1990.49
\end{tabular} & \begin{tabular}{l}
433.145867 .311 \\
1303.531742 .84
\end{tabular} & \begin{tabular}{l}
163.897327 .918 \\
\hline Q, n=1-4
\end{tabular} \\
\hline \begin{tabular}{l}
144772.188715. \\
186069.165419.
\end{tabular} & \begin{tabular}{l}
111109.156990. \\
164331.152783.
\end{tabular} & \begin{tabular}{l}
96976.4143955. \\
157980.152796.
\end{tabular} & \begin{tabular}{l}
69619.86143 .1102464. \\
111658.
\end{tabular} \\
\hline
\end{tabular}

\section*{Mode Shapes}

\section*{Mode \#1 - modeL1}

Back to Top
```

0.459444 Hz

```
\begin{tabular}{|lllllll|}
\hline\(x\) & \(y\) & z & yaw & pitch & roll \\
Mass N & 0.0658833 & 0.00012168 & 0 & 0 & -0.390695 & 0.00155456 \\
Mass U & 0.115897 & 0.000348393 & 0 & 0 & -0.422576 & 0.00314138 \\
Mass 2 & 0.187459 & 0.000621682 & 0 & 0 & -0.478245 & 0.00266678 \\
optic & 0.382965 & 0.00127436 & 0 & 0 & -0.490371 & 0.00266769 \\
\hline
\end{tabular}

Mode \#2-modeT1

Back to Top
\begin{tabular}{|lllllll|}
\hline & x & y & zitch & roll \\
Mass N & -0.000562004 & 0.0917635 & 0 & 0 & pil & \\
Mass U & -0.000957133 & 0.172672 & 0 & 0.00010304 & -0.0188336 & 0.271499 \\
Mass 2 & -0.00138189 & 0.307511 & 0 & 0.000119167 & -0.0127654 & 0.334351 \\
optic & -0.00319996 & 0.727241 & 0 & 0.000141431 & -0.0130902 & 0.334498 \\
\hline
\end{tabular}

\section*{Mode \#3 - modeV1}

Back to Top
0.550098 Hz
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass N & 0 & 0 & -0.267937 & 0 & 0 \\
Mass U & 0 & 0 & -0.475699 & 0 & 0 \\
Mass 2 & 0 & 0 & -0.592111 & 0 & 0 \\
optic & 0 & 0 & -0.592727 & 0 & 0
\end{tabular}

\section*{Mode \#4 - modeP1}

Back to Top
0.611664 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & -0.00375538 & -0.000183004 & 0 & 0 & -0.390747 & 0.00254736 \\
Mass U & -0.00590433 & 0 & 0 & 0 & -0.448553 & 0.00668239 \\
Mass 2 & -0.00318963 & -0.000102674 & 0 & -0.000109057 & -0.555778 & 0.0054441 \\
optic & -0.0206059 & -0.000920923 & 0 & -0.00014463 & -0.580201 & 0.00544735 \\
\hline
\end{tabular}

Mode \#5-modeY1
Back to Top
0.664019 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & -0.179145 & 0.000127067 & 0 \\
Mass U & 0 & 0 & 0 & -0.403299 & 0.000121137 & 0
\end{tabular}
\begin{tabular}{lllllll}
Mass 2 & 0 & 0 & 0 & -0.519568 & 0.000169452 & 0 \\
optic & 0 & 0 & 0 & -0.731646 & 0.000178431 & 0
\end{tabular}

Mode \#6 - modeL2

Back to Top
0.80953 Hz
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.17221 & 0.000925863 & 0 & 0 & -0.0335264 & 0.0120793 \\
Mass U & -0.283034 & 0.00235264 & 0 & 0 & -0.148563 & 0.0388688 \\
Mass 2 & -0.381167 & 0.00450121 & 0 & 0 & -0.35696 & 0.0377321 \\
optic & 0.659248 & -0.00793129 & 0 & 0 & -0.393861 & 0.0377723 \\
\hline
\end{tabular}

Mode \#7-modeT2

Back to Top
```

0.815788 Hz

```
\begin{tabular}{|lllllll|}
\hline x & \(y\) & y & yaw & pitch & roll \\
Mass N & 0.000865013 & 0.0204541 & 0 & 0 & -0.0353392 & 0.181484 \\
Mass U & 0.0014402 & 0.0460723 & 0 & -0.000195499 & -0.0128784 & 0.562174 \\
Mass 2 & 0.00148732 & 0.0839712 & 0 & -0.00028973 & 0.0390694 & 0.554981 \\
optic & -0.00233714 & -0.141444 & 0 & -0.000515086 & 0.0424093 & 0.555581 \\
\hline
\end{tabular}

\section*{Mode \#8 - modeR1}

Back to Top
0.87408 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & -0.000161257 & 0.0345367 & 0 & 0 & 0.041596 & -0.124486 \\
\hline Mass U & -0.000292327 & 0.0484113 & 0 & 0.00010311 & 0.0231547 & -0.591645 \\
\hline Mass 2 & 0 & 0.0592148 & 0 & 0.000160278 & -0.0308616 & -0.555633 \\
\hline optic & 0 & -0.0692877 & 0 & 0.000322018 & -0.0339252 & -0.556343 \\
\hline
\end{tabular}
\(\mid+\)

\section*{Mode \#9-modeY2}

Back to Top
```

1.34216 Hz

```
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0.145522 & -0.0220248 & 0.00029879 \\
Mass U & 0 & 0 & 0 & 0.248222 & -0.0131408 & -0.000272367 \\
Mass 2 & 0 & 0 & 0 & 0.173469 & 0.0025484 & -0.000547468 \\
optic & 0 & 0 & 0 & -0.941511 & 0.00325904 & -0.000549128
\end{tabular}

Mode \#10-modeP2
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & 0.000327269 & -0.000310958 & 0 & -0.00148375 & -0.846056 & 0.00862454 \\
Mass U & 0.00112238 & 0.000845414 & 0 & -0.00260913 & -0.507567 & -0.00885703 \\
Mass 2 & -0.00101065 & -0.000311998 & 0 & -0.00182809 & 0.0986327 & -0.0180518 \\
optic & 0.0003701 & 0.000104296 & 0 & 0.0098753 & 0.126163 & -0.0181065 \\
\hline
\end{tabular}

\section*{Mode \#11-modeL3}

Back to Top
```

1.90484 Hz

```
\begin{tabular}{|lllllll}
\hline x & y & z & yaw & pitch & roll \\
Mass N & 0.613442 & -0.000352214 & 0 & 0 & 0.0900156 & -0.00391586 \\
Mass U & 0.568891 & -0.000855347 & 0 & 0 & 0.197084 & -0.0026419 \\
Mass 2 & -0.235909 & 0.00025356 & 0 & 0 & -0.21433 & 0.00483675 \\
optic & 0.0304343 & 0 & 0 & 0 & -0.38797 & 0.00486652
\end{tabular}

Mode \#12-modeT3
Back to Top
2.02972 Hz
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.000619272 & -0.450667 & 0 & -0.000481932 & -0.1939 & -0.0579501 \\
Mass U & -0.000469355 & -0.460789 & 0 & 0 & 0.00650185 & -0.718418 \\
Mass 2 & 0.000162818 & 0.164509 & 0 & 0.000294695 & -0.000249005 & -0.00478286 \\
optic & 0 & -0.018454 & 0 & -0.000172501 & -0.000499445 & -0.00482532 \\
\hline
\end{tabular}

\section*{Mode \#13-modeV2}

Back to Top
2.22781 Hz

X \(\quad\) Y \(\quad\) z
\begin{tabular}{lllllll}
Mass N & \(U\) & \(U\) & \(U .84012 Z\) & \(U\) & \(U\) & \(U\) \\
Mass U & 0 & 0 & 0.457372 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & -0.204382 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.207928 & 0 & 0 & 0
\end{tabular}

Mode \#14-modeY3

Back to Top
```

2.23941 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0.00021028 & 0 & -0.726075 & -0.000861733 & -0.00251108 \\
Mass U & 0 & -0.000119395 & 0 & -0.302933 & -0.00268214 & -0.00115489 \\
Mass 2 & 0 & 0 & 0 & 0.565962 & 0 & 0.00103822 \\
optic & 0 & 0 & 0 & -0.246406 & 0.0002488 & 0.00104709 \\
\hline
\end{tabular}

Mode \#15-modeR2

Back to Top
```

2.63028 Hz

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & Z & yaw & pitch & roll \\
\hline Mass N & 0.000132793 & -0.0436101 & 0 & -0.00110369 & -0.00570904 & 0.454209 \\
\hline Mass U & -0.000587222 & 0.0243352 & 0 & -0.0041887 & 0.606226 & 0.518516 \\
\hline Mass 2 & 0.000192727 & -0.000163624 & 0 & 0.00344079 & -0.010338 & -0.272249 \\
\hline optic & 0 & 0 & 0 & -0.00096973 & -0.0682386 & -0.275471 \\
\hline
\end{tabular}

Mode \#16-modeP3

Back to Top
2.72736 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & -0.000289693 & 0.00184339 & 0 & -0.000278979 & -0.546153 & -0.00431448 \\
\hline Mass U & -0.000718238 & 0.0020544 & 0 & 0 & 0.82347 & -0.0949056 \\
\hline Mass 2 & 0.00023667 & -0.00107566 & 0 & 0 & -0.00864873 & 0.0482487 \\
\hline optic & 0 & 0 & 0 & 0 & -0.098935 & 0.0488634 \\
\hline
\end{tabular}
\(1 \quad 1\)

\section*{Mode \#17-modeY4}

Back to Top
```

2.95764 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & -0.631848 & -0.00232826 & 0 \\
Mass U & 0 & 0 & 0 & 0.682009 & 0.00362501 & 0.00549854 \\
Mass 2 & 0 & 0 & 0 & -0.360308 & 0 & -0.00211692 \\
optic & 0 & 0 & 0 & 0.0758423 & -0.000534352 & -0.00214871 \\
\hline
\end{tabular}

\section*{Mode \#18-modeP4}

Back to Top
3.28416 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.00725096 & -0.0188208 & 0 & -0.00147188 & 0.0808976 & 0.135953 \\
Mass U & -0.00585105 & 0.0206221 & 0 & 0.000691722 & 0.051162 & -0.135508 \\
Mass 2 & 0.000269248 & -0.00284385 & 0 & -0.000249524 & -0.301069 & 0.0451973 \\
optic & 0 & 0.000110301 & 0 & 0 & 0.926451 & 0.0460377 \\
\hline
\end{tabular}

\section*{Mode \#19-modeR3}

Back to Top
3.31786 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.00537436 & 0.0543095 & 0 & 0.00387054 & -0.432304 & -0.373499 \\
Mass U & -0.00494176 & -0.0589686 & 0 & -0.00188389 & 0.451912 & 0.390534 \\
Mass 2 & 0.000355645 & 0.00793931 & 0 & 0.000724353 & -0.175145 & -0.12646 \\
optic & 0 & -0.000301442 & 0 & -0.00011614 & 0.497028 & -0.12886 \\
\hline
\end{tabular}

Mode \#20 - modeL4

Back to Top
3.40497 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0.46937 & -0.00347374 & 0 & -0.000218376 & 0.0167689 & 0.0203181 \\
\hline Mass U & \(-0.465584\) & 0.00383038 & 0 & 0.000149605 & -0.265421 & -0.0362913 \\
\hline Mass 2 & 0.0455366 & -0.000520055 & 0 & 0 & 0.272767 & 0.0104199 \\
\hline optic & -0.00170657 & 0 & 0 & 0 & -0.643224 & 0.0106284 \\
\hline
\end{tabular}

Mode \#21-modeV3
Back to Top
\begin{tabular}{|lllllll|}
\hline & x & y z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0.539448 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.826475 & 0 & 0 & 0 \\
Mass 2 20 & 0 & 0.11128 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.116409 & 0 & 0 & 0 \\
\hline
\end{tabular}

Mode \#22-modeT4

Back to Top
5.04888 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0 & 0.0764172 & 0 & -0.00395125 & 0.498942 & 0.831374 \\
\hline Mass U & 0.000109072 & -0.0689644 & 0 & 0.000447547 & -0.112557 & -0.190685 \\
\hline Mass 2 & 0 & 0.00284022 & 0 & 0 & 0.00180687 & 0.0102902 \\
\hline optic & 0 & 0 & 0 & 0 & -0.000845634 & 0.0107543 \\
\hline
\end{tabular}

\section*{Mode \#23-modeV4}

Back to Top
19.7505 Hz
\begin{tabular}{|lllllll|}
\hline & x & y z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0 & 0 & 0 \\
Mass U & 0 & 0 & 0.00479676 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & -0.32203 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.946717 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#24-modeR4}

Back to Top
27.8594 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0 & 0 & 0 \\
Mass U & 0 & 0 & 0 & 0 & 0.000371137 & 0.00204675 \\
Mass 2 & 0 & 0 & 0 & 0 & 0 & -0.300833 \\
optic & 0 & 0 & 0 & 0 & 0 & 0.953675
\end{tabular}

\section*{Parameters}

\section*{Back to Top}
```

g -> 9.81
nx -> 0.13
ny -> 0.5
nz -> 0.084
denn -> 0
mn -> 22.002
E1000186_v18_QUAD-2_Process_Traveler
Inx -> 0.461176
Mass
Iny -> 0.0742518
Mass
Inz -> 0.472634
Mass
ux -> 0.13
uy -> 0.5
uz -> 0.084
den1 -> 0
m1 -> 21.532
E1000186_v18_QUAD-2_Process_Traveler
I1x -> 0.50522 T1000286-v9, reaction UlM with
pitch adjuster, Joe's zz
I1y -> 0.073433
I1z -> 0.518171
pitch adjuster, Joe's xx

	T040214-01 (display only)
	T040214-01 (display only)
	T040214-01 (display only)
	(unused)
	measured value listed in
	T1000286-v9 11.2 Reaction Top
	T1000286-v9 11.2 Reaction Top
	T1000286-v9 11.2 Reaction Top
	T040214-01 (display only)
	T040214-01 (display only)
	T040214-01 (display only)
	(unused)
	measured value listed in
	T1000286-v9, reaction UIM with
	T1000286-v9, reaction UIM with
	T1000286-v9, reaction UIM with

```
```

ix -> 0.13
ir -> 0.17 T1000405-v1
den2 -> 0
m2 -> 59.229
listed in E1000186_v18_QUAD-2_Process_Traveler by m2 = 26.130+53.138-20.039
I2x -> 0.923275 T1000286-v9 11.8 PRM for CP
I2y -> 0.535571
I2z -> 0.52348
tx -> 0.10032
tr -> 0.170055
den3 -> 0
m3 -> 20.039
2_Process_Traveler
I3x -> 0.289751
I3y -> 0.161682
I3z -> 0.161682
ln -> 0.449192
date
11 -> 0.308585
date
12 -> 0.330787 from QUAD01BUILD0101M0, out of
date
13 -> 0.60406
date
nwn -> 2
nw1 -> 4
nw2 -> 4
nw3 -> 4
rn -> 0.00055
r1 -> 0.000355
r2 -> 0.0003175
r3 -> 0.0002285
1 1
Yn -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05

```

\section*{11}
```

Y1 -> 2.1210
IFOModel v4.1; cf. 2.2 in T010103-05

```

\section*{11}
```

Y2 -> 2.1210
IFOModel v4.1; cf. 2.2 in T010103-05

```

\section*{11}
```

Y3 -> 2.1210
IFOModel v4.1; cf. 2.2 in T010103-05
dm -> -0.0035428
6/18/08
dn -> 0.00319273
blade correction; BNS 6/18/08
d0 -> -0.00175151

```
effective value 0.001 after
T1000428-v7

T1000428-v7

T1000428-v7

T1000428-v7
measured, MB, 11/18/05, via
measured, MB, 11/18/05, via
measured, MB, 11/18/05, via
measured, MB, 11/18/05, via
effective value 0.001; BNS
effective value 0.001
```

d1 -> 0.00293649
effective value 0.001 after
blade correction; BNS 6/18/08
d2 -> 0.00789637 Originally 0.010 effective BNS
6/18/08; Adjustment for new wire clamp design BNS 2/16/09. 0.18 mm subtracted to match Joe's
updated value, BNS 7/21/09.

d3 -> -0.00203908	0.0010 effective; BNS 6/18/08
d4 -> -0.00203908	0.0010 effective; BNS 6/18/08
sn -> 0	T1000405-v1 (unused)
su -> 0.003	T1000405-v1
si -> 0.003	T1000405-v1
sl -> 0.015	T1000405-v1
nn0 -> 0.25	T1000405-v1
nn1 -> 0.09	T1000405-v1
n0 -> 0.2	T1000405-v1
n1 -> 0.06	T1000405-v1
n2 -> 0.14	T1000405-v1
n3 -> 0.1762	CT, email to NR, 9/22/04
n4 -> 0.1712	CT, email to NR, 9/22/04
n5 -> 0.1712	CT, email to NR, 9/22/04

tln -> 0.416187
t11 -> 0.276441
tl2 -> 0.339633
tl3 -> 0.599982
ltotal -> 1.63224
bd -> 0.
unstretched -> False
vertblades -> True
matlabcompat -> False
uln -> 0.447755
ul1 -> 0.307565
ul2 -> 0.329823
ul3 -> 0.603206
sln -> 0.449192
sl1 -> 0.308585
sl2 -> 0.330787
sl3 -> 0.60406
sin -> -0.356195
si1 -> -0.453684
si2 -> 0.109436
si3 -> 0.
cn -> 0.934412
c1 -> 0.891163

```
```

c2 -> 0.993994
c3 -> 1.
pitchbul -> 0
pitchbur -> 0
pitchbil -> 0
pitchbir -> 0
pitchbll -> 0
pitchblr -> 0
rollbul -> 0
rollbur -> 0
rollbil -> 0
rollbir -> 0
rollbll -> 0
rollblr -> 0
An -> 9.50332 10
A1 -> 3.95919 10
A2 -> 3.16692 10
A3 -> 1.6403 10
kwn -> 448517.
kw1 -> 271999.
kw2 -> 202967.
kw3 -> 57567.6
flexn -> 0.0045428
flex1 -> 0.00275151
flex2 -> 0.00292363
flex3 -> 0.00303908
kbuz -> 1411.464026291042094835154548022
freqs; BNS 6/19/08
kbiz -> 1650.524059045379672879214321779
freqs; BNS 6/19/08
kblz -> 2423.519015280238231051986060810
freqs; BNS 6/19/08
kbux -> 100000.
kbix -> 100000.
kblx -> 80000.
bdu -> 0.426751
bdi -> 0.299556
bdl -> 0.160432
mn3 -> 122.802
m13 -> 100.8
m2マ -> 79 つК8

```
calculated as usual calculated as usual calculated as usual calculated as usual Solved for given mass and Solved for given mass and Solved for given mass and as for middle Justin 11/29/05 Ian 12/09/05
calculated as usual
calculated as usual

```

Inxy -> -0.0375611
T1000286-v9 11.2 Reaction Top
Mass
Inyz -> -0.0000435986
T1000286-v9 11.2 Reaction Top
Mass
Inzx -> 0.00171393
T1000286-v9 11.2 Reaction Top
Mass
COM0x -> 0
COMOy -> 0
COMOz -> 0
FRP0x -> 0
FRP0y -> 0
FRPOz -> 0
I1xy -> -0.0132118
T1000286-v9, reaction UIM with
pitch adjuster, Joe's yz
I1yz -> 0.0000501027
T1000286-v9, reaction UIM with
pitch adjuster, -Joe's xy
I1zx -> -0.0000341209
pitch adjuster, -Joe's zx
COM1x -> 0
COM1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
I2xy -> -0.0000587085
I2yz -> 0.0000237613
I2zx -> 0.0000440743
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0
I3yz -> 0
I3zx -> 0
COM3x -> 0
COM3y -> 0
COM3z -> 0
FRP3x -> 0
FRP3y -> 0
FRP3z -> 0
btx -> 0.03

```
```

Dty -> U.Us
btz -> 0.03

```
 \(-14\)
Mn1 -> 7.1868810
Mn2 -> 7.1868810
 \(-14\)
M11 -> 1.2473910
 -14
M12 -> 1.2473910
M21 -> 7.9811410
M22 -> 7.9811410
 \(-15\)
M31 -> 2.1410910
 \(-15\)
M32 -> 2.1410910
temperature -> 290.
 \(-23\)
boltzmann -> 1.3806610
alphasilica -> 5.110
betasilica -> 0.000152
rhosilica -> 2200 .
Csilica -> 772 .
Ksilica -> 1.38
 10
Ysilica -> 7.2710
 \(-10\)
phisilica -> 4.110
 \(-11\)
phissilica -> 3. 10
rhosteel -> 7800 .
Csteel -> 460 .
Ksteel -> 49.
 11
Ysteel -> 2.1210
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0001
rhomarag -> 7800 .
Cmarag -> 460 .
Kmarag -> 20
 11
Ymarag -> 1.8710
alphamarag -> 0.000011
betamarag -> -0.00025
wrong
IFOModel v 4.1
surface
IFOModel v 4.1
IFOModel v 4.1
measured, MB, 11/18/05
IFOModel v4.1
Geppo's value - Bench v4.1 is
```

phimarag -> 0.0001
IFOModel v4.1
tmU -> 0.0043
tmI -> 0.0046
tmL -> 0.0042
magicnumber -> 0.0737472
99
deltabladeU -> 0.00182883
deltabladeI -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00280734
deltawireI -> 0.00281891
deltawireL -> 0.002776
deltafibre -> 0.00261486
taubladeU -> 0.336093
taubladeI -> 0.384626
taubladeL -> 0.320643
tauwireU -> 0.00653413
tauwireI -> 0.00272219
tauwireL -> 0.00217746
taufibre -> 0.00112781
damping[imag, bladeUtype] -> (0.0001 + --------------- \& )
1+4.45943 \#1
0.00441968 \#1
damping[imag, bladeItype] -> (0.0001 + --------------- \& )
1 + 5.84032 \#1
0.00368446 \#1
damping[imag, bladeLtype] -> (0.0001 + --------------- \& )
1 + 4.05884 \#1
damping[imag, wireUtype] -> (0.0001 \& )
damping[imag, wireItype] -> (0.0001 \& )
damping[imag, wireLtype] -> (0.0001 \& )
damping[imag, wireUatype] -> (0.0001 + --------------------- \& )
2
1+0.00168552 \#1
0.0000482147 \#1
damping[imag, wireIatype] -> (0.0001 + --------------------- \& )
1+0.000292548 \#1
0.0000379795 \#1
damping[imag, wireLatype] -> (0.0001 + -------------------- \& )
1 + 0.00018718 \#1
damping[imag, fibretype] -> (0.0001 \& )
0.0000185295 \#1
damping[imag, fibreatype] -> (0.0001 + ---------------------- \& )
2
1 + 0.0000502144 \#1

```
```

x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx0 -> 0
kcony0 -> 0
kconz0 -> 0
kconyaw0 -> 0
kconpitch0 -> 0
kconroll0 -> 0
kconx1 -> 0
kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
ribbons -> False
dumbbell -> True
Inxz -> 0.00171393
Inzy -> -0.0000435986
Inyx -> -0.0375611
I1xz -> -0.0000341209
I1zy -> 0.0000501027
I1yx -> -0.0132118
I2xz -> 0.0000440743
I2zy -> 0.0000237613
I2yx -> -0.0000587085

```
```

A3n -> 1.6403 10
bend1 -> 0.00494424
bend2 -> 0.00486012
thetan -> -20.8667
thetal -> -26.9803
theta2 -> 6.2828
theta3 -> 0.
sigmasilica -> 0.17
Gsilica -> 3.10684 10
dssilica -> 0.015
calculated as usual
10
0
modulus

```

Back to Top

\section*{Case 20120831TMproductionERM of Mathematica model QuadLite2Lateral}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

{"mark.barton", "20120831TMproductionERM" }

```
Corresponds to ^/trunk/QUAD/Common/MatlabTools/QuadModel_Production/quadopt_erm.m r3304. Some
minor MOI errors in 21020601 TMproductionERM (cf. r2731) were corrected.

\section*{Links to Result Sections}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Mode Summary & Mode Shapes & \multicolumn{2}{l|}{ Parameters } \\
\begin{tabular}{|c|c|c|c|c|}
\hline modeL1 & modeT1 & modeV1 & modeP1 & modeY1 \\
modeR1 \\
\hline modeL2 & modeT2 & modeP2 & modeY2 & modeL3 \\
modeT3 \\
\hline modeV2 & modeY3 & modeR2 & modeP3 & modeY4 \\
modeP4 \\
\hline modeR3 & modeL4 & modeV3 & modeT4 & modeV4
\end{tabular} modeR4 \\
\hline
\end{tabular}

\section*{Mode Summary}

Back to Top
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & f & name & type & & \\
\hline 1 & 0.450845 & modeL1 & pitch3 & pitch2 & pitch1 pitch0 \\
\hline 2 & 0.479208 & modeT1 & y 3 & roll3 & roll2 \\
\hline 3 & 0.550444 & modeV1 & z3 & z2 & \\
\hline 4 & 0.60238 & modeP1 & pitch3 & pitch2 & pitch1 \\
\hline 5 & 0.648033 & modeY1 & yaw3 & yaw2 & \\
\hline 6 & 0.834372 & modeR1 & roll1 & roll3 & roll2 \\
\hline 7 & 0.859087 & modeL2 & x3 & x 2 & x1 \\
\hline 8 & 0.907233 & modeT2 & roll1 & roll3 & roll2 \\
\hline 9 & 1.33693 & modeP 2 & pitch0 & & \\
\hline 10 & 1.34081 & modeY2 & yaw3 & & \\
\hline 11 & 1.92516 & modeL3 & x 0 & x1 & pitch3 \\
\hline 12 & 2.0476 & modeT3 & roll1 & y 1 & \\
\hline 13 & 2.2276 & modeV2 & z 0 & & \\
\hline 14 & 2.28221 & modeY3 & yaw0 & yaw2 & \\
\hline 15 & 2.62396 & modeR2 & pitch1 & roll1 & rollo \\
\hline 16 & 2.70885 & modeP 3 & pitch1 & pitch0 & \\
\hline 17 & 2.97614 & modeY4 & yaw1 & yaw0 & \\
\hline 18 & 2.98639 & modeP 4 & pitch3 & pitch1 & \\
\hline
\end{tabular}
\begin{tabular}{|llllll}
19 & 3.31274 & modeR3 & pitch0 & roll1 & roll0 \\
20 & 3.40455 & modeL4 & x0 & x1 & \\
21 & 3.58064 & modeV3 & z1 & z0 & \\
22 & 5.04715 & modeT4 & roll0 & pitch0 & \\
23 & 18.3013 & modeV4 & z3 & & \\
24 & 25.6281 & modeR4 & roll3 & &
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \begin{tabular}{l}
Violin \\
Modes
\end{tabular} & Top & UIM & PUM/PRM & TM/CP/ERM \\
\hline \(\mathrm{f}(\mathrm{Hz})\), & 335.017671 .073 & 494.31989 .8081487 .69 & 432.778866 .577 & 186.428372 .964 \\
\(\mathrm{n}=1-4\) & 1009.221350 .52 & 1989.18 & 1302.431741 .38 & 559.718746 .799 \\
\hline Q, n=1-4 & \begin{tabular}{l}
144648.188553. \\
185901.165262.
\end{tabular} & \begin{tabular}{l}
110989.156818. \\
164144.152600.
\end{tabular} & \begin{tabular}{l}
96841.1143748. \\
157744.152557.
\end{tabular} & \begin{tabular}{l}
80280.7106206. \\
129541.143394.
\end{tabular} \\
\hline
\end{tabular}

\section*{Mode Shapes}

\section*{Mode \#1 - modeL1}

Back to Top
```

0.450845 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.0664457 & -0.000116542 & 0 & 0 & 0.390165 & -0.0014854 \\
Mass U & -0.117015 & -0.000333793 & 0 & 0 & 0.422548 & -0.00298759 \\
Mass 2 & -0.189692 & -0.000596139 & 0 & 0 & 0.479361 & -0.00253247 \\
optic & -0.373672 & -0.00117825 & 0 & 0 & 0.495672 & -0.00253355 \\
\hline
\end{tabular}

Mode \#2-modeT1
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.000538458 & 0.0943753 & 0 & 0 & -0.0222017 & 0.20427 \\
Mass U & -0.000918403 & 0.177725 & 0 & 0.000100482 & -0.0179963 & 0.275869 \\
Mass 2 & -0.00133309 & 0.317309 & 0 & 0.000116425 & -0.0120167 & 0.341301 \\
optic & -0.00292961 & 0.711876 & 0 & 0.000138918 & -0.0124309 & 0.341485 \\
\hline
\end{tabular}

\section*{Mode \#3-modeV1}

Back to Top
```

0.550444 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch roll \\
Mass N & 0 & 0 & -0.267935 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.475669 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & -0.592031 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.592831 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#4 - modeP1}

Back to Top
0.60238 Hz
\begin{tabular}{|lllllll|}
\hline & x & \(y\) & z & yaw & pitch & roll \\
Mass N & 0.00378288 & 0.000173393 & 0 & 0 & 0.385983 & -0.00240512 \\
Mass U & 0.00596688 & 0 & 0 & 0 & 0.444656 & -0.00626962 \\
Mass 2 & 0.00332783 & 0.000100995 & 0 & 0.000115135 & 0.554338 & -0.00508784 \\
optic & 0.017387 & 0.000722443 & 0 & 0.00015472 & 0.587833 & -0.00509167 \\
\hline
\end{tabular}

Mode \#5-modeY1
Back to Top
0.648033 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0.1767 & -0.000132508 & 0 \\
Mass U & 0 & 0 & 0 & 0.399286 & -0.000129922 & 0
\end{tabular}
\begin{tabular}{lllllll}
Mass 2 & 0 & 0 & 0 & 0.517833 & -0.000181272 & 0 \\
optic & 0 & 0 & 0 & 0.735661 & -0.000194241 & 0
\end{tabular}

Mode \#6 - modeR1

Back to Top
0.834372 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & X & Y & Z & yaw & pitch & roll \\
\hline Mass N & 0.000144373 & 0.00171993 & 0 & 0 & -0.0409348 & 0.163345 \\
\hline Mass U & 0.00026406 & 0.013747 & 0 & -0.000123373 & -0.0199937 & 0.578416 \\
\hline Mass 2 & 0 & 0.0341723 & 0 & -0.000197813 & 0.032416 & 0.560927 \\
\hline optic & 0.00016593 & \(-0.0521038\) & 0 & -0.000388528 & 0.0365946 & 0.56176 \\
\hline
\end{tabular}

Mode \#7-modeL2

Back to Top
```

0.859087 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.222945 & 0 & 0 & 0 & 0.112251 & 0.00116836 \\
Mass U & -0.362152 & 0.000149772 & 0 & 0 & -0.034197 & 0.00594976 \\
Mass 2 & -0.474369 & 0.000403761 & 0 & 0 & -0.297203 & 0.00592939 \\
optic & 0.608708 & -0.000534061 & 0 & 0 & -0.348402 & 0.00593874 \\
\hline
\end{tabular}

Mode \#8 - modeT2

Back to Top
```

0.907233 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & -0.0754284 & 0 & 0 & -0.0410657 & 0.0768963 \\
Mass U & 0.000107966 & -0.11795 & 0 & 0 & -0.0278383 & 0.587839 \\
Mass 2 & -0.000162053 & -0.160243 & 0 & 0 & 0.02376 & 0.534893 \\
optic & 0.000216965 & 0.161902 & 0 & -0.000179448 & 0.027495 & 0.535862 \\
\hline
\end{tabular}

\section*{Mode \#9 - modeP2}

Back to Top
```

1.33693 Hz

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0 & 0.000345205 & 0 & -0.000274822 & 0.844909 & -0.00851527 \\
\hline Mass U & -0.000788147 & -0.000781191 & 0 & -0.000392055 & 0.511658 & 0.00874516 \\
\hline Mass 2 & 0.00114224 & 0.000365137 & 0 & -0.000270362 & -0.0879007 & 0.0179104 \\
\hline optic & -0.000410053 & -0.000121282 & 0 & 0.00103883 & -0.125738 & 0.0179803 \\
\hline
\end{tabular}

Mode \#10-modeY2
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & -0.199076 & -0.00351602 & 0 \\
Mass U & 0 & 0 & 0 & -0.339731 & -0.00222928 & 0 \\
Mass 2 & 0 & 0 & 0 & -0.237608 & 0.000389048 & 0 \\
optic & 0 & 0 & 0 & 0.887962 & 0.000557943 & 0 \\
\hline
\end{tabular}

\section*{Mode \#11-modeL3}

Back to Top
1.92516 Hz
\begin{tabular}{|lllllll}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass N & -0.614169 & 0.000504905 & 0 & 0 & -0.0171074 & 0.00134469 \\
Mass U & -0.557446 & 0.000689412 & 0 & 0 & -0.198872 & 0.00230688 \\
Mass 2 & 0.268566 & -0.000243384 & 0 & 0 & 0.152759 & -0.00362853 \\
optic & -0.0337951 & 0 & 0 & 0 & 0.419009 & -0.00365817
\end{tabular}

\section*{Mode \#12-modeT3}

Back to Top
2.0476 Hz
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.00063053 & -0.444505 & 0 & -0.000323924 & -0.190448 & -0.0427501 \\
Mass U & -0.000483082 & -0.446813 & 0 & 0 & 0.0222081 & -0.727811 \\
Mass 2 & 0.000198063 & 0.18452 & 0 & 0.000181215 & -0.000732207 & 0.00176728 \\
optic & 0 & -0.0202728 & 0 & 0 & -0.00254286 & 0.00177061 \\
\hline
\end{tabular}

\section*{Mode \#13-modeV2}

Back to Top
2.2276 Hz

\begin{tabular}{lllllll}
Mass N & \(U\) & \(U\) & \(-U .83 y y z y\) & \(U\) & \(U\) & \(U\) \\
Mass U & 0 & 0 & -0.457475 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & 0.2041 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.208715 & 0 & 0 & 0
\end{tabular}

\section*{Mode \#14-modeY3}

Back to Top
2.28221 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & zitch & roll \\
Mass N & 0 & 0.000239711 & 0 & -0.734046 & -0.000898499 & -0.00289334 \\
Mass U & 0 & -0.000144728 & 0 & -0.247536 & -0.00310605 & -0.00149403 \\
Mass 2 & 0 & 0 & 0 & 0.592253 & 0 & 0.00120532 \\
optic & 0 & 0 & 0 & -0.221616 & 0.000346863 & 0.00121923 \\
\hline
\end{tabular}

Mode \#15-modeR2
Back to Top
```

2.62396 Hz

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0.000199396 & 0.0417693 & 0 & 0.00196754 & 0.0507925 & -0.436939 \\
\hline Mass U & 0.00065775 & -0.0233905 & 0 & 0.00373188 & -0.639738 & -0.497388 \\
\hline Mass 2 & -0.000311808 & 0.000230514 & 0 & -0.00380312 & -0.0198462 & 0.256928 \\
\hline optic & 0 & 0 & 0 & 0.000986632 & 0.114291 & 0.260866 \\
\hline
\end{tabular}

Mode \#16-modeP3

Back to Top
```

2.70885 Hz

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0.000792614 & -0.0031225 & 0 & 0.000236552 & 0.555882 & 0.0165227 \\
\hline Mass U & 0.000715542 & -0.00136594 & 0 & -0.000147895 & -0.800426 & 0.106654 \\
\hline Mass 2 & -0.00038013 & 0.00121727 & 0 & 0.000143614 & -0.044112 & -0.0536609 \\
\hline optic & 0 & 0 & 0 & 0 & 0.175647 & -0.0545386 \\
\hline
\end{tabular}
1.

\section*{Mode \#17-modeY4}

Back to Top
```

2.97614 Hz

```
\begin{tabular}{|llllllll}
\hline & x & y & z & yaw & roll \\
Mass N & 0 & 0 & 0 & 0.602862 & -0.00062326 & 0.000803286 \\
Mass U & 0 & 0.000192896 & 0 & -0.679844 & 0.00380208 & -0.00570884 \\
Mass 2 0 & 0 & 0 & 0.409909 & -0.00607791 & 0.00215398 \\
optic & 0 & 0 & 0 & -0.0781487 & 0.0118878 & 0.00219667 \\
\hline
\end{tabular}

\section*{Mode \#18-modeP4}

Back to Top
2.98639 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & -0.00381705 & 0.00361417 & 0 & 0.00471976 & 0.191106 & -0.0387708 \\
Mass U & 0.00176082 & -0.00466636 & 0 & -0.00487164 & -0.461766 & 0.032765 \\
Mass 2 & 0.000323719 & 0.000947461 & 0 & 0.00286964 & 0.399833 & -0.0140413 \\
optic & 0 & 0 & 0 & -0.000542635 & -0.766353 & -0.0143216 \\
\hline
\end{tabular}

\section*{Mode \#19-modeR3}

Back to Top
```

3.31274 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.000825017 & 0.0677189 & 0 & 0.00495425 & -0.509663 & -0.471622 \\
Mass U & -0.00106427 & -0.0741016 & 0 & -0.00246913 & 0.466549 & 0.486821 \\
Mass 2 & 0.000131638 & 0.0113298 & 0 & 0.00106867 & -0.0375539 & -0.155638 \\
optic & 0 & -0.000432935 & 0 & -0.000158608 & 0.0429845 & -0.15948 \\
\hline
\end{tabular}

Mode \#20 - modeL4

Back to Top
3.40455 Hz
\begin{tabular}{|lllllll|}
\hline & x & \(y\) & \(z\) & yaw & pitch & roll \\
Mass N & -0.65497 & 0.00160361 & 0 & 0.00012272 & 0.027761 & -0.00898449 \\
Mass U & 0.651637 & -0.00190408 & 0 & -0.000109537 & 0.255725 & 0.027104 \\
Mass 2 & -0.0719544 & 0.000326404 & 0 & 0 & -0.190138 & -0.00733397 \\
optic & 0.0026723 & 0 & 0 & 0 & 0.194801 & -0.00752544 \\
\hline
\end{tabular}

Mode \#21-modeV3
Back to Top
3.58064 Hz
\begin{tabular}{|lllllll|}
\hline & x & y z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0.539686 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.826316 & 0 & 0 & 0 \\
Mass 2 20 & 0 & 0.11049 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.117186 & 0 & 0 & 0 \\
\hline
\end{tabular}

Mode \#22-modeT4
Back to Top
5.04715 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0 & -0.0763941 & 0 & 0.0039506 & -0.498982 & -0.831359 \\
\hline Mass U & -0.000108884 & 0.0689805 & 0 & -0.000447911 & 0.112627 & 0.190619 \\
\hline Mass 2 & 0 & -0.00318782 & 0 & 0 & -0.00193336 & -0.0100341 \\
\hline optic & 0 & 0 & 0 & 0 & 0.000576124 & -0.0106286 \\
\hline
\end{tabular}

\section*{Mode \#23-modeV4}

Back to Top
18.3013 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch roll \\
Mass N & 0 & 0 & 0 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.00769768 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & 0.44188 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.897041 & 0 & 0 & 0 \\
\hline
\end{tabular}

Mode \#24-modeR4

Back to Top
25.6281 Hz
\begin{tabular}{|lllllll|}
& x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0 & 0 & 0 \\
Mass U & 0 & 0 & 0 & 0 & -0.000593139 & -0.00326645 \\
Mass 2 20 & 0 & 0 & 0 & 0 & 0.40554 \\
optic & 0 & 0 & 0 & 0 & 0 & -0.914071
\end{tabular}

\section*{Parameters}

\section*{Back to Top}
\begin{tabular}{|c|c|}
\hline \(\mathrm{nx}->0.13\) & T040214-01 (display only) \\
\hline ny \(->0.5\) & T040214-01 (display only) \\
\hline \(n z \rightarrow 0.084\) & T040214-01 (display only) \\
\hline denn \(->0\) & (unused) \\
\hline \(m n->22.002\) & measured value listed in \\
\hline E1000186-v18 & \\
\hline Inx -> 0.461176 & T1000286-v9 11.2 Reaction Top \\
\hline Mass & \\
\hline Iny -> 0.0742518 & T1000286-v9 11.2 Reaction Top \\
\hline Mass & \\
\hline Inz -> 0.472634 & T1000286-v9 11.2 Reaction Top \\
\hline Mass & \\
\hline ux \(->0.13\) & T040214-01 (display only) \\
\hline uy \(->0.5\) & T040214-01 (display only) \\
\hline \(u z->0.084\) & T040214-01 (display only) \\
\hline den1 -> 0 & (unused) \\
\hline \(\mathrm{m1} \mathrm{->} 21.532\) & measured value listed in \\
\hline E1000186-v18 & \\
\hline \begin{tabular}{l}
I1x -> 0.50522 \\
pitch adjuster, Joe's zz
\end{tabular} & T1000286-v9, reaction UIM with \\
\hline \begin{tabular}{l}
\[
\text { IIy -> } 0.073433
\] \\
pitch adjuster, Joe's yy
\end{tabular} & T1000286-v9, reaction UIM with \\
\hline \begin{tabular}{l}
I1z -> 0.518171 \\
pitch adjuster, Joe's xx
\end{tabular} & T1000286-v9, reaction UIM with \\
\hline
\end{tabular}
```

ix -> 0.13
ir -> 0.17 T1000405-v1
den2 -> 0
m2 -> 53.138
E1000186_v18_QUAD-2_Process_Traveler
I2x -> 0.852587
I2y -> 0.498401
I2z -> 0.486309
tx -> 0.13028
tr -> 0.17004
den3 -> 3980
m3 -> 25.993
<nebula.ligo.caltech.edu/optics/>
I3x -> 0.375776
I3y -> 0.224652
I3z -> 0.224652
ln -> 0.449192
11 -> 0.308585
12 -> 0.330787
13 -> 0.60406
nwn -> 2
nw1 -> 4
nw2 -> 4
nw3 -> 4
rn -> 0.00055
r1 -> 0.000355
r2 -> 0.0003175
r3 -> 0.0002285
1 1
Yn -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05
1 1
Y1 -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05
1 1
Y2 -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05
1 1
Y3 -> 2.12 10
IFOModel v4.1; cf. 2.2 in T010103-05
dm -> -0.00354533
6/18/08
dn -> 0.00318414
blade correction; BNS 6/18/08
d0 -> -0.00175338 effective value 0.001
d1 -> 0.00292556
blade correction; BNS 6/18/08

```
```

d2 -> 0.00789384
Originally 0.010 effective BNS
6/18/08; Adjustment for new wire clamp design BNS 2/16/09. 0.18 mm subtracted to match Joe's
updated value, BNS 7/21/09.

d3 -> -0.00166841	0.0010 effective; BNS 6/18/08
d4 -> -0.00166841	0.0010 effective; BNS 6/18/08
sn -> 0	T1000405-v1 (unused)
su -> 0.003	T1000405-v1
si -> 0.003	T1000405-v1
sl -> 0.015	T1000405-v1
nn0 -> 0.25	T1000405-v1
nn1 -> 0.09	T1000405-v1
n0 -> 0.2	T1000405-v1
n1 -> 0.06	T1000405-v1
n2 -> 0.14	T1000405-v1
n3 -> 0.1762	CT, email to NR, 9/22/04
n4 -> 0.1712	CT, email to NR, 9/22/04
n5 -> 0.1712	CT, email to NR, 9/22/04

tln -> 0.416185
tl1 -> 0.27643
t12 -> 0.33962
tl3 -> 0.600723
ltotal -> 1.63296
bd -> 0.
unstretched -> False
vertblades -> True
matlabcompat -> False
uln -> 0.447756
ul1 -> 0.307567
ul2 -> 0.329825
ul3 -> 0.602953
sln -> 0.449192
sl1 -> 0.308585
sl2 -> 0.330787
sl3 -> 0.60406
sin -> -0.356195
si1 -> -0.453684
si2 -> 0.109436
si3 -> 0.
cn -> 0.934412
c1 -> 0.891163
c2 -> 0.993994
c3 -> 1.

```
```

pitchbul -> 0
pitchbur -> 0
pitchbil -> 0
pitchbir -> 0
pitchbll -> 0
pitchblr -> 0
rollbul -> 0
rollbur -> 0
rollbil -> 0
rollbir -> 0
rollbll -> 0
rollblr -> 0
An -> 9.50332 10
A1 -> 3.95919 10

- -7
kwn -> 448517.
kw1 -> 271999.
kw2 -> 202967.
kw3 -> 57567.6
flexn -> 0.00454533
flex1 -> 0.00275338
flex2 -> 0.00292616
flex3 -> 0.00266841
kbuz -> 1411.464026291042094835154548022
freqs; BNS 6/19/08
kbiz -> 1650.524059045379672879214321779
freqs; BNS 6/19/08
kblz -> 2423.519015280238231051986060810
freqs; BNS 6/19/08
kbux -> 100000.
kbix -> 100000.
kblx -> 80000
bdu -> 0.426275
bdi -> 0.299149
bdl -> 0.160155
mn3 -> 122.665
m13 -> 100.663
m23 -> 79.131
Inxy -> -0.0375611
Mass

```
calculated as usual
calculated as usual
calculated as usual
calculated as usual

Solved for given mass and

Solved for given mass and

Solved for given mass and
as for middle

Justin 11/29/05

Ian 12/09/05
calculated as usual
calculated as usual
calculated as usual

T1000286-v9 11.2 Reaction Top
```

Inyz -> -0.0000435986
T1000286-v9 11.2 Reaction Top
Inzx -> 0.00171393
T1000286-v9 11.2 Reaction Top
Mass
COMOx -> 0
COMOy -> 0
COMOz -> 0
FRP0x -> 0
FRP0y -> 0
FRPOz -> 0
I1xy -> -0.0132118
T1000286-v9, reaction UIM with
pitch adjuster, Joe's yz
I1yz -> 0.0000501027 T1000286-v9, reaction UIM with
pitch adjuster, -Joe's xy
I1zx -> -0.0000341209
pitch adjuster, -Joe's zx
COM1x -> 0
Com1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
I2xy -> -0.0000586847
I2yz -> 0.0000237548
I2zx -> 0.000044073
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0
I3yz -> 0
I3zx -> 0
COM3x -> 0
COM3y -> 0
COM3z -> 0
FRP3x -> 0
FRP3y -> 0
FRP3z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03

```
```

Mn1 -> 7.18688 10
-14
Mn2 -> 7.18688 10
-14
M11 -> 1.24739 10
-14
M12 -> 1.24739 10
-15
M21 -> 7.98114 10
-15
M22 -> 7.98114 10
-15
M32 -> 2.14109 10
temperature -> 290.
-23
boltzmann -> 1.38066 10
-7
alphasilica -> 5.1 10
betasilica -> 0.000152
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
1 0
Ysilica -> 7.27 10
-10
phisilica -> 4.1 10
-11
phissilica -> 3. 10
rhosteel -> 7800.
Csteel -> 460.
Ksteel -> 49.
1 1
Ysteel -> 2.12 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0001
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
1 1
Ymarag -> 1.87 10
alphamarag -> 0.000011
betamarag -> -0.00025
wrong
phimarag -> 0.0001
tmU -> 0.0043

```

IFOModel v4.1

IFOModel v4.1
IFOModel v4.1
IFOModel v4.1
IFOModel v4.1

IFOModel v4.1

IFOModel v4.1
surface
IFOModel v4.1
IFOModel v4.1
IFOModel v4.1
measured, MB, 11/18/05
IFOModel v4.1
IFOModel v4.1
IFOModel v4.1
IFOModel v4.1
IFOModel v4.1

IFOModel v4.1

IFOModel v4.1
IFOModel v4.1
Geppo's value - Bench v4.1 is

IFOModel v4.1

IFOModel v4.1
```

tmI -> 0.0046
tmL -> 0.0042
magicnumber -> 0.0737472
99
deltabladeU -> 0.00182883
deltabladeI -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00280695
deltawireI -> 0.00281841
deltawireL -> 0.00277545
deltafibre -> 0.00265949
taubladeU -> 0.336093
taubladeI -> 0.384626
taubladeL -> 0.320643
tauwireU -> 0.00653413
tauwireI -> 0.00272219
tauwireL -> 0.00217746
taufibre -> 0.00112781
damping[imag, bladeUtype] -> (0.0001 + ----------------- \& )
1 + 4.45943 \#1
0.00441968 \#1
damping[imag, bladeItype] -> (0.0001 + -------------------- \& )
1 + 5.84032 \#1
0.00368446 \#1
damping[imag, bladeLtype] -> (0.0001 + ----------------- \&)
1 + 4.05884 \#1
damping[imag, wireUtype] -> (0.0001 \& )
damping[imag, wireItype] -> (0.0001 \& )
damping[imag, wireLtype] -> (0.0001 \& )
.000115239 \#1
damping[imag, wireUatype] -> (0.0001 + --------------------- )
1 + 0.00168552 \#1
0.0000482062 \#1
damping[imag, wireIatype] -> (0.0001 + ---------------------- \& )
1 + 0.000292548 \#1
0.000037972 \#1
damping[imag, wireLatype] -> (0.0001 + ------------------------
1 + 0.00018718 \#1
damping[imag, fibretype] -> (0.0001 \& )
.0000188457 \#1
damping[imag, fibreatype] -> (0.0001 + ----------------------- \& )
1 + 0.0000502144 \#1
x00 -> 0
y00 -> 0

```
```

z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx0 -> 0
kcony0 -> 0
kconz0 -> 0
kconyaw0 -> 0
kconpitch0 -> 0
kconroll0 -> 0
kconx1 -> 0
kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
ribbons -> False
dumbbell -> True
Inxz -> 0.00171393
Inzy -> -0.0000435986
Inyx -> -0.0375611
I1xz -> -0.0000341209
I1zy -> 0.0000501027
I1yx -> -0.0132118
I2xz -> 0.000044073
I2zy -> 0.0000237548
I2yx -> -0.0000586847
-7
A3n -> 1.6403 10
henत1 -> ก ก@49275?

```
```

bend2 -> 0.00485172
calculated as usual
thetan -> -20.8667
thetal -> -26.9803
theta2 -> 6.2828
theta3 -> 0.
sigmasilica -> 0.17
1 0
Gsilica -> 3.10684 10
dssilica -> 0.015
calculated as usual
calculated as usual
calculated as usual
calculated as usual
shear modulus
IFOModel v4.1

```

Back to Top

\section*{Case 20121115TMproductionWire of Mathematica model QuadLite2Lateral}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

"20121115TMproductionWire"

```
```

Old-style metal build of main chain, without prisms. Corresponds to

```
^/trunk/QUAD/Common/MatlabTools/QuadModel_Production/quadopt_wire.m r3736 of 11/15/12.

\section*{Links to Result Sections}

\section*{Mode Summary Mode Shapes Parameters}
\begin{tabular}{|l|l|l|l|l|l|}
\hline modeL1 & modeT1 & modeV1 & modeP1 & modeY1 & modeR1 \\
\hline modeL2 & modeT2 & modeP2 & modeY2 & modeL3 & modeT3 \\
\hline modeV2 & modeY3 & modeP3 & modeR2 & modeP4 & modeY4 \\
\hline modeR3 & modeL4 & modeV3 & modeT4 & modeV4 & modeR4 \\
\hline
\end{tabular}

\section*{Mode Summary}

Back to Top
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & f & name & type & & & \\
\hline 1 & 0.434017 & modeL1 & pitch3 & pitch2 & pitch1 & pitcho \\
\hline 2 & 0.460117 & modeT1 & y 3 & roll3 & roll2 & \\
\hline 3 & 0.546505 & modeV1 & z 3 & z 2 & & \\
\hline 4 & 0.588103 & modeP1 & pitch3 & pitch2 & pitch1 & \\
\hline 5 & 0.604666 & modeY1 & yaw3 & yaw2 & & \\
\hline 6 & 0.847285 & modeR1 & roll1 & roll3 & roll2 & \\
\hline 7 & 0.981483 & modeL2 & pitch0 & x 2 & x1 & x 3 \\
\hline 8 & 1.03398 & modeT2 & \(y^{2}\) & y 1 & roll1 & y 3 \\
\hline 9 & 1.33001 & modeP 2 & pitch0 & & & \\
\hline 10 & 1.35465 & modeY2 & yaw3 & yaw1 & & \\
\hline 11 & 1.98651 & modeL3 & x 0 & x1 & pitch3 & \\
\hline 12 & 2.1007 & modeT3 & roll1 & yo & & \\
\hline 13 & 2.21871 & modeV2 & z 0 & z1 & & \\
\hline 14 & 2.38956 & modeY3 & yaw0 & yaw2 & & \\
\hline 15 & 2.52201 & modeP 3 & pitch1 & pitch0 & pitch2 & \\
\hline 16 & 2.6257 & modeR2 & roll1 & rollo & pitch0 & \\
\hline 17 & 2.8107 & modeP 4 & pitch1 & & & \\
\hline 18 & 3.0358 & modeY4 & yaw1 & yaw0 & & \\
\hline
\end{tabular}
\begin{tabular}{|llllll}
19 & 3.31136 & modeR3 & pitch0 & pitch1 rollo \\
20 & 3.39588 & modeL4 & x0 & x1 \\
21 & 3.53664 & modeV3 & z1 & z0 \\
22 & 5.04259 & modeT4 & roll0 & pitch0 \\
23 & 17.1245 & modeV4 & z3 & z2 \\
24 & 23.2379 & modeR4 & roll3 & roll2
\end{tabular}

\section*{Mode Shapes}

\section*{Mode \#1-modeL1}

Back to Top
0.434017 Hz
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.0658938 & -0.000103917 & 0 & 0 & 0.384612 & -0.00131095 \\
Mass U & -0.117217 & -0.00029917 & 0 & 0 & 0.419429 & -0.00260164 \\
Mass 2 & -0.192486 & -0.000537492 & 0 & 0 & 0.483538 & -0.00219019 \\
optic & -0.358685 & -0.00101092 & 0 & 0 & 0.508465 & -0.00219138 \\
\hline
\end{tabular}

\section*{Mode \#2-modeT1}

Back to Top
0.460117 Hz
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & X & Y & z & yaw & pitch & roll \\
\hline Mass N & -0.000474589 & 0.0956553 & 0 & 0 & -0.0191302 & 0.211032 \\
\hline Mass U & -0.000819611 & 0.182576 & 0 & 0 & -0.014936 & 0.287249 \\
\hline
\end{tabular}
\begin{tabular}{|lllllll}
Mass 2 & -0.00123988 & 0.331321 & 0 & 0.00010476 & -0.00872164 & 0.356724 \\
optic & -0.00242017 & 0.682069 & 0 & 0.000126973 & -0.00906991 & 0.357029
\end{tabular}

Mode \#3-modeV1

Back to Top
```

0.546505 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & y & yaw & pitch & roll \\
Mass N & 0 & 0 & -0.267799 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.475816 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & -0.591802 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.593004 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#4 - modeP1}

Back to Top
```

0.588103 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.00450564 & -0.000149061 & 0 & 0 & -0.370438 & 0.00207024 \\
Mass U & -0.00731126 & 0 & 0 & 0 & -0.432599 & 0.00530386 \\
Mass 2 & -0.00597588 & -0.000104549 & 0 & 0 & -0.554458 & 0.00423371 \\
optic & -0.0139454 & -0.000470452 & 0 & 0 & -0.606496 & 0.00423795 \\
\hline
\end{tabular}

\section*{Mode \#5-modeY1}

Back to Top
```

0.604666 Hz

```
\begin{tabular}{|lllllll|}
& x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & 0.16865 & 0 & 0 \\
Mass U & 0 & 0 & 0 & 0.389482 & 0 & 0 \\
Mass 2 & 0 & 0 & 0 & 0.518186 & 0 & 0 \\
optic & 0 & 0 & 0 & 0.742525 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#6 - modeR1}

Back to Top
0.847285 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & -0.000240362 & 0.00770538 & 0 & 0 & 0.051285 & -0.152379 \\
Mass U & -0.000436085 & 0.00272255 & 0 & 0 & 0.03131 & -0.583325 \\
Mass 2 & -0.000297319 & -0.00845504 & 0 & 0 & -0.0227273 & -0.561114 \\
optic & 0.000184284 & 0.0163913 & 0 & 0.000228804 & -0.0286096 & -0.562415 \\
\hline
\end{tabular}

Mode \#7-modeL2
\begin{tabular}{|lllllll|}
\hline\(x\) & \(y\) & z & yaw & pitch & roll \\
Mass N & -0.247193 & -0.000227219 & 0 & 0 & 0.550655 & 0.00194143 \\
Mass U & -0.392548 & -0.000467533 & 0 & 0 & 0.350966 & 0.0208453 \\
Mass 2 & -0.47396 & 0.000148461 & 0 & 0 & -0.0137963 & 0.0228696 \\
optic & 0.357559 & -0.000221395 & 0 & 0 & -0.0651089 & 0.0229426 \\
\hline
\end{tabular}

Mode \#8 - modeT2

\section*{Back to Top}
1.03398 Hz
\begin{tabular}{|lllllll|}
\hline & x & \(y\) & y & yaw & pitch & roll \\
Mass N & 0.00020605 & -0.241105 & 0 & -0.000148323 & 0.0443797 & -0.155748 \\
Mass U & 0.000305622 & -0.398149 & 0 & 0 & 0.00785713 & 0.397187 \\
Mass 2 & 0.000431106 & -0.532573 & 0 & 0 & -0.00213153 & 0.317825 \\
optic & -0.000283249 & 0.33576 & 0 & 0.000285814 & -0.00307915 & 0.319223 \\
\hline
\end{tabular}

\section*{Mode \#9 - modeP2}

Back to Top
```

1.33001 Hz

```
\begin{tabular}{|llllllll}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.000831797 & -0.00049602 & 0 & -0.000158305 & -0.839981 & 0.00812793 \\
Mass U & -0.000476079 & 0.000498225 & 0 & -0.000239336 & -0.528962 & -0.00845436 \\
Mass 2 20.00169326 & -0.000634388 & 0 & -0.000154551 & 0.0492757 & -0.0176342 \\
optic & 0.000669037 & 0.000228268 & 0 & 0.000334702 & 0.106933 & -0.0177404
\end{tabular}

Mode \#10-modeY2

Back to Top
```

1.35465 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0 & -0.306539 & 0.00218989 & -0.000185112
\end{tabular}
\begin{tabular}{llllllll}
Mass U & 0 & 0 & 0 & -0.528124 & 0.00140087 & 0 \\
Mass 2 & 0 & 0 & 0 & -0.363357 & -0.000120042 & 0.00021079 \\
optic & 0 & 0 & 0 & 0.703622 & -0.000273026 & 0.000212107
\end{tabular}

Mode \#11-modeL3
Back to Top
```

1.98651 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass N & -0.575796 & 0.0012786 & 0 & 0 & 0.22976 & -0.00872467 \\
Mass U -0.502561 & 0.000242381 & 0 & 0 & -0.231926 & 0.000296353 \\
Mass 2 20.361559 & -0.000198535 & 0 & 0 & -0.110967 & 0.000354316 \\
optic & -0.0423083 & 0 & 0 & 0 & 0.405469 & 0.000359274
\end{tabular}

\section*{Mode \#12-modeT3}

Back to Top

\subsection*{2.1007 Hz}
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.000798575 & 0.413805 & 0 & 0.000332342 & 0.202135 & 0.0393166 \\
Mass U & 0.000607738 & 0.408828 & 0 & 0 & -0.0366548 & 0.743512 \\
Mass 2 & -0.000389714 & -0.248528 & 0 & -0.000283633 & -0.00183527 & -0.0358825 \\
optic & 0 & 0.0257776 & 0 & 0.000107168 & 0.00483507 & -0.0363535 \\
\hline
\end{tabular}

\section*{Mode \#13-modeV2}

Back to Top
```

2.21871 Hz

```
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass N & 0 & 0 & 0.833968 & 0 & 0 \\
Mass U & 0 & 0 & 0.466789 & 0 & 0 \\
Mass 2 & 0 & 0 & -0.204527 & 0 & 0 \\
optic & 0 & 0 & -0.211598 & 0 & 0
\end{tabular}

\section*{Mode \#14-modeY3}

Back to Top
2.38956 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z yaw & pitch & roll \\
Mass N & 0 & 0.000382368 & 0 & -0.743869 & -0.000794733 & -0.00425877 \\
Mass U & 0 & -0.000196589 & 0 & -0.131 & -0.00298574 & -0.00290397 \\
Mass 2 & 0 & 0 & 0 & 0.632842 & -0.000605515 & 0.00192383 \\
optic & 0 & 0 & 0 & -0.170191 & 0.00076039 & 0.00196264 \\
\hline
\end{tabular}

\section*{Mode \#15-modeP3}

Back to Top
2.52201 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.0047795 & 0.00713176 & 0 & 0.00138178 & 0.473796 & -0.0852955 \\
Mass U & 0.00193722 & -0.00514784 & 0 & 0.000554119 & -0.609374 & -0.0552161 \\
Mass 2 & -0.00229058 & 0.000967314 & 0 & -0.00137181 & -0.443626 & 0.0284188 \\
optic & 0.000159239 & 0 & 0 & 0.000322321 & 0.441912 & 0.0290594 \\
\hline
\end{tabular}

Mode \#16-moder2

\section*{Back to Top}
2.6257 Hz
\begin{tabular}{|llllllll}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass N & -0.00165237 & 0.0478619 & 0 & 0.00476174 & -0.368859 & -0.471472 \\
Mass U & 0 & -0.0210597 & 0 & 0.00340974 & -0.154877 & -0.621325 \\
Mass 2 0.000405174 & -0.00159193 & 0 & -0.00605031 & 0.15032 & 0.304329 \\
optic & 0 & 0 & 0 & 0.0012881 & -0.128025 & 0.311787
\end{tabular}

Mode \#17-modeP4

Back to Top
```

2.8107 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0.00117068 & -0.0025988 & 0 & 0 & -0.482116 & 0.0382951 \\
Mass U & -0.000843079 & 0.00480848 & 0 & -0.00025398 & 0.847288 & -0.0571076 \\
Mass 2 0 & -0.00184656 & 0 & 0.00029492 & -0.173368 & 0.0260702 \\
optic & 0 & 0 & 0 & 0 & 0.115968 & 0.0268063 \\
\hline
\end{tabular}

\section*{Mode \#18-modeY4}

Back to Top
```

3.0358 Hz

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \(x\) & y & « & yaw & p」LCr & ro \(1+\) \\
\hline Mass N & 0 & -0.000101767 & 0 & 0.535903 & 0.00281476 & 0.0010808 \\
\hline Mass U & 0 & 0.000199106 & 0 & -0.655611 & -0.00524544 & -0.00473838 \\
\hline Mass 2 & 0 & 0 & 0 & 0.525925 & 0.000567001 & 0.00161257 \\
\hline optic & 0 & 0 & 0 & -0.0794965 & -0.000296117 & 0.00166597 \\
\hline
\end{tabular}

\section*{Mode \#19 - modeR3}

Back to Top
```

3.31136 Hz

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & x & Y & z & yaw & pitch & roll \\
\hline Mass N & 0.000816824 & 0.0696695 & 0 & 0.00549609 & -0.5285 & -0.464101 \\
\hline Mass U & -0.00105204 & -0.0708106 & 0 & -0.00294004 & 0.491757 & 0.460513 \\
\hline Mass 2 & 0.000197265 & 0.0147276 & 0 & 0.00167557 & -0.033888 & -0.138532 \\
\hline optic & 0 & -0.000543304 & 0 & -0.000207862 & 0.013704 & -0.144032 \\
\hline
\end{tabular}

\section*{Mode \#20-modeL4}

Back to Top
```

3.39588 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & \(y\) & z & yaw & pitch & roll \\
Mass N & 0.684175 & -0.00216248 & 0 & -0.000112032 & -0.0202773 & 0.0118415 \\
Mass U & -0.642979 & 0.00233217 & 0 & 0 & -0.272423 & -0.0298156 \\
Mass 2 & 0.0977826 & -0.00052593 & 0 & 0 & 0.169792 & 0.00768476 \\
optic & -0.00363207 & 0 & 0 & 0 & -0.0655108 & 0.00800627 \\
\hline
\end{tabular}

Mode \#21-modeV3

Back to Top
```

3.53664 Hz

```
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0.564061 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.810389 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & 0.106966 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.116892 & 0 & 0 & 0
\end{tabular}

\section*{Mode \#22-modeT4}

Back to Top
5.04259 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & -0.0750957 & 0 & 0.00409212 & -0.508625 & -0.825889 \\
Mass U & -0.000105376 & 0.0642703 & 0 & -0.000470534 & 0.117841 & 0.187889 \\
Mass 2 0 & -0.00393407 & 0 & 0 & -0.00225671 & -0.0098105 \\
optic & 0 & 0 & 0 & 0 & 0.000318508 & -0.0107643 \\
\hline
\end{tabular}

\(\square\)

Mode \#23-modeV4

Back to Top
```

17.1245 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass N & 0 & 0 & 0.000179692 & 0 & 0 & 0 \\
Mass U & 0 & 0 & -0.0135359 & 0 & 0 & 0 \\
Mass 2 & 0 & 0 & 0.703774 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.710295 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#24-modeR4}

Back to Top
```

23.2379 Hz

```
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass N & 0 & 0 & 0 & 0 & 0 \\
Mass U & 0 & 0.000163143 & 0 & 0 & -0.00121891 \\
Mass 2 & 0 & 0 & 0 & 0 & 0 \\
optic & 0 & 0 & 0 & 0 & 0
\end{tabular}

\section*{Parameters}

Back to Top
```

g -> 9.81
nx -> 0.13
ny -> 0.5
nz -> 0.084
denn -> 0
mn -> 21.924
Inx -> 0.460035
Iny -> 0.0727234
Inz -> 0.472177
ux -> 0.13
uy -> 0.5
uz -> 0.084
den1 -> 0
m1 -> 22.3383
I1x -> 0.508756
I1y -> 0.0710543
I1z -> 0.518081
ix -> 0.13
ir -> 0.17
den2 -> 0
m2 -> 40.391
+0.761 adjusted April 2009 for PUM magnet installation
I2x -> 0.680066
gradient_descent_fit_y_pitch_roll_Test_locked; BNS 5/15/09
I2y -> 0.439441
gradient_descent_fit_y_pitch_roll_Test_locked; BNS 5/15/09
I2z -> 0.41557
gradient_descent_fit_yaw.m; BNS 7/29/2008

```
```

tx -> 0.2
tr -> 0.17
den3 -> 0
m3 -> 39.6
2_Process_Traveler
I3x -> 0.597753
gradient_descent_fit_y_pitch_roll; BNS 5/9/09
I3y -> 0.418423
gradient_descent_fit_y_pitch_roll; BNS 5/9/09
I3z -> 0.40046
gradient_descent_fit_yaw.m; BNS 7/29/2008
ln -> 0.445
BNS 8 May 2009
11 -> 0.311
BNS 8 May 2009
12 -> 0.339
BNS 8 May 2009
13 -> 0.604028
calculated for updated wire
hang pend.n5, pend.l3 = sqrt(0.604 + (pend.n5-pend.n4)^2), BNS 5/9/09
nwn -> 2
nw1 -> 4
nw2 -> 4
nw3 -> 4
rn -> 0.00055 T1000428-v7
r1 -> 0.000355 T1000428-v7
r2 -> 0.0003175
T1000428-v7
r3 -> 0.0002285
T1000428-v7
1 1
Yn -> 2.12 10
2"; BNS 6/18/08
1 1
Y1 -> 2.12 10
2"; BNS 6/18/08
1 1
Y2 -> 2.12 10
2"; BNS 6/18/08
1 1
Y3 -> 2.12 10
2"; BNS 6/18/08
dm -> -0.00350687
6/18/08
dn -> 0.00328017 effective value 0.001 after
blade correction; BNS 6/18/08
d0 -> -0.00173908 effective value 0.001
d1 -> 0.00299279
effective value 0.001 after
blade correction; BNS 6/18/08
d2 -> 0.00708835 effective value 0.001; BNS
6/18/08
d3 -> 0.001 0.001 physical; T1000518
d4 -> 0.001
0.001 physical; T1000518
sn -> 0
"As Designed Parameter Set
effective value 0.001; BNS
T040214-01 (unused)

```
```

su -> 0.003
T040214-01
si -> 0.003
T040214-01
sl -> 0.015
nn0 -> 0.25
Designed Parameter Set 2"
nn1 -> 0.09
Designed Parameter Set 2"
n0 -> 0.2
Designed Parameter Set 2"
n1 -> 0.06
Designed Parameter Set 2"
n2 -> 0.14
n3 -> 0.1762
C1, email to NR, 9/22/04,
also "As Designed Parameter Set 2"
n4 -> 0.1712
also "As Designed Parameter Set 2"
n5 -> 0.1712
also "As Designed Parameter Set 2"
tln -> 0.411734
tl1 -> 0.279248
tl2 -> 0.347143
tl3 -> 0.606028
ltotal -> 1.64415
bd -> 0.
unstretched -> False
vertblades -> True
matlabcompat -> False
uln -> 0.443557
ul1 -> 0.309959
ul2 -> 0.338004
ul3 -> 0.602341
sln -> 0.445
sl1 -> 0.311
sl2 -> 0.339
sl3 -> 0.604028
sin -> -0.359551
si1 -> -0.450161
si2 -> 0.106785
si3 -> 0.
cn -> 0.933126
c1 -> 0.892948
c2 -> 0.994282
c3 -> 1.
pitchbul -> 0

```
```

pitchbur -> 0
pitchbil -> 0
pitchbir -> 0
pitchbll -> 0
pitchblr -> 0
rollbul -> 0
rollbur -> 0
rollbil -> 0
rollbir -> 0
rollbll -> 0
rollblr -> 0
An -> 9.50332 10
A1 -> 3.95919 10
A2
3.16692 10
-7
A3 -> 1.6403 10
kwn -> 452742.
kw1 -> 269887.
kw2 -> 198049.
kw3 -> 57570.7
flexn -> 0.00450687
flex1 -> 0.00273908
flex2 -> 0.00291165
flex3 -> 0.00216189
kbuz -> 1411.464026291042094835154548022
freqs; BNS 6/19/08
kbiz -> 1650.524059045379672879214321779
freqs; BNS 6/19/08
kblz -> 2423.519015280238231051986060810
freqs; BNS 6/19/08
kbux -> 100000.
kbix -> 100000.
kblx -> 80000.
bdu -> 0.431794
bdi -> 0.3041
bdl -> 0.161895
mn3 -> 124.253
m13 -> 102.329
m23 -> 79.991
Inxy -> -0.0375599
Inyz -> 0.0000465463
calculated as usual
calculated as usual
calculated as usual
calculated as usual
Solved for given mass and
Solved for given mass and
Solved for given mass and
as for middle
Justin 11/29/05
Ian 12/09/05
calculated as usual
calculated as usual
calculated as usual
T1000286-v5
T1000286-v5

```
```

Inzx -> 0.00171841
T1000286-v5
COMOx -> 0
COMOy -> 0
COMOz -> 0
FRP0x -> 0
FRP0y -> 0
FRP0z -> 0
I1xy -> -0.0132117 T1000286-v5
I1yz -> 0
T1000286-v5
I1zx -> 0 T1000286-v5
COM1x -> 0
COM1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
I2xy -> 0
I2yz -> 0
I2zx -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0
I3yz -> 0
I3zx -> 0
COM3x -> 0
COM3y -> 0
COM3z -> 0
FRP3x -> 0
FRP3y -> 0
FRP3z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03
-14
Mn1 -> 7.18688 10
Mn2 -> 7.18688 10

```

```

vl\perp\perp -> \perp.<4IJy \perpu
-14
M12 -> 1.24739 10
M21 -> 7.98114 10
-15
M22 -> 7.98114 10
M31 -> 2.14109 10
-15
M32 -> 2.14109 10
temperature -> 290.
-23
boltzmann -> 1.38066 10
-7
alphasilica -> 5.1 10
betasilica -> 0.000152
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
10
Ysilica -> 7.27 10
-10
phisilica -> 4.1 10
-11
phissilica -> 3. 10
rhosteel -> 7800.
Csteel -> 460
Ksteel -> 49
1 1
Ysteel -> 2.12 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0001
rhomarag -> 7800
Cmarag -> 460
Kmarag -> 20.
11
Ymarag -> 1.87 10
alphamarag -> 0.000011
betamarag -> -0.00025
is wrong
phimarag -> 0.0001
tmU -> 0.0043
tmI -> 0.0046
tmL -> 0.0042
magicnumber -> 0.0737472
53:90-99

```
```

deltabladeU -> 0.00182883
deltabladeI -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00278823
deltawireI -> 0.0027844
deltawireL -> 0.00277698
deltafibre -> 6.57741 10
taubladeU -> 0.336093
taubladeI -> 0.384626
taubladeL -> 0.320643
tauwireU -> 0.00653413
tauwireI -> 0.00272219
tauwireL -> 0.00217746
taufibre -> 0.0189557
damping[imag, bladeUtype] -> (0.0001 + ----------------- \& )
0.00441968 \#1
damping[imag, bladeItype] -> (0.0001 + ----------------- \& )
1 + 5.84032 \#1
0.00368446 \#1
damping[imag, bladeLtype] -> (0.0001 + ---------------- \& )
1 + 4.05884 \#1
damping[imag, wireUtype] -> (0.0001 \& )
damping[imag, wireItype] -> (0.0001 \& )
damping[imag, wireLtype] -> (0.0001 \& )
damping[imag, wireUatype] -> (0.0001 + ----------------- \& )
1 + 0.00168552 \#1
0.0000476244 \#1
damping[imag, wireIatype] -> (0.0001 + ----------------------- \&
1 + 0.000292548 \#1
0.0000379928 \#1
damping[imag, wireLatype] -> (0.0001 + -------------------- \& )
1 + 0.00018718 \#1
-8
damping[imag, fibretype] -> (5.42393 10 \& )
-7 7.83382 10 \#1
damping[imag, fibreatype] -> (1.08069 10 + -------------------- \& )
1 + 0.0141853 \#1
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0

```
```

pitch00 -> 0
rollo0 -> 0
kconx0 -> 0
kcony0 -> 0
kconz0 -> 0
kconyaw0 -> 0
kconpitch0 -> 0
kconroll0 -> 0
kconx1 -> 0
kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
ribbons -> False
dumbbell -> True
Inxz -> 0.00171841
Inzy -> 0.0000465463
Inyx -> -0.0375599
I1xz -> 0
I1zy -> 0
I1yx -> -0.0132117
I2xz -> 0
I2zy -> 0
I2yx -> 0
A3n -> 1.6403 10
bend1 -> 0.00501925
bend2 -> 0.00490445
t.het.an -> -2.1.072.6

```
calculated as usual
calculated as usual
calculat.ed as msual
```

theta1 -> -26.754
theta2 -> 6.13
theta3 -> 0.
sigmasilica -> 0.17
1 0
Gsilica -> 3.10684 10
dssilica -> 0.015
calculated as usual
calculated as usual
calculated as usual
shear modulus
IFOModel v4.1

```

Back to Top

\title{
aLIGO SUS Operation Manual - Info on BSFM Suspensions
}

Back to Operation Manual main page

\section*{References}
- T040027: Conceptual Design of Beamsplitter Suspension for Advanced LIGO
- © D1000392: aLIGO BS/FM MAIN ASSEMBLY
- ӨT1100602: BS/FM Triple Suspension Control Ranges
- \(\Theta\) T1100479: BSFM Electronics Design
- © E1100108: Beamsplitter-Folding Mirror Controls Arrangement Poster
- \(\Theta\) D1100022: aLIGO SUS ITM and BS Wiring Diagrams (for H1/L1)
- © D1001725: aLIGO SUS ITM, BS, and FM System Wiring Diagrams (for H2)

\section*{Models}

The BSFM suspension has been extensively modelled. Key results are at Suspensions/OpsManual/BSFM/Models .

\section*{Screens}

Annotated screenshots of the BSFM are at/Screens.

\section*{aLIGO SUS Operations Manual - Overview of BSFM MEDM screens}

Back to Operation Manual main page
Back to BSFM main page
This page makes extensive use of text fragments in-lined from Suspensions/OpsManual/Boilerplate. Use the scripts there to update.

Except where noted, the BSFM screens described below live at
/opt/rtcds/userapps/release/sus/common/medm/bsfm/. They are all generic screens which rely for their execution on site-, interferometer- and suspension-specific arguments passed in when they are called. They can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP.adl. See the MEDM page for further information.

\section*{Overview Screen}

\section*{Screen SUS_CUST_BSFM_OVERVIEW.adl}

This is the overview screen. The functionality is divided up according to the three sensor-actuator groups, plus an odds-andends area at the top:
- Other - ISI feedforward stuff, links to CDS utility screens.
- M1-6 BOSEMs on the structure engaging the upper top mass
- M2-4 BOSEMs on the structure engaging the intermediate mass
- M3 - no OSEMs on the optic, but various optical lever stuff

M1 is used for local damping (relative to the structure) and the control loops are already functional. DC pitch and yaw offsets are also injected at M1. M2 is intended for implementing global control (relative to other optics) and has placeholder inputs for actuation requests from ISC. The M3 level just processes optical lever signals.

Other Screens

- MASTER SWITCH - a manual on/off switch for all actuation (common to all sensor-actuator groups).
- ADC - the ADC overview
- DAC - the DAC channel overview
- H1SUSBS Aux Ch (or the like) - the coil driver monitor channels
- WD ("WATCHDOGS") - a block implementing the watchdogs on the various sensor actuator groups.
- IOP DACKILL - a screen for watchdogs on all IOP processes serving SUS models.
- H1SUSBS GDS TP (or the like) - controls for user model process
- H1IOPSUSB 123 GDS TP (or the like) - controls for IOP model process
- H1SUSBS BINARY I/O (or the like) - the Binary Input/Output controls
- IPC - the IPC channel monitor
- ODC - ODC status
- !GUARDIAN - Guardian
- SUS_CUST_BSFM_M1_CART2EUL - monitor from signals from the ISI

\section*{Screen SUS_CUST_BSFM_ADC_MONITOR.adI}

Ө O O X SUS_CUST_BSFM_ADC_MONITOR.adl AIC_MONITOR

Ml
\begin{tabular}{lll}
BS_M1_OSEMINF_F1 (adc_1_20) & 14314.786 \\
BS_M1_OSEMINF_F2 (adc_1_21) & 15321.107 \\
\hline BS_M1_OSEMINF_F3 (adc_1_22) & 14698.906 \\
BS_M1_OSEMINF_LF (adc_1_23) & 11501.160 \\
\hline BS_M1_OSEMINF_RT (adc_0_28) & 12218.760 \\
BS_M1_OSEMINF_SD (adc_0_29) & 9741.181
\end{tabular}

M2

BS_M2_OSEMINF_UL (adc_1_28) 13838.057 BS_M2_OSEMINF_LL (adc_1_29) 15002.062 BS_M2_OSEMINF_UR (adc_1_30) 11433.307 BS_M2_OSEMINF_LR (adc_1_31) 11988.142

Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Screen SUS_CUST_BSFM_DAC_MONITOR.adI

Suspensions/OpsManual/Boilerplate/DAC_MONITOR:
Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM

\section*{Screen SUS_CUST_BSFM_MONITOR_OVERVIEW.adI}

Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.
- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.

Screen SUS_CUST_BSFM_WD.adI

Suspensions/OpsManual/Boilerplate/WD:
This screen allows for setting the watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.

Screen SUS_CUST_IOP_DACKILL.adI

Suspensions/OpsManual/Boilerplate/IOP_DACKILL:
The watchdog controls for the IOP process. If this WD is tripped it disables IO to/from all user models on the front end. RESET resets from the tripped state if there are no outstanding triggers. BYPASS is a manual override that allows for operation of the suspension if there is a trigger condition that is known by the operator to be harmless.

\section*{Screen H1SUSBS_GDS_TP.adI}

Suspensions/OpsManual/Boilerplate/USER_GDS_TP:
This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPU, e.g., "37", can be read from this screen just to the right of the "DAQ STATUS" heading.
The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

\section*{Screen H1IOPSUSB123_GDS_TP.adI}

Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., " 33 ", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

Screen SUS_CUST_BSFM_BIO.adI

Suspensions/OpsManual/Boilerplate/BSFM_BIO:
The Binary Input-Output control screen. State Requests for the various sensor-actuator groups can be input. Positive state values lock out manual control of the filters on the COILOUTF screen and set the digital dewhitening filters to match the analog whitening filters selected via the binary outputs. Negative state values allow the dewhitening filters to be manually overridden.

\section*{Screen GUARD.adl}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{OOO X GUARD.adl} \\
\hline \multicolumn{5}{|c|}{GUARDIAN: SUS_BS /opt/rtcds/userapps/release//sus/common/guardian/SUS_BS.py} \\
\hline STATE & \multicolumn{2}{|l|}{flicwed} & & 109 \\
\hline TAPGET & \multicolumn{2}{|l|}{Aligned} & & graph \\
\hline \multirow[b]{2}{*}{REUUEST} & \multicolumn{2}{|l|}{flicined} & & \multirow[t]{2}{*}{edit} \\
\hline & \multicolumn{2}{|l|}{fligned} & , & \\
\hline MODE & -reset & Status & DONE & \\
\hline MESSGEE & lete & & & \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/GUARD:
The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.

\section*{Screen SUS_CUST_BSFM_ODC.adI}

Suspensions/OpsManual/Boilerplate/ODC:
ODC Status.

\section*{Screen SUS_CUST_BSFM_IPC.adl}

Suspensions/OpsManual/Boilerplate/IPC:
Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).

Screen SUS_CUST_BSFM_M1_CART2EUL.adl

Suspensions/OpsManual/Boilerplate/M1_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face,+T left and +V up). See Suspensions/OpsManual/Projections and © T1100617.

\section*{Sensor Actuator Group M1 - Main Chain Top Mass}

This section is laid out to reflect the flow of the main chain local control loop, which involves the following elements:
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\pm 15000\) counts.
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default)
- DAMP FILTERS - a filter bank applying the damping filters.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals
- L2O - ????.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.

There are the following auxiliary inputs:
- TEST - a filter bank (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw
- LOCK - filters for global control signals

There are the following additional controls:
- MEASUREMENT STATUS - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- HIERARCHY SWITCH - enables various ISC inputs and outputs.

\section*{Screen SUS_CUST_BSFM_M1_OSEMINF.adI}

Suspensions/OpsManual/Boilerplate/M1_OSEMINF:
This block has 6 filter groups corresponding to the 6 M1 BOSEMs, T1/T2/T3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_BSFM_M1_CENTERING.adI

Suspensions/OpsManual/Boilerplate/M1_CENTERING:
This screen gives various views of the M1 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

Screen SUS_CUST_BSFM_M1_OSEM2EUL.adl
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{H1 RS M1 OSEM2EULER MATRIX} \\
\hline & & & & OSEM & BASIS & & \\
\hline & & F1 & F2 & F3 & LF & RT & SD \\
\hline E & L & 0.00000 & 0.50000 & 0.50000 & 0.00000 & 0.00000 & 0.00000 \\
\hline U & T & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & -1.0000 \\
\hline E & & & & & & & \\
\hline R & \(v\) & 0.00000 & 0.00000 & 0.00000 & -0,5000 & -0,5000 & 0.00000 \\
\hline B & R & 0.00000 & 0.00000 & 0.00000 & -2,6178 & 2.61780 & 0.00000 \\
\hline S & P & 18.1818 & -9.0909 & -9.0909 & 0.00000 & 0.00000 & 0.00000 \\
\hline S & Y & 0.00000 & -4.8077 & 4.80770 & 0.00000 & 0.00000 & 0.00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M1_OSEM2EUL:
This screen allows entry of the matrix which converts from the M1 OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^-1 and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is \(\mathrm{up} .+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

Screen SUS_CUST_BSFM_M1_SENSALIGN.adI

Suspensions/OpsManual/Boilerplate/M1_SENSALIGN:
This screen is reserved for tweaking the M1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

Suspensions/OpsManual/Boilerplate/M1_DAMP:
These filters implement the local damping. See Suspensions/OpsManual/Damping.
Screen SUS_CUST_BSFM_M1_DRIVEALIGN.adI

Suspensions/OpsManual/Boilerplate/M1_DRIVEALIGN:
This screen is reserved for tweaking the M1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_BSFM_M1_EUL2OSEM.adI
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{\multirow[t]{2}{*}{M1 EULER20SEM MATRIX}} \\
\hline & & & & & & & \\
\hline & & & & ULER & BASIS & & \\
\hline & & L & T & V & R & P & Y \\
\hline 0 & F1 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 18.1818 & 0.00000 \\
\hline E & F2 & 10.50000 & 0.00000 & 0,00000 & 0.00000 & -9,0909 & -4.8077 \\
\hline M & F3 & 0.50000 & 0.00000 & 0.00000 & 0.00000 & -9.0909 & 4.80770 \\
\hline B & LF & 0.00000 & 0,00000 & F0.5000 & -2.6178 & 0.00000 & 0.00000 \\
\hline I & RT & 0.00000 & 0.00000 & -0.5000 & 2.61780 & 0.00000 & 0.00000 \\
\hline S & SD & 0.00000 & -1.0000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

\section*{Screen SUS_CUST_BSFM_M1_LKIN2OSEM.adI}

Suspensions/OpsManual/Boilerplate/M1_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_BSFM_M1_COILOUTF.adl

Suspensions/OpsManual/Boilerplate/M1_COILOUTF:
This screen applies compensation for the hardware filters in the M1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of \(\approx 10000\) [TBC] can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{Screen SUS_CUST_BSFM_M1_OPTICALIGN.adI}

Suspensions/OpsManual/Boilerplate/M1_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets. See Suspensions/OpsManual/Alignments for more info.

\section*{Screen SUS_CUST_BSFM_M1_TEST.adl}

Suspensions/OpsManua//Boilerplate/M1_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1 . However offsets of \(\approx 10000\) in L/T/V or \(\approx 1000\) in R/P/Y can be applied temporarily to check that actuation is taking effect

Suspensions/OpsManual/Boilerplate/M1_LOCK:
Filters for the locking signals.

\section*{Sensor Actuator Group M2 - Between Upper Intermediate Masses}

- CENTERING - the raw inputs as panel meters for ease of adjustment
- OSEM INPUT FILTERS - OSEM sensor dewhitening and calibration filters.
- OSEM2EUL - transformation matrix for OSEM sensor to Euler basis
- SENSALIGN - for tweaking sensor diagonalization
- LOCK FILTERS - lock input filters
- OLDAMP FILTERS - filters for optical lever damping.
- TEST FILTERS - for test inputs
- DRIVEALIGN - for tweaking drive diagonalization
- EUL2OSEM - transformation from Euler to OSEM basis
- COIL OUTPUT FILTERS - coil dewhitening and magnet sign correction filters
- L2O - ????.

Screen SUS_CUST_BSFM_M2_CENTERING.adl

Suspensions/OpsManual/Boilerplate/M2_CENTERING:
This screen gives various views of the OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

\section*{Screen SUS_CUST_BSFM_M2_OSEMINF.adl}

Suspensions/OpsManual/Boilerplate/M2_OSEMINF:
This block has 4 filter banks corresponding to the 4 M2 OSEMs, UL/LL/UR/LR. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

Suspensions/OpsManual/Boilerplate/M2_OSEM2EUL:
This screen allows entry of the matrix which converts from the OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOF L are dimensionless.

The entries for the angular DOFs P and Y have dimensions meter \(\wedge-1\) and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

\section*{Screen SUS_CUST_BSFM_M2_SENSALIGN.adI}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{H1 BS M2 SENSALIGN MATRIX} \\
\hline \multicolumn{5}{|r|}{MISALIGNED} \\
\hline \multicolumn{5}{|l|}{A L P Y} \\
\hline \multicolumn{5}{|r|}{\multirow[t]{2}{*}{L 1,00000 D.00000 P0,0000}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\(G \quad \mathrm{P}\)} \\
\hline \multicolumn{5}{|l|}{N} \\
\hline E & Y & 0.00000 & 10.00000 & 1.00000 \\
\hline \multicolumn{5}{|l|}{D \(\longrightarrow\)} \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M2_SENSALIGN:
This screen is reserved for tweaking the M2 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS CUST BSFM M2 LOCK.adI}

Suspensions/OpsManual/Boilerplate/M2_LOCK:
Filters for the locking signals.

\section*{Screen SUS_CUST_BSFM_M2_OLDAMP_ALL.adI}

Suspensions/OpsManual/Boilerplate/M2_OLDAMP:
Filters for the optical lever locking signals
Screen SUS_CUST_BSFM_M2_TEST.adl

Suspensions/OpsManual/Boilerplate/M2_TEST:
This is a deliberately empty set of 3 filter banks corresponding to the M2 L, P and Y DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anvthing useful (there are

Screen SUS_CUST_BSFM_M2_OLDAMP_ALL.adl

Suspensions/OpsManual/Boilerplate/M2_OLDAMP_ALL:
Filters for optical lever damping.
Screen SUS_CUST_BSFM_M2_DRIVEALIGN.adI

Suspensions/OpsManual/Boilerplate/M2_DRIVEALIGN:
This screen is reserved for tweaking the actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_BSFM_M2_EUL2OSEM.adI

Suspensions/OpsManual/Boilerplate/M2_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_BSFM_M2_LKIN2OSEM.adI

Suspensions/OpsManual/Boilerplate/M2_LKIN2OSEM:
Need to find out what this does.

Suspensions/OpsManual/Boilerplate/M2_COILOUTF:
This screen applies compensation for the hardware filters in the actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).
Sensor Actuator Group M3-Optic

- LOCK FILTERS - filters for lock signals
- OPLEV INPUT FILTERS - filters for individual OL QPD segment signals
- OL2EUL - transformation matrix for OL QPD signals to P/Y/SUM
- FULL OL CHAIN - overview of OL signal processing
- P/Y LOCK-IN - ????

\section*{Screen SUS_CUST_BSFM_M3_ISCINF.adl}

Suspensions/OpsManual/Boilerplate/M3_ISCINF:
Filters for the control signals from ISC.
Screen SUS_CUST_BSFM_M3_LOCK.adI

Suspensions/OpsManual/Boilerplate/M3_LOCK:
Filters for the locking signals.
Screen SUS_CUST_BSFM_M3_OPLEV_SEGS.adI

Suspensions/OpsManual/Boilerplate/M3_OPLEV_SEGS:
Filters for the optical lever QPD segment signals.
Screen SUS_CUST_BSFM_M3_OPLEV.adl

Suspensions/OpsManual/Boilerplate/M3_OPLEV:
Overview of the Optical Lever signal processing.
Screen SUS_CUST_BSFM_M3_OPLEV_MTRX.adI
\(\bigcirc \bigcirc \bigcirc\) SUS_CUST_BSFM_M3_OPLEV_
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{H1 BS M3 OPTICAL LEVER MATRIX} \\
\hline & & & Q P D & BASIS & \\
\hline & & S1 & S2 & S3 & S4 \\
\hline \[
{ }_{\mathrm{U}}^{\mathrm{E}} \mathrm{~B}
\] & P & 1.00000 & -1.0000 & 1.00000 & -1,0000 \\
\hline \(L^{\text {A }}\) & & & & & \\
\hline \(\mathrm{E}^{\text {S }}\) & Y & -1.0000 & 1.00000 & 1.00000 & -1,0000 \\
\hline R \(\begin{gathered}\text { I } \\ \text { S }\end{gathered}\) & SUM & 1.00000 & 1.00000 & 1.00000 & 1.00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M3_OPLEV_MTRX:
Transformation matrix from the optical lever QPD segment basis into the P/Y/SUM basis.

\section*{Screen LOCKIN_DEMOD.adl (two versions: P and Y)}

Suspensions/OpsManual/Boilerplate/LOCKIN_DEMOD:
Controls for the lockin demodulation. Comes in P and Y versions for pitch and yaw.

\section*{aLIGO SUS Operations Manual - Models for BSFM Suspensions}

Back to Operation Manual main page
The BSFM suspensions have been extensively modelled. There are Mathematica (\(\Theta\) T020205) and Matlab (\(\Theta\) T080188) programs that take a parameter set describing a single chain and calculate the dynamics. The parameter set needs to be formatted differently for Mathematica vs Matlab, but the parameter names are the same as far as was practical.

The Mathematica triple model, which covers BSFM as well as HLTS and HSTS, and parameter sets for it lives in the SUS SVN at ^/trunk/Common/MathematicaModels/TripleLite2/. Parameter sets for Matlab live at ^/trunk/Common/MatlabTools/TripleModel_Production. Mark Barton maintains the Mathematica, Jeff Kissel maintains the Matlab. Unfortunately two different naming conventions are in use and it's difficult to tell what corresponds to what - if in doubt, ask. References given below are to Mathematica versions as subdirectories of \(\wedge /\) trunk/Common/MathematicaModels/TripleLite2/.

Key cases of the triple model for BSFM are given below, with results such as mode frequencies and mode shapes. T1200404 has transfer functions for many of the same models.

\section*{Generic BSFM}

Current best generic BSFM model is .../mark.barton/20120120bsNW.

\section*{Case 20120120bsNW of Mathematica model TripleLite2}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

{"mark.barton", "20120120bsNW"}

```
Same as Jeff K's Matlab model bsfmopt_metal.m Rev 2005 of 1/19/12 (no wedge)

\section*{Links to Result Sections}
\begin{tabular}{l}
Mode Summary \\
Mode Shapes \\
\multicolumn{1}{|c|}{ Parameters } \\
\begin{tabular}{|c|c|c|c|c|c|}
\hline modeL1 & modeT1 & modeP1 & modeY1 & modeR1 & modeL2 \\
\hline modeP2 & modeV1 & modeP3 & modeY2 & modeT2 & modeL3 \\
\hline modeT3 & modeY3 & modeR2 & modeV2 & modeV3 & modeR3 \\
\hline
\end{tabular}
\end{tabular}

\section*{Mode Summary}

Back to Top
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline N & f & name & type & & & \\
\hline 1 & 0.419315 & modeL1 & pitch3 & pitch2 & & \\
\hline 2 & 0.423602 & modet1 & \(y^{3}\) & \(y^{2}\) & roll3 & \\
\hline 3 & 0.468279 & modeP1 & pitch3 & & & \\
\hline 4 & 0.493035 & modeY1 & yaw3 & yaw2 & & \\
\hline 5 & 1.0506 & modeR1 & y 2 & y 3 & y1 & roll1 \\
\hline 6 & 1.05136 & modeL2 & pitch1 & pitch2 & & \\
\hline 7 & 1.07596 & modeP2 & pitch1 & pitch2 & & \\
\hline 8 & 1.08389 & modeV1 & z3 & z2 & & \\
\hline 9 & 1.3915 & modeP3 & pitch1 & & & \\
\hline 10 & 1.3963 & modeY2 & yaw1 & & & \\
\hline 11 & 1.55266 & modeT2 & roll3 & roll2 & & \\
\hline 12 & 1.69857 & modeL3 & x1 & pitch2 & & \\
\hline 13 & 2.18939 & modeT3 & roll1 & roll3 & & \\
\hline 14 & 2.25325 & modeY3 & yaw2 & yaw3 & & \\
\hline 15 & 3.20625 & modeR2 & roll1 & roll3 & & \\
\hline 16 & 3.76046 & modeV2 & z1 & & & \\
\hline 17 & 17.5222 & modeV3 & z2 & z3 & & \\
\hline 18 & 25.9715 & modeR3 & roll3 & roll2 & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Violin \\
Modes
\end{tabular} & UM & IM & Optic \\
\hline \(\mathrm{f}(\mathrm{Hz}), \mathrm{n}=1-\) & 237.8475 .75714 .002952 .705 & 225.496451 .061676 .762 & 303.012606 .065909 .203 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
4 & & 902.67 & 1212.47 \\
\hline \(\mathrm{Q}, \mathrm{n}=1-4\) & \begin{tabular}{l}
114198.168946 .194804. \\
200082.
\end{tabular} & \begin{tabular}{l}
103165.133634 .161126. \\
177500.
\end{tabular} & 158925.150489 .168099. \\
\hline
\end{tabular}

\section*{Mode Shapes}

\section*{Mode \#1 - modeL1}

Back to Top
0.419315 Hz
\begin{tabular}{|lllllll}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.057342 & 0 & 0 & 0 & 0.299037 & 0 \\
Mass I & -0.1312 & 0 & 0 & 0 & 0.463081 & 0 \\
optic & -0.203265 & 0 & 0 & 0 & 0.796439 & 0
\end{tabular}

\section*{Mode \#2-modeT1}

Back to Top
0.423602 Hz
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.196907 & 0 & 0 & 0 & 0.176372 \\
Mass I & 0 & 0.438473 & 0 & 0 & 0 & 0.366259 \\
optic & 0 & 0.68515 & 0 & 0 & 0 & 0.36645
\end{tabular}

Mode \#3 - modeP1

Back to Top
0.468279 Hz
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass U & 0.0093894 & 0 & 0 & 0 & 0.207023 & 0 \\
Mass I & 0.0159212 & 0 & 0 & 0 & 0.421663 & 0 \\
optic & 0.0276447 & 0 & 0 & 0 & 0.882177 & 0 \\
\hline
\end{tabular}

\section*{Mode \#4 - modeY1}

Back to Top
0.493035 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & 0.332994 & 0 & 0 \\
Mass I & 0 & 0 & 0 & 0.627688 & 0 & 0 \\
optic & 0 & 0 & 0 & 0.703649 & 0 & 0
\end{tabular}

\section*{Mode \#5-modeR1}

Back to Top
1.0506 Hz
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.423331 & 0 & 0 & 0 & 0.410844 \\
Mass I & 0 & 0.535269 & 0 & 0 & 0 & 0.291088 \\
optic & 0 & -0.442127 & 0 & 0 & 0 & 0.292023
\end{tabular}

\section*{Mode \#6 - modeL2}

Back to Top
```

1.05136 Hz

```
\begin{tabular}{|lllllll|}
\hline x & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.136171 & 0 & 0 & 0 & 0.775799 & 0 \\
Mass I & -0.171869 & 0 & 0 & 0 & 0.489702 & 0 \\
optic & 0.141912 & 0 & 0 & 0 & -0.300178 & 0 \\
\hline
\end{tabular}

\section*{Mode \#7 - modeP2}

Back to Top
1.07596 Hz
\begin{tabular}{|lllllll|}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.0142387 & 0 & 0 & 0 & -0.743736 & 0 \\
Mass I & -0.0103628 & 0 & 0 & 0 & -0.580644 & 0 \\
optic & 0.00741414 & 0 & 0 & 0 & 0.330672 & 0 \\
\hline
\end{tabular}

Mode \#8 - modeV1

Back to Top
1.08389 Hz
\begin{tabular}{lllllll|}
& x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0.403867 & 0 & 0 & 0 \\
Mass I & 0 & 0 & 0.644297 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.649441 & 0 & 0 & 0 \\
\hline
\end{tabular}

Mode \#9-modeP3

Back to Top
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass U & -0.000492053 & 0 & 0 & 0 & 0.976302 & 0 \\
Mass I & 0.00131969 & 0 & 0 & 0 & -0.20855 & 0 \\
optic & -0.000530777 & 0 & 0 & 0 & 0.0577796 & 0
\end{tabular}

\section*{Mode \#10-modeY2}

Back to Top
1.3963 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & 0.874878 & 0 & 0 \\
Mass I & 0 & 0 & 0 & -0.0644056 & 0 & 0 \\
optic & 0 & 0 & 0 & -0.480043 & 0 & 0
\end{tabular}

Mode \#11-modeT2

Back to Top
```

1.55266 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.195084 & 0 & 0 & 0 & -0.111339 \\
Mass I & 0 & -0.104872 & 0 & 0 & 0 & -0.682353 \\
optic & 0 & 0.0275608 & 0 & 0 & 0 & -0.687155 \\
\hline
\end{tabular}

\section*{Mode \#12-modeL3}

Back to Top
```

1.69857 Hz

```
\begin{tabular}{|lllllll|}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & 0.6685 & 0 & 0 & 0 & -0.147779 & 0 \\
Mass I & -0.432943 & 0 & 0 & 0 & -0.571119 & 0 \\
optic & 0.0904494 & 0 & 0 & 0 & 0.0973239 & 0 \\
\hline
\end{tabular}

Mode \#13-modeT3

Back to Top
2.18939 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & -0.0386426 & 0 & 0 & 0 & -0.817925 \\
Mass I & 0 & 0.0402597 & 0 & 0 & 0 & -0.402042 \\
optic & 0 & -0.00463276 & 0 & 0 & 0 & -0.407707
\end{tabular}

Mode \#14-modeY3
```

2.25325 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & -0.208787 & 0 & 0 \\
Mass I & 0 & 0 & 0 & 0.764786 & 0 & 0 \\
optic & 0 & 0 & 0 & -0.609516 & 0 & 0
\end{tabular}

\section*{Mode \#15-modeR2}

Back to Top
```

3.20625 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & -0.0349124 & 0 & 0 & 0 & 0.824356 \\
Mass I & 0 & 0.0249148 & 0 & 0 & 0 & -0.39304 \\
optic & 0 & -0.00125139 & 0 & 0 & 0 & -0.405111 \\
\hline
\end{tabular}

Mode \#16-modeV2

Back to Top
```

3.76046 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & -0.928065 & 0 & 0 & 0 \\
Mass I & 0 & 0 & 0.249845 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.276174 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#17-modeV3}

Back to Top
```

17.5222 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0.0172332 & 0 & 0 & 0 \\
Mass I & 0 & 0 & -0.730446 & 0 & 0 & 0 \\
optic & 0 & 0 & 0.682753 & 0 & 0 & 0
\end{tabular}

N \(\qquad\)

\section*{Mode \#18-modeR3}

Back to Top
```

25.9715 Hz

```
\(\left.\begin{array}{|llllll|}\hline & \mathrm{x} & \mathrm{y} & \mathrm{z} & \text { yaw } & \text { pitch } \\ \text { Mass U } & 0 & -0.000330179 & 0 & 0 & 0\end{array}\right] 0.00453115\)

Parameters
Back to Top
```

g -> 9.81
ux -> 0.06 display only
uy -> 0.44 display only
uz -> 0.142
den1 -> 4000
m1 -> 12.63
https://ics-redux.ligo-la.caltech.edu/JIRA/browse/ASSY-D070435-001
I1x -> 0.1659
I1y -> 0.02473
I1z -> 0.1643
ix -> 0.05709
D080369-v2, display only
ir -> 0.185 D080369-v2, info only
den2 -> 2700
[http://en.wikipedia.org/wiki/6061_aluminium_alloy](http://en.wikipedia.org/wiki/6061_aluminium_alloy), info only
m2 -> 13.575
I2x -> 0.2592
I2y -> 0.12976
I2z -> 0.13587
tx -> 0.05709
D080369-v2
tr -> 0.185
den3 -> 2700
[http://en.wikipedia.org/wiki/6061_aluminium_alloy](http://en.wikipedia.org/wiki/6061_aluminium_alloy), info only
m3 -> 14.21
I3x -> 0.243169
I3y -> 0.125444
I3z -> 0.125444
11 -> 0.612
[https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=1769](https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=1769)
12 -> 0.596
[https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=1769](https://alog.ligo-la.caltech.edu/aLOG/index.php?callRep=1769)
13 -> 0.5
T080222-v3
nw1 -> 2
nw2 -> 4
nw3 -> 4
r1 -> 0.0003125 T080222-v3
r1 -> 0.0003125 T080222-v3
r2 -> 0.0002 T080222-v3
r3 -> 0.000125 T080222-v3
T080222-v3
cylinder: m3, tx, tr
cylinder: m3, tx, tr
cylinder: m3, tx, tr
As-built, see, e.g.,
As-built, see, e.g.,
Y1 -> 2.119 10
1 1
Y2 -> 2.119 10

```
```

    1 1
    Y3 -> 2.119 10
ufc1 -> 2.32
data
ufc2 -> 2.57
data
ufc3 -> 0
d0 -> -0.00181363
+0.000 tweak from fitting
d1 -> 0.0000976211
+0.001 tweak from fitting
d2 -> 0.00809762
+0.000 tweak from fitting
d3 -> -0.0000797641
+0.000 tweak from fitting
d4 -> -0.00107976
-0.001 tweak from fitting
su -> 0
si -> 0.015
sl -> 0.005
n0 -> 0.077
n1 -> 0.13
n2 -> 0.06
n3 -> 0.1931
n4 -> 0.1995
n5 -> 0.1995
tl1 -> 0.607887
tl2 -> 0.589143
tl3 -> 0.49884
ltotal -> 1.69587
leverarmrt -> 0.03
leverarmrz -> 0.08
leverarmrl -> 0.08
gain -> 0.4
gainrtzrtl -> 0.4
gaint -> 0.8
gainlrz -> 0.4
b1 -> 0.03
b2 -> 0.03
b3 -> 0.03
b4 -> 0.03
b5 -> 0.03
b6 -> 0.03
unstretched -> False
vertblades -> True

```
```

ul1 -> 0.610127
ul2 -> 0.594435
ul3 -> 0.498325
sl1 -> 0.612
sl2 -> 0.596
sl3 -> 0.5
si1 -> 0.0866013
si2 -> 0.223322
si3 -> 0.
c1 -> 0.996243
c2 -> 0.974745
c3 -> 1.
pitchbul -> 0
pitchbur -> 0
pitchbll -> 0
pitchblr -> 0
pitchbllf -> 0
pitchblrf -> 0
pitchbllb -> 0
pitchblrb -> 0
rollbul -> 0
rollbur -> 0
rollbll -> 0
rollblr -> 0
rollbllf -> 0
rollblrf -> 0
rollbllb -> 0
rollblrb -> 0
A1 -> 3.06796 10
A2 -> 1.25664-10
A3 -> 4.90874 10
kw1 -> 106226.
kw2 -> 44678.1
kw3 -> 20803.2
flex1 -> 0.00281363
flex2 -> 0.00190238
flex3 -> 0.00107976
kbuz -> 1341.87
kblz -> 884.924

```
```

bdu -> 0.147731
bdl -> 0.0770041
m13 -> 40.415
m23 -> 27.785
I1xy -> 0
I1yz -> 0
I1zx -> 0
COM1x -> 0
COM1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
Ibtxyl -> 0
Ibtyzl -> 0
Ibtzxl -> 0
I2xy -> 0.
I2yz -> 0
I2zx -> 0
COM2x -> 0
COM2y -> 0.
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0.
I3yz -> 0
I3zx -> 0.
COM3x -> 0.
COM3y -> 0.
COM3z -> 0.
FRP3x -> 0.
FRP3y -> 0
FRP3z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03
phib -> 0.001
bd -> 0.001
-15
M11 -> 7.49014 10

```
```

M12 -> 7.49014 10
M21 -> 1.25664 10
-22 -> 1.25664}1
-16
M31 -> 1.91748 10
-16
M32 -> 1.91748 10
temperature -> 290.
-23
boltzmann -> 1.3806610
-7
alphasilica -> 3.9 10
5.1 10^-7 from gwinc
betasilica -> 0.000152
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
10
Ysilica -> 7.2 10
-10
phisilica -> 4.1 10
-11
phissilica -> 3. 10
rhosteel -> 7800.
Csteel -> 486
Ksteel -> 49.
1 1
Ysteel -> 2.119 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0002
rhomarag -> 7800
Cmarag -> 460.
Kmarag -> 20
11
Ymarag -> 1.87 10
alphamarag -> 0.000011
betamarag -> -0.00025
v1.0 is wrong
phimarag -> 0.0001
tmU -> 0.0025
8/4/06
tmL -> 0.0017
8/4/06
magicnumber -> 0.0737472
Zener, 1938, Phys. Rev. 53:90-
99
deltabladeU -> 0.00182883
Phil Willems
gwinc/IFOModel v1.O
gwinc/IFOModel v1.O
gwinc/IFOModel v1.O
measured, MB, 11/18/05
gwinc/IFOModel v1.O
gwinc/IFOModel v1.0
Geppo's value
gwinc/IFOModel v1.0
gwinc/IFOModel v1.O
gwinc/IFOModel v1.O
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
Geppo's value - gwinc/IFOModel
gwinc/IFOModel v1.O
upper blade thickness, NAR
lower blade thickness, NAR
cf Bench delta_v1

```
measurements by PW, AH - cf. gwinc/IFOModel v1.O gwinc/IFOModel v1.O gwinc/IFOModel v1.O gwinc/IFOModel v1.O spec sheet for silica gwinc/IFOModel v1.O
```

deltabladeL -> 0.00182883
deltawireU -> 0.00264152
deltawireL -> 0.00259665
deltafibre -> 0.00267157
taubladeU -> 0.113606
taubladeL -> 0.0525316
tauwireU -> 0.00222864 cf Bench tau_steel1
tauwireL -> 0.000912852
tausilica -> 0.00782827
0.00130543 \#1
damping[imag, bladeUtype] -> (0.0001 + -------------------- \& )
1 + 0.509525 \#1
0.000603633 \#1
damping[imag, bladeLtype] -> (0.0001 + ------------------- \& )
1 + 0.108943 \#1
damping[imag, wireUtype] -> (0.0002 \& )
damping[imag, wireLtype] -> (0.0002 \& )
0.0000369891 \#1
damping[imag, wireUatype] -> (0.0002 + --------------------- \& )
1+0.000196083 \#1
damping[imag, wireLatype] -> (0.0002 + 0.0000148934 \#1
1 + 0.0000328973 \#1
damping[imag, fibretype] -> (0.0002 \& )
5.98559 10 \#1
damping[imag, fibreatype] -> (0.0002 + ---------------------- \& )
1+5.01974 10 \#1
x00 -> 0
y00 -> 0
zOO -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx1 -> 0
kcony1 -> 0
kconzl -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0

```
```

kconpitch2 -> 0
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
lockedblades -> False
kw1usual -> 106226.
kw2usual -> 44678.1
kw3usual -> 20803.2
kbuzusual -> 1341.87
kblzusual -> 884.924
kbuy -> 1.34187 10
kbly -> 8.84924
kbux -> 134187.
kblx -> 88492.4
ifs -> 0.354 D080369-v2, info only
wedge -> 0
wabh3 -> 0
wabv3 -> 0
wafh3 -> 0
wafv3 -> 0
dl -> 0.
offset wedge mass imbalance
bssteel -> 2000000000
8
wssilica -> 7.7 10 working stress of silica
rlopt -> 0.000308233
r2opt -> 0.000182698
r3opt -> 0.000120028
dssilica -> 0.015
taufibre -> 0.000356583
no wedge
no horizontal wedge on back
no vertical wedge on back
no horizontal wedge on front
no vertical wedge on front
correction to wire length to
breaking stress of steel

```
no wedge
no horizontal wedge on back
no vertical wedge on back
no horizontal wedge on front
no vertical wedge on front
correction to wire length to
breaking stress of steel
working stress of silica
gwinc/IFOModel v1.0

Back to Top

\title{
aLIGO SUS Operation Manual - Info on HLTS Suspensions
}

Back to Operation Manual main page

\section*{References}
- HLTS Wiki Page (old)
- T010103: aLIGO Suspension System Conceptual Design
- D070447: HLTS Overall Assembly
- T1000061: aLIGO HAM Triple Suspension Controls Design Description
- E1100109: HAM Suspensions Controls Arrangement Poster
- T1300083: HAM Large Triple Suspension (HLTS) Control Ranges
- \(\Theta\) D0902810: aLIGO HAM2 Suspension Controls Wiring Diagrams
- D1002740: aLIGO SUS HAM 5-6 Wiring Diagrams

\section*{Models}

The HLTS suspension has been extensively modelled. Key results are at Suspensions/OpsManual/HLTS/Models .

\section*{Screens}

HLTS MEDM screens are documented at/Screens.

\section*{aLIGO SUS Operations Manual - Overview of HLTS MEDM screens}

Back to Operation Manual main page
Back to HLTS main page
This page makes extensive use of text fragments in-lined from Suspensions/OpsManual/Boilerplate. Use the extract.py script there to update.

Except where noted, the HLTS screens described below are common to HLTS and HSTS and live at
/opt/rtcds/userapps/release/sus/common/medm/hxts/. (Note hxts nothlts.) They are all generic screens which rely for their execution on site-, interferometer- and suspension-specific arguments passed in when they are called. They can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP.adl. See the MEDM page for further information.

\section*{Overview Screen}

Screen SUS_CUST_HLTS_OVERVIEW.adI

This is the overview screen and one of only a few specific to HLTS (with HLTS rather than HXTS in the name). The functionality is divided up according to the three sensor-actuator groups, plus an odds-and-ends area at the top:
- Other - subscreens not associated with a sensor actuator group
- M1-6 BOSEMs on the structure engaging the upper top mass
- M2-4 BOSEMs on the structure engaging the intermediate mass
- M3-4 AOSEMs on the structure engaging the optic, also an optical lever

M1 is used for local damping (relative to the structure). DC pitch and yaw offsets are also injected at M1. M2 and M3 are for implementing global control (relative to other optics) and have inputs for actuation requests from ISC.

Other Screens

There are the following additional controls/displays that apply to all sensor-actuator groups and have been crammed into the M1 area:
- MASTER SWITCH - a manual on/off switch for all actuation (common to all sensor-actuator groups).
- MEASUREMENT STATUS - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- HIERARCHY SWITCH - enables various ISC inputs and outputs
- ADC - a monitor screen for the semi-raw ADC values as reported by the IOP process after downsampling.
- DAC - a popup allowing access to all the DAC outputs as reported by the IOP process.
- H1SUSPR3 MONITORS (or the like; depends on the suspension name) - readbacks from coil driver channels for
- WATCHDOG - a block implementing the watchdogs on the various sensor-actuator groups.
- IOP DACKILL - a watchdog that shuts off the IOP process (potentially other suspensions on the same front-end).
- H1IOPSUSH34 GDS TP (or the like; depends on the front-end computer name) - status of the IOP process for the front-end.
- H1SUSPR3 GDS TP (or the like; depends on the suspension name) - status of the suspension process.
- H1SUSPR3 BIO (or the like; depends on the suspension name) - binary input/output controls.
all OSEMs as reported by the corresponding auxiliary front-end processor.
- ODC - ODC status
- GUARDIAN Guardian controls
- ISIINF - ISI input filters.
- CART2EUL - transformation from the ISI basis to SUS.

\section*{Screen SUS_CUST_HXTS_ADC_MONITOR.adl}

Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

\section*{Screen SUS_CUST_HXTS_DAC_MONITOR.adI}
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|r|}{DAC} \\
\hline \[
\begin{aligned}
& \mathrm{DACO} \\
& \square
\end{aligned}
\] & OUTPUT
SIGNAL & OVERFLOWS \\
\hline PR3_M1_OSEM_T1_OUT (dac_2_0) & 1 & 0 \\
\hline PR3_M1_OSEM_T2_OUT (dac_2_1) & 7150 & 1295440 \\
\hline PR3_M1_OSEM_T3_OUT (dac_2_2) & 7151 & 1296410 \\
\hline PR3_M1_OSEM_LF_OUT (dac_2_4) & 19195 & 165362 \\
\hline PR3_M1_OSEM_RT_OUT (dac_2_5) & 19193 & 165424 \\
\hline PR3_M1_OSEM_SD_OUT (dac_2_6) & 6 & 0 \\
\hline PR3_M2_OSEM_UL_OUT (dac_3_1) & 0 & 0 \\
\hline PR3_M2_OSEM_LL_OUT (dac_3_2) & 0 & 0 \\
\hline PR3_M2_OSEM_UR_OUT (dac_3_3) & 0 & 0 \\
\hline PR3_M2_OSEM_LR_OUT (dac_3_4) & 0 & 0 \\
\hline PR3_M3_OSEM_UL_OUT (dac_3_5) & 0 & 0 \\
\hline PR3_M3_OSEM_LL_OUT (dac_3_6) & 0 & 0 \\
\hline PR3_M3_OSEM_UR_OUT (dac_3_7) & 0 & 0 \\
\hline PR3_M3_OSEM_LR_OUT (dac_3_8) & 0 & 0 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/DAC_MONITOR:
Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., " 33 ", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

\section*{Screen H1SUSPR3_GDS_TP.adI}

Suspensions/OpsManual/Boilerplate/USER_GDS_TP:
This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPU, e.g., "37", can be read from this screen just to the right of the "DAQ STATUS" heading.
The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

\section*{Screen SUS_CUST_HXTS_MONITOR_OVERVIEW.adI}

Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.
- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.

Suspensions/OpsManual/Boilerplate/HLTS_BIO:
The Binary Input-Output control screen. State Requests for the various sensor-actuator groups can be input. Positive state values lock out manual control of the filters on the COILOUTF screen and set the digital dewhitening filters to match the analog whitening filters selected via the binary outputs. Negative state values allow the dewhitening filters to be manually overridden.

\section*{Screen SUS_CUST_HXTS_WD.adI}

Suspensions/OpsManual/Boilerplate/WD:
This screen allows for setting the watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.

Screen SUS_CUST_IOP_DACKILL.adI

Suspensions/OpsManual/Boilerplate/IOP_DACKILL:
The watchdog controls for the IOP process. If this WD is tripped it disables IO to/from all user models on the front end. RESET resets from the tripped state if there are no outstanding triggers. BYPASS is a manual override that allows for operation of the suspension if there is a trigger condition that is known by the operator to be harmless.

\section*{Screen SUS_CUST_HXTS_IPC.adI}

Suspensions/OpsManual/Boilerplate/IPC:
Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).

\section*{Screen GUARD.adI}

Suspensions/OpsManual/Boilerplate/GUARD:
The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.

\section*{Screen SUS_CUST_HLTS_ODC.adl}

Suspensions/OpsManual/Boilerplate/ODC:
ODC Status.

\section*{Sensor Actuator Group M1 - Upper Mass}

The M1 section of the main HLTS screen is excerpted above. Most of the items on it correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the local control loop, which involves the following elements:
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default)
- DAMP FILTERS - a filter bank applying the damping filters.
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw.
- I OCK FII TERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying frequency-dependent corrections to the actuation (defaults to the identity matrix)
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.

Screen SUS_CUST_HXTS_M1_OSEMINF.adl

Suspensions/OpsManual/Boilerplate/M1_OSEMINF:
This block has 6 filter groups corresponding to the 6 M1 BOSEMs, T1/T2/T3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

\section*{Screen SUS_CUST_HXTS_M1_CENTERING.adI}

Suspensions/OpsManual/Boilerplate/M1_CENTERING:
This screen gives various views of the M1 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

\section*{Screen SUS_CUST_HXTS_M1_OSEM2EUL.adI}

Suspensions/OpsManual/Boilerplate/M1_OSEM2EUL:
This screen allows entry of the matrix which converts from the M1 OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^ \({ }^{\wedge} 1\) and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

\section*{Screen SUS_CUST_HXTS_M1_SENSALIGN.adI}

Suspensions/OpsManual/Boilerplate/M1_SENSALIGN:
This screen is reserved for tweaking the M1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_HXTS_M1_DAMP.adI}

Suspensions/OpsManual/Boilerplate/M1_DAMP:
These filters implement the local damping. See Suspensions/OpsManual/Damping.

\section*{Screen SUS_CUST_HXTS_M1_DRIVEALIGN.adI}

Suspensions/OpsManual/Boilerplate/M1_DRIVEALIGN:
This screen is reserved for tweaking the M1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_HXTS_M1_EUL2OSEM.adI}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{M1 EULER20SEM MATRIX} \\
\hline & & & & ULER & BASIS & & \\
\hline & & L & T & \(V\) & R & P & Y \\
\hline 0 & T1 & 0.00000 & 10.00000 & -0.5000 & -7.1429 & 0.00000 & 0.00000 \\
\hline S & T2 & 0.00000 & 0.00000 & [-0.2500 & 3.57140 & 11.1111 & 0.00000 \\
\hline M & 13 & 0.00000 & 0.00000 & -0.2500 & 3.57140 & -11.111 & 0.00000 \\
\hline B & LF & 0.50000 & 0.00000 & 0.00000 & 10.00000 & 0.00000 & -6.2500 \\
\hline I & RT & 0.50000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 6.25000 \\
\hline 5 & SD & 0.00000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Suspensions/OpsManual/Boilerplate/M1_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_HXTS_M1_COILOUTF.adI

Suspensions/OpsManual/Boilerplate/M1_COILOUTF:
This screen applies compensation for the hardware filters in the M1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of \(\approx 10000\) [TBC] can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).
Screen SUS_CUST_HLTS_M1_OPTICALIGN.adI

Suspensions/OpsManual/Boilerplate/M1_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets. See Suspensions/OpsManual/Alignments for more info.

\section*{Screen SUS_CUST_HXTS_M1_TEST.adI}

Suspensions/OpsManual/Boilerplate/M1_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1 . However offsets of \(\approx 10000\) in L/T/V or \(\approx 1000\) in R/P/Y can be applied temporarily to check that actuation is taking effect (and with the right sign). In such cases a Ramp Time of 10 s or so is often helpful. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

\section*{Screen SUS_CUST_HXTS_M1_LOCK.adI}

Suspensions/OpsManual/Boilerplate/M1_LOCK:
Filters for the locking signals.
Screen SUS_CUST_HXTS_M1_ISIINF.adl

Suspensions/OpsManual/Boilerplate/M1_ISIINF:
Filters for the diagnostic signals from the ISI.

\section*{Screen SUS_CUST_HXTS_M1_CART2EUL.adI}

Suspensions/OpsManual/Boilerplate/M1_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face,+T left and +V up). See Suspensions/OpsManual/Projections and © T1100617.

\section*{Sensor Actuator Group M2 - Intermediate Mass}
(1)

The M2 level has the following blocks in the main path:
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly 20K-30K counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/pitch/yaw (L/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- LOCK FILTERS - filters for global control signals.
- OLDAMP FILTERS - filters for optical lever damping.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.

\section*{Screen SUS_CUST_HXTS_M2_OSEMINF.adl}

Suspensions/OpsManual/Boilerplate/M2_OSEMINF:
This block has 4 filter banks corresponding to the 4 M2 OSEMs, UL/LL/UR/LR. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_HXTS_M2_CENTERING.adI

Suspensions/OpsManual/Boilerplate/M2_CENTERING:
This screen gives various views of the OSEM signals as meter panels for ease of viewing when mechanically adjusting

OSEMs.

\section*{Screen SUS_CUST_HXTS_M2_SENSALIGN.adI}

Suspensions/OpsManual/Boilerplate/M2_SENSALIGN:
This screen is reserved for tweaking the M2 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_HXTS_M2_OSEM2EUL.adI

Suspensions/OpsManual/Boilerplate/M2_OSEM2EUL:
This screen allows entry of the matrix which converts from the OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOF L are dimensionless.

The entries for the angular DOFs P and Y have dimensions meter^\(\wedge 1\) and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

Screen SUS_CUST_HXTS_M2_LOCK.adI

Suspensions/OpsManual/Boilerplate/M2_LOCK:
Filters for the locking signals.

\section*{Screen SUS_CUST_HLTS_M2_OLDAMP_ALL.adI}

Suspensions/OpsManual/Boilerplate/M2_OLDAMP:
Filters for the optical lever locking signals.

\section*{Screen SUS_CUST_HXTS_M2_TEST.adl}

This is a deliberately empty set of 3 filter banks corresponding to the M2 L, P and Y DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

Screen SUS_CUST_HXTS_M2_DRIVEALIGN.adI

Suspensions/OpsManual/Boilerplate/M2_DRIVEALIGN:
This screen is reserved for tweaking the actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_HXTS_M2_EUL2OSEM.adI

This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_HXTS_M2_LKIN2OSEM.adI

Suspensions/OpsManual/Boilerplate/M2_LKIN2OSEM:
Need to find out what this does.

\section*{Screen SUS CUST HXTS M2 COILOUTF.ad}

Suspensions/OpsManual/Boilerplate/M2_COILOUTF:
This screen applies compensation for the hardware filters in the actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).
Sensor Actuator Group M3-Optic

The M3 level has the following blocks in the main path:
- ISC INPUT FILTERS - ISC input filters.
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly 20K-30K counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/pitch/yaw (L/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- LOCK FILTERS - filters for global control signals.
- OLDAMP FILTERS - filters for optical lever damping.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.

HLTS has provision for optical levers:
- OPLEV INPUT FILTERS - input filters for optical levers.
- OL2EUL - a block that diagonalizes the OL signal to signals in a pitch/yaw/sum (P/Y/S) basis.

Screen SUS_CUST_HXTS_M3_ISCINF.adl

Suspensions/OpsManual/Boilerplate/M3_ISCINF:
Filters for the control signals from ISC.
Screen SUS_CUST_HXTS_M3_OSEMINF.adI

Suspensions/OpsManual/Boilerplate/M3_OSEMINF:
This block has 4 filter banks corresponding to the 4 M3 AOSEMs, UL/LL/UR/LR. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_HXTS_M3_CENTERING.adI

Suspensions/OpsManual/Boilerplate/M3_CENTERING:
This screen gives various views of the OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

\section*{Screen SUS_CUST_HXTS_M3_OSEM2EUL.adI}

Suspensions/OpsManual/Boilerplate/M3_OSEM2EUL:
This screen allows entry of the matrix which converts from the OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOF L are dimensionless.

The entries for the angular DOFs P and Y have dimensions meter^\({ }^{\wedge} 1\) and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes

\section*{Screen SUS_CUST_HXTS_M3_SENSALIGN.adI}

Suspensions/OpsManual/Boilerplate/M3_SENSALIGN:
This screen is reserved for tweaking the M3 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_HXTS_M3_LOCK.adl}

Suspensions/OpsManual/Boilerplate/M3_LOCK:
Filters for the locking signals.
Screen SUS_CUST_HLTS_M3_OLDAMP_ALL.adI

Suspensions/OpsManual/Boilerplate/M3_OLDAMP:
Filters for the optical lever locking signals.
Screen SUS_CUST_HXTS_M3_TEST.adI

Suspensions/OpsManual/Boilerplate/M3_TEST:
This is a deliberately empty set of 3 filter banks corresponding to the \(\mathrm{L}, \mathrm{P}\) and Y DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

Screen SUS_CUST_HXTS_M3_EUL2OSEM.adI

Suspensions/OpsManual/Boilerplate/M3_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Suspensions/OpsManual/Boilerplate/M3_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_HXTS_M3_COILOUTF.adl

Suspensions/OpsManual/Boilerplate/M3_COILOUTF:
This screen applies compensation for the hardware filters in the actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of \(\approx 10000\) [TBC] can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).
Screen SUS_CUST_HLTS_M3_OPLEV_SEGS.adI

Suspensions/OpsManual/Boilerplate/M3_OPLEV_SEGS:
Filters for the optical lever QPD segment signals.
Screen SUS_CUST_HLTS_M3_OPLEV_MTRX.adI

Suspensions/OpsManual/Boilerplate/M3_OPLEV_MTRX:
Transformation matrix from the optical lever QPD segment basis into the P/Y/SUM basis.

\section*{Screen SUS_CUST_HLTS_M3_OPLEV.adl}

Suspensions/OpsManual/Boilerplate/M3_OPLEV
Overview of the Optical Lever signal processing.

\section*{aLIGO SUS Operations Manual - Models for HLTS Suspensions}

Back to Operation Manual main page
The HLTS suspensions have been extensively modelled. There are Mathematica (\(\Theta\) T020205) and Matlab (\(\Theta\) T080188) programs that take a parameter set describing a single chain and calculate the dynamics. The parameter set needs to be formatted differently for Mathematica vs Matlab, but the parameter names are the same as far as was practical.

The Mathematica triple model, which covers HLTS as well as HSTS and BSFM, and parameter sets for it lives in the SUS SVN at ^/trunk/Common/MathematicaModels/TripleLite2/. Parameter sets for Matlab live at ^/trunk/Common/MatlabTools/TripleModel_Production. Mark Barton maintains the Mathematica, Jeff Kissel maintains the Matlab. Unfortunately two different naming conventions are in use and it's difficult to tell what corresponds to what - if in doubt, ask. References given below are to Mathematica versions as subdirectories of \(\wedge /\) trunk/Common/MathematicaModels/TripleLite2/.

Key cases of the triple model for HLTS are given below, with results such as mode frequencies and mode shapes. T1200404 has transfer functions for many of the same models.

\section*{Generic HLTS}

Current best generic HLTS model is .../mark.barton/20120120hlts.

\section*{Case 20120120hlts of Mathematica model TripleLite2}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

{"mark.barton", "20120120hlts"}

```
Equivalent to Jeff K's hltsopt_metal.m revision 2034 of \(1 / 24 / 12\) for PR metal build.

\section*{Links to Result Sections}
\(|\)\begin{tabular}{|l|l|l|l|l|l|}
\hline Pendulum Mode Summary & \multicolumn{3}{|c|}{ Violin Mode Summary } & Pendulum Mode Shapes & Parameters \\
\hline modeP1 & modeT1 & modeL1 & modeY1 & modeV1 & modeR1 \\
\hline modeL2 & modeR2 & modeP2 & modeY2 & modeT2 & modeL3 \\
\hline modeY3 & modeV2 & modeP3 & modeT3 & modeV3 & modeR3 \\
\hline
\end{tabular}

\section*{Pendulum Mode Summary}

Back to Top
\begin{tabular}{|c|c|c|c|c|c|}
\hline N & f & name & type & & \\
\hline 1 & 0.659538 & modeP1 & pitch3 & pitch2 & \\
\hline 2 & 0.692337 & modeT1 & roll3 & roll2 & y 3 \\
\hline 3 & 0.744758 & modeL1 & pitch3 & pitch2 & \\
\hline 4 & 0.989521 & modeY1 & yaw3 & yaw2 & \\
\hline 5 & 1.06994 & modeV1 & z 3 & z 2 & \\
\hline 6 & 1.50732 & modeR1 & roll3 & roll2 & \\
\hline 7 & 1.5814 & modeL2 & pitch1 & & \\
\hline 8 & 1.97903 & modeR2 & roll3 & roll2 & \\
\hline 9 & 2.12717 & modeP 2 & pitch1 & & \\
\hline 10 & 2.23634 & modeY2 & yaw3 & yaw1 & \\
\hline 11 & 2.50427 & modeT2 & roll1 & & \\
\hline 12 & 2.85421 & modeL3 & pitch2 & x1 & \\
\hline 13 & 3.34348 & modeY3 & yaw2 & yaw1 & \\
\hline 14 & 3.50334 & modeV2 & z 1 & & \\
\hline 15 & 3.51862 & modeP 3 & pitch2 & & \\
\hline 16 & 3.68116 & modeT3 & roll1 & roll3 & \\
\hline 17 & 28.1003 & modeV3 & z2 & z 3 & \\
\hline 18 & 44.7247 & moder3 & roll2 & & \\
\hline
\end{tabular}

\section*{Violin Mode Summary}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Violin \\
Modes
\end{tabular} & UM & IM & Optic \\
\hline \begin{tabular}{l}
\(\mathrm{f}(\mathrm{Hz}), \mathrm{n}=1-\) \\
4
\end{tabular} & \begin{tabular}{l}
724.2471452 .392188 .39 \\
2936.35
\end{tabular} & \begin{tabular}{l}
744.191489 .442236 .81 \\
2987.37
\end{tabular} & \begin{tabular}{l}
513.2731026 .981541 .56 \\
2057.44
\end{tabular} \\
\hline Q, n=1-4 & \begin{tabular}{l}
72423.385167 .277775 .7 \\
65222.4
\end{tabular} & \begin{tabular}{l}
67514.196724 .107132. \\
105288.
\end{tabular} & \begin{tabular}{l}
63747.681281 .394421 .3 \\
99492.5
\end{tabular} \\
\hline
\end{tabular}

\section*{Mode Shapes}

\section*{Mode \#1 - modeP1}

Back to Top
```

0.659538 Hz

```
\begin{tabular}{|lllllll|}
\hline x & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.0122691 & 0 & 0 & 0 & 0.379662 & 0 \\
Mass I & -0.0287355 & 0 & 0 & 0 & 0.57534 & 0 \\
optic & -0.0569338 & 0 & 0 & 0 & 0.721542 & 0 \\
\hline
\end{tabular}

\section*{Mode \#2-modeT1}

Back to Top
```

0.692337 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.0883701 & 0 & 0 & 0 & 0.352577 \\
Mass I & 0 & 0.206134 & 0 & 0 & 0 & 0.574222 \\
optic & 0 & 0.406826 & 0 & 0 & 0 & 0.574587 \\
\hline
\end{tabular}

Mode \#3 - modeL1
Back to Top
```

0.744758 Hz

```
\begin{tabular}{|lllllll}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0.0116095 & 0 & 0 & 0 & 0.316161 & 0 \\
Mass I & 0.0260904 & 0 & 0 & 0 & 0.565622 & 0 \\
optic & 0.0525815 & 0 & 0 & 0 & 0.759299 & 0
\end{tabular}

-•114 ••••

\section*{Vlode \#4 - modeY I}

Back to Top
```

0.989521 Hz

```
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & 0.275828 & 0 & 0 \\
Mass I & 0 & 0 & 0 & 0.554968 & 0 & 0 \\
optic & 0 & 0 & 0 & 0.784812 & 0 & 0
\end{tabular}

Mode \#5-modeV1
Back to Top
```

1.06994 Hz

```
\begin{tabular}{|lllllll}
& x & y & y & yaw & pitch & roll \\
Mass U & 0 & 0 & -0.382597 & 0 & 0 & 0 \\
Mass I & 0 & 0 & -0.652357 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.654255 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#6 - modeR1}

Back to Top
```

1.50732 Hz

```
\begin{tabular}{|lllllll}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & -0.067815 & 0 & 0 & 0 & -0.49431 \\
Mass I & 0 & -0.121181 & 0 & 0 & 0 & -0.602246 \\
optic & 0 & 0.0949076 & 0 & 0 & 0 & -0.603876
\end{tabular}

\section*{Mode \#7-modeL2}

Back to Top
```

1.5814 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0.191935 & 0 & 0 & 0 & -0.882633 & 0 \\
Mass I & 0.294221 & 0 & 0 & 0 & -0.181135 & 0 \\
optic & -0.191187 & 0 & 0 & 0 & 0.167902 & 0 \\
\hline
\end{tabular}

\section*{Mode \#8 - modeR2}

Back to Top
1.97903 Hz
\begin{tabular}{|lllllll}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.0549799 & 0 & 0 & 0 & -0.20392 \\
Mass I & 0 & 0.0277194 & 0 & 0 & 0 & -0.689153 \\
optic & 0 & -0.00821975 & 0 & 0 & 0 & -0.692551
\end{tabular}

\section*{Mode \#9 - modeP2}

Back to Top
```

2.12717 Hz

```
\begin{tabular}{|lllllll|}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.00192117 & 0 & 0 & 0 & -0.933946 & 0 \\
Mass I & -0.00366319 & 0 & 0 & 0 & -0.301692 & 0 \\
optic & 0.000947106 & 0 & 0 & 0 & 0.191596 & 0 \\
\hline
\end{tabular}

\section*{Mode \#10-modeY2}

Back to Top
```

2.23634 Hz

```
\begin{tabular}{lllllll}
& x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & -0.647503 & 0 & 0 \\
Mass I & 0 & 0 & 0 & -0.338551 & 0 & 0 \\
optic & 0 & 0 & 0 & 0.682733 & 0 & 0
\end{tabular}

\section*{Mode \#11-modeT2}

Back to Top
```

2.50427 Hz

```
\begin{tabular}{|lllllll}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & -0.047002 & 0 & 0 & 0 & -0.988271 \\
Mass I & 0 & 0.0524729 & 0 & 0 & 0 & 0.0951857 \\
optic & 0 & -0.00986026 & 0 & 0 & 0 & 0.0959227
\end{tabular}

\section*{Mode \#12-modeL3}

Back to Top
```

2.85421 Hz

```
\begin{tabular}{|lllllll}
\hline x & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & 0.574201 & 0 & 0 & 0 & -0.212197 & 0 \\
Mass I & -0.339828 & 0 & 0 & 0 & 0.69352 & 0
\end{tabular}

\section*{Mode \#13-modeY3}

Back to Top
3.34348 Hz
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass U & 0 & 0 & 0 & -0.462262 & 0 \\
Mass I & 0 & 0 & 0 & 0.8156 & 0 \\
optic & 0 & 0 & 0 & -0.34801 & 0
\end{tabular}

\section*{Mode \#14-modeV2}

Back to Top
3.50334 Hz
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass U & 0 & 0 & -0.924973 & 0 & 0 \\
Mass I & 0 & 0 & 0.264448 & 0 & 0 \\
optic & 0 & 0 & 0.272933 & 0 & 0
\end{tabular}

\section*{Mode \#15-modeP3}

Back to Top
```

3.51862 Hz

```
\begin{tabular}{|llllll|}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & 0.00188339 & 0 & 0 & 0 & 0.398527 \\
Mass I & -0.000714155 & 0 & 0 & 0 & -0.905318 \\
optic & 0 & 0 & 0 & 0 & 0.146873 \\
\hline
\end{tabular}

Mode \#16-modeT3
Back to Top
3.68116 Hz
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.104123 & 0 & 0 & 0 & -0.721683 \\
Mass I & 0 & -0.0623914 & 0 & 0 & 0 & 0.477695 \\
optic & 0 & 0.00471243 & 0 & 0 & 0 & 0.48603
\end{tabular}

\section*{Mode \#17-modeV3}

Back to Top
28.1003 Hz
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass U U & 0 & 0 & -0.0050742 & 0 & 0
\end{tabular}
\begin{tabular}{lllllll}
Mass I & 0 & 0 & 0.707132 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.707063 & 0 & 0 & 0
\end{tabular}

\section*{Mode \#18 - modeR3}

Back to Top
44.7247 Hz
\(\left.\begin{array}{|llllll|}\hline & \mathrm{x} & \mathrm{y} & \mathrm{z} & \text { yaw } & \text { pitch } \\ \text { Mass U } & 0 & -0.000117055 & 0 & 0 & 0\end{array}\right) 0.00118095\)

\section*{Parameters}

\section*{Back to Top}
```

g -> 9.81
ux -> 0.1
uy -> 0.3
uz -> 0.06
den1 -> 6715.
uy, uz
m1 -> 12.087
with wire, blade clamps
I1x -> 0.127
with wire, blade clamps
Ily -> 0.02
with wire, blade clamps
I1z -> 0.129
with wire, blade clamps
ix -> 0.1
ir -> 0.09
den2 -> 7999.49
LIGO material properties
m2 -> 12.227
with wire clamps
I2x -> 0.0786
with wire clamps
I2y -> 0.0201
with wire clamps
I2z -> 0.079
with wire clamps
tx -> 0.1
tr -> 0.1325
den3 -> 2698.79
m3 -> 12.142
with metal prisms, magnets
I3x -> 0.12
I3y -> 0.0699
I3z -> 0.0707
11 -> 0.2025
12 -> 0.2036
13 -> 0.255
nw1 -> 2
nw2 -> 4
nw3 -> 4
r1 -> 0.0003048 0.024" diameter

```
```

r2 -> 0.00017018
0.0079" diameter
r3 -> 0.00013462
0.047" in diameter
Y1 -> 2.119 10
1 1
Y2 -> 2.119 10
Y3 -> 2.119 10
ufc1 -> 2.26
ufc2 -> 2.36
ufc3 -> 0
d0 -> 0.001
mm)
d1 -> 0.001
mm)
d2 -> 0.001
mm)
d3 -> 0.001
mm)
d4 -> 0.001
mm)
su -> 0
si -> 0.03
sl -> 0.005
n0 -> 0.077
n1 -> 0.13
n2 -> 0.0699
n3 -> 0.1375
n4 -> 0.1405
n5 -> 0.1405
tl1 -> 0.196441
tl2 -> 0.19405
tl3 -> 0.257
ltotal -> 0.647491
leverarmrt -> 0.03
leverarmrz -> 0.08
leverarmrl -> 0.08
gain -> 0.4
gainrtzrtl -> 0.4
gaint -> 0.8
gainlrz -> 0.4
b1 -> 0.03
b2 -> 0.03
b3 -> 0.03
b4 -> 0.03

```
```

b5 -> 0.03
b6 -> 0.03
unstretched -> False
vertblades -> True
ul1 -> 0.201893
ul2 -> 0.202931
ul3 -> 0.254371
sl1 -> 0.2025
sl2 -> 0.2036
sl3 -> 0.255
si1 -> 0.261728
si2 -> 0.332024
si3 -> 0.
c1 -> 0.965142
c2 -> 0.943271
c3 -> 1.
pitchbul -> 0
pitchbur -> 0
pitchbll -> 0
pitchblr -> 0
pitchbllf -> 0
pitchblrf -> 0
pitchbllb -> 0
pitchblrb -> 0
rollbul -> 0
rollbur -> 0
rollbll -> 0
rollblr -> 0
rollbllf -> 0
rollblrf -> 0
rollbllb -> 0
rollblrb -> 0
A1 -> 2.91864 10
A2 -> 9.09844 10
A3 -> 5.69337 10
kw1 -> 305412.
kw2 -> 94693.5
kw3 -> 47310.7
flex1 -> 0.00268734

```
```

flex2 -> 0.0014001
flex3 -> 0.00135481
kbuz -> 1218.61
kblz -> 672.115
bdu -> 0.146738
bdl -> 0.0889207
m13 -> 36.456
m23 -> 24.369
I1xy -> 0
I1yz -> 0
I1zx -> 0
COM1x -> 0
COM1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
Ibtxyl -> 0
Ibtyzl -> 0
Ibtzxl -> 0
I2xy -> 0
I2yz -> 0
I2zx -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0
I3yz -> 0
I3zx -> 0
COM3x -> 0
COM3y -> 0
COM3z -> 0
FRP3x -> 0
FRP3y -> 0
FRP3z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03

```
```

phib -> 0.001
bd -> 0.001
M11 -> 6.77875 10
-15
M12 -> 6.77875 10
-16
M21 -> 6.58755 10
M22 -> 6.58755 10
M31 -> 2.57946 10
-16
M32 -> 2.57946 10
temperature -> 290.
-23
boltzmann -> 1.38066 10
-7
alphasilica -> 3.9 10
5.1 10^-7 from gwinc
betasilica -> 0.000152
rhosilica -> 2200.
Csilica -> }772
Ksilica -> 1.38
1 0
Ysilica -> 7.2 10
-10
phisilica -> 4.1 10
-11
phissilica -> 3. 10
rhosteel -> 7800
Csteel -> 486.
Ksteel -> 49.
1 1
Ysteel -> 2.119 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0002
value
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
1 1
Ymarag -> 1.87 10
alphamarag -> 0.000011
betamarag -> -0.00025
v1.0 is wrong
phimarag -> 0.0001
tmU -> 0.0025
\&/\Delta/n^

```
```

tmL -> 0.0017
8/4/06
magicnumber -> 0.0737472
99
deltabladeU -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00263479
deltawireL -> 0.0026649
deltafibre -> 0.00258057
taubladeU -> 0.113606
taubladeL -> 0.0525316
tauwireU -> 0.00212017 cf Bench tau_steel1
tauwireL -> 0.000660933
tausilica -> 0.00907956
damping[imag, bladeUtype] -> (0.0001 + 0.00130543 \#1
1 + 0.509525 \#1
0.000603633 \#1
damping[imag, bladeLtype] -> (0.0001 + ------------------- \& )
1 + 0.108943 \#1
damping[imag, wireUtype] -> (0.0002 \& )
damping[imag, wireLtype] -> (0.0002 \& )
0.0000350991 \#1
damping[imag, wireUatype] -> (0.0002 + ---------------------
1 + 0.00017746 \#1
damping[imag, wireLatype] -> (0.0002 + 0.0000110667 \#1
1 + 0.0000172455 \#1
damping[imag, fibretype] -> (0.0002 \& )
6.70587 10 \#1
damping[imag, fibreatype] -> (0.0002 + -----------------------
1 + 6.75273 10 \#1
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx1 -> 0
kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0

```
```

kconro\perp\perp\perp -> u
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
lockedblades -> False
True for compatibility with very old Matlab.
kw1usual -> 305412.
kw2usual -> 94693.5
kw3usual -> 47310.7
kbuzusual -> 1218.61
kblzusual -> 672.115
kbuy -> 1.21861 10
6
kbly -> 6.72115 10
kbux -> 121861.
kblx -> 67211.5
boxymassi -> True
iy -> 0.255 D070336-v3, display only
iz -> 0.092 D070336-v3, display only
nb -> 6061 Al, SolidWorks - LIGO material properties
nb -> D070338-v4
nb -> D070338-v4
dl -> 0. correction to wire length to
offset wedge mass imbalance
dssilica -> 0.015 gwinc/IFOModel v1.0
taufibre -> 0.00041358
7

```

Back to Top

\title{
aLIGO SUS Operation Manual - Info on HSTS Suspensions
}

Back to Operation Manual main page

\section*{References}
- HSTS wiki page (old)
- \(\Theta\) T010103: aLIGO Suspension System Conceptual Design
- © D020700: HSTS Overall Assembly
- T1000061: aLIGO HAM Triple Suspension Controls Design Description
- \(\Theta\) E1100109: HAM Suspensions Controls Arrangement Poster
- \(\operatorname{eT1300079:~HAM~Small~Triple~Suspension~(HSTS)~Actuation~Ranges~}\)
- © D0902810: aLIGO HAM2 Suspension Controls Wiring Diagrams
- \(\Theta\) D1000599: aLIGO HAM 3-4 Suspension Controls Wiring Diagram
- Ө D1002740: aLIGO SUS HAM 5-6 Wiring Diagrams

\section*{Models}

The HSTS suspension has been extensively modelled. Key results are at Suspensions/OpsManual/HSTS/Models .

\section*{Screens}

HSTS MEDM screens are at/Screens.

\section*{aLIGO SUS Operations Manual - Overview of HSTS MEDM screens}

Back to Operation Manual main page
Back to HSTS main page
This page makes extensive use of text fragments in-lined from Suspensions/OpsManual/Boilerplate. Use the extract.py script there to update.

Except where noted, the HSTS screens described below are common to HSTS and HLTS and live at
/opt/rtcds/userapps/release/sus/common/medm/hxts/. (Note hxts nothsts.) They are all generic screens which rely for their execution on site-, interferometer- and suspension-specific arguments passed in when they are called. They can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP.adl. See the MEDM page for further information.

\section*{Overview Screen}

\section*{Screen SUS_CUST_HSTS_OVERVIEW.adl}

This is the overview screen and one of only a few specific to HSTS (with HSTS rather than HXTS in the name). The functionality is divided up according to the three sensor-actuator groups, plus an odds-and-ends area at the top:
- Other - subscreens not specific to a sensor/actuator group
- M1-6 BOSEMs on the structure engaging the main chain top mass
- M2-4 BOSEMs on the structure engaging the intermediate mass
- M3-4 AOSEMs on the structure engaging the optic

M1 is used for local damping (relative to the structure). DC pitch and yaw offsets are also injected at M1. M2 and M3 are for implementing global control (relative to other optics) and have inputs for actuation requests from ISC.

Other Screens

- MASTER SWITCH - switches all actuation.
- MEASUREMENT STATUS - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- HIERARCHY SWITCH - enables various ISC inputs and outputs.
- ADC - a monitor screen (common to all sensor-actuator groups) for the semi-raw ADC values as reported by the IOP process after downsampling
- DAC - a popup allowing access to all the DAC outputs as reported by the IOP process.
- H1SUSMC1 MONITORS (or the like; depends on the suspension name) - readbacks from coil driver channels for all OSEMs as reported by the corresponding auxiliary front-end processor.
- WATCHDOGS - a block implementing the watchdogs on the various sensor-actuator groups
- IOP DACKILL - a watchdog that shuts off the IOP process (potentially other suspensions on the same front-end).
- H1IOPSUSH2A GDS TP (or the like; depends on the front-end computer name) - status of the IOP process for the front-end.
- H1SUSMC1 GDS TP (or the like; depends on the suspension name) - status of the suspension process.
- H1SUSMC1 BIO (or the like; depends on the suspension name) - binary input/output controls.
- ODC STATUS - ODC status
- !GUARDIAN Guardian controls
- ISIINF - ISI input filters.
- CART2EUL - transformation from the ISI basis to SUS.

Screen SUS_CUST_HXTS_ADC_MONITOR.adI

Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

\section*{Screen SUS_CUST_HXTS_DAC_MONITOR.adI}
\begin{tabular}{|c|c|c|}
\hline & & DAC \\
\hline \[
\begin{aligned}
& \mathrm{DACO} \\
& \square
\end{aligned}
\] & OUTPUT SIGNAL & OVERFLOUS \\
\hline MC1_M1_OSEM_T1_OUT (dac_2_0) & -60 & 0 \\
\hline MC1_M1_OSEM_T2_OUT (dac_2_1) & -26683 & 4174581 \\
\hline MC1_M1_OSEM_T3_OUT (dac_2_2) & -26646 & 4174458 \\
\hline MC1_M1_OSEM_LF_OUT (dac_2_4) & 36609 & 196181 \\
\hline MC1_M1_OSEM_RT_OUT (dac_2_5) & 28460 & 200873 \\
\hline MC1_M1_OSEM_SD_OUT (dac_2_6) & -518 & 55413 \\
\hline MC1_M2_OSEM_UL_OUT (dac_3_1) & 0 & 0 \\
\hline MC1_M2_OSEM_LL_OUT (dac_3_2) & 0 & 0 \\
\hline MC1_M2_OSEM_UR_OUT (dac_3_3) & 0 & 0 \\
\hline MC1_M2_OSEM_LR_OUT (dac_3_4) & 0 & 0 \\
\hline MC1_M3_OSEM_UL_OUT (dac_3_5) & 0 & 0 \\
\hline MC1_M3_OSEM_LL_OUT (dac_3_6) & 0 & 0 \\
\hline MC1_M3_OSEM_UR_OUT (dac_3_7) & 0 & 0 \\
\hline MC1_M3_OSEM_LR_OUT (dac_3_8) & 0 & 0 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/DAC_MONITOR:
Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Suspensions/OpsManual/Boilerplate/WD:
This screen allows for setting the watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.

Screen SUS_CUST_IOP_DACKILL.adI

Suspensions/OpsManual/Boilerplate/IOP_DACKILL:
The watchdog controls for the IOP process. If this WD is tripped it disables IO to/from all user models on the front end. RESET resets from the tripped state if there are no outstanding triggers. BYPASS is a manual override that allows for operation of the suspension if there is a trigger condition that is known by the operator to be harmless.

\section*{Screen H1IOPSUSH2A_GDS_TP.adl}

Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., " 33 ", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

\section*{Screen H1SUSMC1_GDS_TP.adI}

Suspensions/OpsManual/Boilerplate/USER_GDS_TP:

This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPU, e.g., "37", can be read from this screen just to the right of the "DAQ STATUS" heading.
The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

Screen SUS_CUST_HXTS_MONITOR_OVERVIEW.adl

Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.
- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.

\section*{Screen SUS_CUST_HXTS_BIO.adI}

Suspensions/OpsManual/Boilerplate/HSTS_BIO:
The Binary Input-Output control screen. State Requests for the various sensor-actuator groups can be input. Positive state values lock out manual control of the filters on the COILOUTF screen and set the digital dewhitening filters to match the analog whitening filters selected via the binary outputs. Negative state values allow the dewhitening filters to be manually overridden.

\section*{Screen SUS_CUST_HXTS_IPC.adI}

Suspensions/OpsManual/Boilerplate/IPC:
Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).

\section*{Screen GUARD.adl}
\begin{tabular}{|c|c|}
\hline 000 & X GUARD.adl \\
\hline & \begin{tabular}{l}
GUARDIAN: SUS_MC1 \\
/opt/rtcds/userapps/release/sus/common/guardian/SUS_MC1.py
\end{tabular} \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/GUARD:
The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.
Screen SUS_CUST_HSTS_ODC.adI

ODC Status.
Screen SUS_CUST_HXTS_M1_ISIINF.adI

Suspensions/OpsManual/Boilerplate/M1_ISIINF:
Filters for the diagnostic signals from the ISI.

\section*{Screen SUS_CUST_HXTS_M1_CART2EUL.adI}

Suspensions/OpsManual/Boilerplate/M1_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face,+T left and + V up). See Suspensions/OpsManual/Projections and © T1100617.

Sensor Actuator Group M1 - Upper Mass

The M1 section of the main HLTS screen is excerpted above. Most of the items on it correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the local control loop, which involves the following elements:
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- DAMP FILTERS - a filter bank applying the damping filters.
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw
- LOCK FILTERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals
- L2O - ???.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.

\section*{Screen SUS_CUST_HXTS_M1_OSEMINF.adl}

Suspensions/OpsManual/Boilerplate/M1_OSEMINF:
This block has 6 filter groups corresponding to the 6 M1 BOSEMs, T1/T2/T3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_HXTS_M1_CENTERING.adI

Suspensions/OpsManual/Boilerplate/M1_CENTERING:
This screen gives various views of the M1 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

\section*{Screen SUS_CUST_HXTS_M1_OSEM2EUL.adI}

Suspensions/OpsManual/Boilerplate/M1 OSEM2EUL
This screen allows entry of the matrix which converts from the M1 OSEM basis to the Euler basis. See
Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^ -1 and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

Screen SUS_CUST_HXTS_M1_SENSALIGN.adı
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{M1 SENSALIGN MATRIX} \\
\hline \multicolumn{7}{|c|}{MISALIGNED} \\
\hline & L & T & V & R & \(P\) & Y \\
\hline L & 1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline \[
\begin{array}{ll}
A & T
\end{array}
\] & 0.00000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline I v & 0.00000 & 0.00000 & 1.00000 & 0.00000 & 0.00000 & 0.00000 \\
\hline 6 & & & & & & \\
\hline N R & 0.00000 & 0.00000 & 0.00000 & 1.00000 & 0.00000 & 0.00000 \\
\hline & 0.00000 & ¢, 00000 & 5,00000 & 0.00000 & 1.00000 & 10.00000 \\
\hline Y & 0.00000 & 0.00000 & 0,00000 & 0.00000 & 0.00000 & 1.00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M1_SENSALIGN:
This screen is reserved for tweaking the M1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_HXTS_M1_DAMP.adI}

Suspensions/OpsManual/Boilerplate/M1_DAMP:
These filters implement the local damping. See Suspensions/OpsManual/Damping.

\section*{Screen SUS_CUST_HSTS_M1_OPTICALIGN.adI}

Suspensions/OpsManual/Boilerplate/M1_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets. See Suspensions/OpsManual/Alignments for more info

\section*{Screen SUS_CUST_HXTS_M1_LOCK.adI}

Suspensions/OpsManual/Boilerplate/M1_LOCK
Filters for the locking signals.

Suspensions/OpsManual/Boilerplate/M1_DRIVEALIGN:
This screen is reserved for tweaking the M1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_HXTS_M1_EUL2OSEM.adI}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{M1 EULER20SEM MATRIX} \\
\hline & & & & ULER & BAS I S & & \\
\hline & & L & T & \(V\) & R & P & Y \\
\hline 0 & T1 & 0.00000 & 0.00000 & -0.5000 & -8.3447 & 0.00000 & 0,00000 \\
\hline S & T2 & 0.00000 & 0.00000 & -0.2500 & 4.17230 & 16.7518 & 10.00000 \\
\hline M & T3 & 0.00000 & 0.00000 & -0.2500 & 4.17230 & -16.751 & 0.00000 \\
\hline B & LF & 0.50000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & -6.2512 \\
\hline S & RT & 0.50000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 6.25120 \\
\hline S & SD & 0.00000 & -1.0000 & 0.00000 & 0.00000 & 0.00000 & 0,00000 \\
\hline
\end{tabular}

Suspensions/OpsManual/Boilerplate/M1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_HXTS_M1_LKIN2OSEM.adI

Suspensions/OpsManual/Boilerplate/M1_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_HXTS_M1_COILOUTF.adl

Suspensions/OpsManual/Boilerplate/M1_COILOUTF:
This screen applies compensation for the hardware filters in the M1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of \(\approx 10000\) [TBC] can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{Sensor Actuator Group M2 - Intermediate Mass}

The M2 level has the following blocks:
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\mu \mathrm{m}\).
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/pitch/yaw (L/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- LOCK FILTERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.

There are the following auxiliary inputs:

\section*{Screen SUS_CUST_HXTS_M2_OSEMINF.adl}

Suspensions/OpsManual/Boilerplate/M2_OSEMINF:
This block has 4 filter banks corresponding to the 4 M2 OSEMs, UL/LL/UR/LR. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

\section*{Screen SUS_CUST_HXTS_M2_CENTERING.adI}

Suspensions/OpsManual/Boilerplate/M2_CENTERING:
This screen gives various views of the OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

\section*{Screen SUS_CUST_HXTS_M2_SENSALIGN.adI}

Suspensions/OpsManual/Boilerplate/M2_SENSALIGN:
This screen is reserved for tweaking the M2 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_HXTS_M2_OSEM2EUL.adI

Suspensions/OpsManual/Boilerplate/M2_OSEM2EUL:
This screen allows entry of the matrix which converts from the OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOF L are dimensionless.

The entries for the angular DOFs P and Y have dimensions meter^\(\wedge-1\) and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

\section*{Screen SUS_CUST_HXTS_M2_LOCK.adl}

Suspensions/OpsManual/Boilerplate/M2_LOCK:
Filters for the locking signals

\section*{Screen SUS_CUST_HXTS_M2_TEST.adl}

Suspensions/OpsManual/Boilerplate/M2_TEST:
This is a deliberately empty set of 3 filter banks corresponding to the M2 L, P and Y DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are

Suspensions/OpsManual/Boilerplate/M2_DRIVEALIGN
This screen is reserved for tweaking the actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_HXTS_M2_EUL2OSEM.adI

Suspensions/OpsManual/Boilerplate/M2_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_HXTS_M2_LKIN2OSEM.adI

Suspensions/OpsManual/Boilerplate/M2_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_HXTS_M2_COILOUTF.adI

Suspensions/OpsManual/Boilerplate/M2_COILOUTF:
This screen applies compensation for the hardware filters in the actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{Sensor Actuator Group M3-Optic}

The M3 level has the following blocks in the main path:
- ISC INPUT FILTERS - ISC input filters.
- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly \(20 \mathrm{~K}-30 \mathrm{~K}\) counts (depending on the OSEM), applies dewhitening and normalizes to \(\pm 15000\) counts.
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/pitch/yaw (L/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- LOCK FILTERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.

\section*{Screen SUS_CUST_HXTS_M3_ISCINF.adl}

Suspensions/OpsManual/Boilerplate/M3_ISCINF:
Filters for the control signals from ISC.

\section*{Screen SUS_CUST_HXTS_M3_OSEMINF.adl}

Suspensions/OpsManual/Boilerplate/M3_OSEMINF:
This block has 4 filter banks corresponding to the 4 M3 AOSEMs, UL/LL/UR/LR. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to \(\mu \mathrm{m}\).

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

\section*{Screen SUS_CUST_HXTS_M3_CENTERING.adI}

Suspensions/OpsManual/Boilerplate/M3_CENTERING:
This screen gives various views of the OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

Screen SUS_CUST_HXTS_M3_OSEM2EUL.adI

Suspensions/OpsManual/Boilerplate/M3_OSEM2EUL:
This screen allows entry of the matrix which converts from the OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOF L are dimensionless.

The entries for the angular DOFs P and Y have dimensions meter^\({ }^{\wedge} 1\) and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in \(\mu \mathrm{m}\) the outputs are then in \(\mu \mathrm{rad}\).

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. \(+\mathrm{R},+\mathrm{P}\) and +Y are right-handed about the corresponding axes.

\section*{Screen SUS_CUST_HXTS_M3_SENSALIGN.adl}

Suspensions/OpsManual/Boilerplate/M3_SENSALIGN:
This screen is reserved for tweaking the M3 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_HXTS_M3_LOCK.adl}

Suspensions/OpsManual/Boilerplate/M3_LOCK:
Filters for the locking signals

\section*{Screen SUS_CUST_HXTS_M3_TEST.adI}

Suspensions/OpsManual/Boilerplate/M3_TEST:
This is a deliberately empty set of 3 filter banks corresponding to the L, P and Y DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

Screen SUS_CUST_HXTS_M3_DRIVEALIGN.adI

Suspensions/OpsManua//Boilerplate/M3_DRIVEALIGN:
This screen is reserved for tweaking the M3 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

\section*{Screen SUS_CUST_HXTS_M3_EUL2OSEM.adI}

Suspensions/OpsManual/Boilerplate/M3_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_HXTS_M3_COILOUTF.adI

Suspensions/OpsManual/Boilerplate/M3_COILOUTF:
This screen applies compensation for the hardware filters in the actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of \(\approx 10000\) [TBC] can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the \(\pm 1\) gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

\section*{aLIGO SUS Operations Manual - Models for HSTS Suspensions}

Back to Operation Manual main page
The HSTS suspensions have been extensively modelled. There are Mathematica (\(\Theta\) T020205) and Matlab (\(\Theta\) T080188) programs that take a parameter set describing a single chain and calculate the dynamics. The parameter set needs to be formatted differently for Mathematica vs Matlab, but the parameter names are the same as far as was practical.

The Mathematica triple model, which covers HSTS as well as HLTS and BSFM, and parameter sets for it lives in the SUS SVN at ^/trunk/Common/MathematicaModels/TripleLite2/. Parameter sets for Matlab live at ^/trunk/Common/MatlabTools/TripleModel_Production. Mark Barton maintains the Mathematica, Jeff Kissel maintains the Matlab. Unfortunately two different naming conventions are in use and it's difficult to tell what corresponds to what - if in doubt, ask. References given below are to Mathematica versions as subdirectories of \(\wedge /\) trunk/Common/MathematicaModels/TripleLite2/.

Key cases of the triple model for HSTS are given below, with results such as mode frequencies and mode shapes. T1200404 has transfer functions for many of the same models.

\section*{Generic HSTS}

Current best generic HSTS model is .../mark.barton/20120120hsts.

\section*{Case 20120120hsts of Mathematica model TripleLite2}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

{"mark.barton", "20120120hsts"}

```
Equivalent to Jeff K's hstsopt_metal.m revision 2007 of 1/19/12.

\section*{Links to Result Sections}

\section*{Mode Summary Mode Shapes Parameters}
\begin{tabular}{|c|c|c|c|c|c|}
\hline modeL1 & modeT1 & modeV1 & modeP1 & modeY1 & modeR1 \\
\hline modeL2 & modeT2 & modeY2 & modeR2 & modeV2 & modeL3 \\
\hline modeT3 & modeP2 & modeY3 & modeP3 & modeV3 & modeR3 \\
\hline
\end{tabular}

\section*{Mode Summary}

Back to Top

\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l}
Violin \\
Modes
\end{tabular} & UM & IM & Optic \\
\hline f(Hz), n=1- & 409.941820 .4131231 .95 & 744.6321490 .122237 .33 & 650.5851301 .291952 .23 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
4 & 1645.09 & 2987.11 & 2603.54 \\
\hline \(\mathrm{Q}, \mathrm{n}=1-4\) & \begin{tabular}{l}
58337.5 \\
90281.6 \\
93427.4
\end{tabular} & \begin{tabular}{l}
51727.9 \\
684264. \\
\hline
\end{tabular} & \begin{tabular}{l}
59199.6 66273.1
\end{tabular} \\
\hline
\end{tabular}

\section*{Mode Shapes}

\section*{Mode \#1 - modeL1}

Back to Top
0.672497 Hz
\begin{tabular}{|lllllll}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.082953 & 0 & 0 & 0 & 0.390667 & 0 \\
Mass I & -0.14013 & 0 & 0 & 0 & 0.593636 & 0 \\
optic & -0.23611 & 0 & 0 & 0 & 0.642425 & 0
\end{tabular}

\section*{Mode \#2-modeT1}

Back to Top
0.675834 Hz
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass U & 0 & -0.127606 & 0 & 0 & 0 \\
Mass I & 0 & -0.217712 & 0 & 0 & 0 \\
Optic & 0 & -0.367451 & 0 & 0 & 0
\end{tabular}

\section*{Mode \#3 - modeV1}

Back to Top
0.848391 Hz
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass U & 0 & 0 & -0.400198 & 0 & 0 \\
Mass I & 0 & 0 & -0.647395 & 0 & 0 \\
optic & 0 & 0 & -0.64863 & 0 & 0
\end{tabular}

\section*{Mode \#4 - modeP1}

Back to Top
1.0051 Hz
\begin{tabular}{|lllllll|}
\hline\(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.00215427 & 0 & 0 & 0 & -0.188765 & 0 \\
Mass I & -0.0026432 & 0 & 0 & 0 & -0.632475 & 0 \\
optic & -0.00457764 & 0 & 0 & 0 & -0.751207 & 0
\end{tabular}

Mode \#5-modeY1

Back to Top
1.09179 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & -0.278214 & 0 & 0 \\
Mass I & 0 & 0 & 0 & -0.542756 & 0 & 0 \\
optic & 0 & 0 & 0 & -0.792472 & 0 & 0
\end{tabular}

\section*{Mode \#6 - modeR1}

Back to Top
```

1.51197 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.107399 & 0 & 0 & 0 & 0.359908 \\
Mass I & 0 & 0.123736 & 0 & 0 & 0 & 0.642788 \\
optic & 0 & -0.124003 & 0 & 0 & 0 & 0.644257 \\
\hline
\end{tabular}

\section*{Mode \#7 - modeL2}

Back to Top
```

1.51559 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass U & 0.32395 & 0 & 0 & 0 & -0.810535 & 0 \\
Mass I & 0.340372 & 0 & 0 & 0 & -0.091548 & 0 \\
optic & -0.332592 & 0 & 0 & 0 & 0.0569024 & 0 \\
\hline
\end{tabular}

\section*{Mode \#8 - modeT2}

Back to Top
```

1.52673 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.0176642 & 0 & 0 & 0 & -0.052556 \\
Mass I & 0 & 0.00430684 & 0 & 0 & 0 & -0.705085 \\
optic & 0 & -0.00201584 & 0 & 0 & 0 & -0.706936 \\
\hline
\end{tabular}

Mode \#9-modeY2

Back to Top
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & 0.559492 & 0 & 0 \\
Mass I & 0 & 0 & 0 & 0.0809058 & 0 & 0 \\
optic & 0 & 0 & 0 & -0.824878 & 0 & 0
\end{tabular}

\section*{Mode \#10-modeR2}

Back to Top
```

2.18447 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.000981251 & 0 & 0 & 0 & 0.989093 \\
Mass I & 0 & -0.0139883 & 0 & 0 & 0 & -0.103348 \\
optic & 0 & 0.00446618 & 0 & 0 & 0 & -0.103908 \\
\hline
\end{tabular}

\section*{Mode \#11-modeV2}

Back to Top
```

2.76171 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0.907309 & 0 & 0 & 0 \\
Mass I & 0 & 0 & -0.29427 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.300326 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#12-modeL3}

Back to Top
```

2.80671 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass U & -0.54538 & 0 & 0 & 0 & 0.16219 & 0 \\
Mass I & 0.467556 & 0 & 0 & 0 & -0.385581 & 0 \\
optic & -0.0786733 & 0 & 0 & 0 & 0.550258 & 0 \\
\hline
\end{tabular}
- \(\quad . \quad / 1\)

\section*{Mode \#13-modeT3}

Back to Top
2.98169 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0.177203 & 0 & 0 & 0 & -0.286543 \\
Mass I & 0 & -0.152925 & 0 & 0 & 0 & 0.65323 \\
optic & 0 & 0.0220861 & 0 & 0 & 0 & 0.660234 \\
\hline
\end{tabular}

Mode \#14-modeP2
```

3.20926 Hz

```
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass U & 0 & 0 & 0 & 0 & -0.722402 \\
Mass I & -0.00158387 & 0 & 0 & 0 & -0.487615 \\
optic & 0.000196697 & 0 & 0 & 0 & 0.490269 \\
\hline
\end{tabular}

\section*{Mode \#15-modeY3}

Back to Top

\subsection*{3.42401 Hz}
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & -0.19789 & 0 & 0 \\
Mass I & 0 & 0 & 0 & 0.884947 & 0 & 0 \\
optic & 0 & 0 & 0 & -0.421554 & 0 & 0
\end{tabular}

\section*{Mode \#16-modeP3}

Back to Top
```

3.78136 Hz

```
\begin{tabular}{|lllllll|}
\hline x & y & z & yaw & pitch & roll \\
Mass U & 0.00126625 & 0 & 0 & 0 & 0.891275 & 0 \\
Mass I & 0.000223569 & 0 & 0 & 0 & -0.395678 & 0 \\
\hline
\end{tabular}

\section*{Mode \#17-modeV3}

Back to Top
```

27.3201 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & -0.00335283 & 0 & 0 & 0 \\
Mass I & 0 & 0 & 0.697492 & 0 & 0 & 0 \\
optic & 0 & 0 & -0.716585 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#18-modeR3}

Back to Top
```

40.369 Hz

```
\begin{tabular}{|lllllll}
& x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0 & 0 & 0 & 0.000138119 \\
Mass I & 0 & 0 & 0 & 0 & 0 & -0.684383 \\
optic & 0 & 0 & 0 & 0 & 0 & 0.729123
\end{tabular}

Parameters
Back to Top

```

            1 1
    Y1 -> 2.119 10
Y2 -> 2.119 10
Y3 -> 2.119 10
ufc1 -> 1.71
ufc2 -> 1.93
ufc3 -> 0
d0 -> 0.006
nearest mm)
d1 -> 0.002
nearest mm)
d2 -> 0.001
nearest mm)
d3 -> 0.001
nearest mm)
d4 -> 0.001
nearest mm)
su -> 0
si -> 0.0285
sl -> 0.005
n0 -> 0.0772
n1 -> 0.1
n2 -> 0.039
n3 -> 0.0765
n4 -> 0.08
n5 -> 0.08
tl1 -> 0.300118
tl2 -> 0.165735
tl3 -> 0.222
ltotal -> 0.687853
leverarmrt -> 0.03
leverarmrz -> 0.08
leverarmrl -> 0.08
gain -> 0.4
gainrtzrtl -> 0.4
gaint -> 0.8
gainlrz -> 0.4
b1 -> 0.03
b2 -> 0.03
b3 -> 0.03
b4 -> 0.03
b5 -> 0.03
b6 -> 0.03

```
```

unstretched -> False
vertblades -> True
ul1 -> 0.294382
ul2 -> 0.166629
ul3 -> 0.219343
sl1 -> 0.295
sl2 -> 0.167
sl3 -> 0.22
si1 -> 0.0772881
si2 -> 0.224551
si3 -> 0.
c1 -> 0.997009
c2 -> 0.974462
c3 -> 1.
pitchbul -> 0
pitchbur -> 0
pitchbll -> 0
pitchblr -> 0
pitchbllf -> 0
pitchblrf -> 0
pitchbllb -> 0
pitchblrb -> 0
rollbul -> 0
rollbur -> 0
rollbll -> 0
rollblr -> 0
rollbllf -> 0
rollblrf -> 0
rollbllb -> 0
rollblrb -> 0
A1 -> 9.95382 10
-8
A2 -> 3.14159 10
A3 -> 1.11969 10
kw1 -> 71498.8
kw2 -> 39862.5
kw3 -> 10784.7
flex1 -> 0.00193808
flex2 -> 0.0010341
flex3 -> 0.000546237

```
```

kbuz -> 179.796
kblz -> 109.665
bdu -> 0.245174
bdl -> 0.131319
m13 -> 8.987
m23 -> 5.872
I1xy -> 0
Ilyz -> 0
I1zx -> 0
COM1x -> 0
COM1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
Ibtxyl -> 0
Ibtyzl -> 0
Ibtzxl -> 0
I2xy -> 0
with wire clamps
I2yz -> 0
with wire clamps
I2zx -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
I3xy -> 0.
I3yz -> 0.
I3zx -> 0.
COM3x -> 0
COM3y -> 0
COM3z -> 0
FRP3x -> 0
FRP3y -> 0
FRP3z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03
ohih -> 0.001

```
```

bd -> 0.001
-16
M11 -> 7.88442 10
M12 -> 7.88442 10
-17
M21 -> 7.85398 10
-17
M22 -> 7.85398 10
-18
M31 -> 9.97671 10
M32 -> 9.97671 10
temperature -> 290.
-23
boltzmann -> 1.38066 10
alphasilica -> 3.9-
5.1 10^-7 from gwinc
betasilica -> 0.000152
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
1 0
Ysilica -> 7.2 10
-10
phisilica -> 4.1 10
-11
phissilica -> 3. 10
rhosteel -> 7800.
Csteel -> 486.
Ksteel -> 49.
1 1
Ysteel -> 2.119 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0002
value
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
11
Ymarag -> 1.87 10
alphamarag -> 0.000011
betamarag -> -0.00025
gwinc/IFOModel v1.0 is wrong
phimarag -> 0.0001
tmU -> 0.0025
8/4/06
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
spec sheet for silica
gwinc/IFOModel v1.0
Phil Willems
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
measured by MB, 11/18/05
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0 = Geppo's
gwinc/IFOModel v1.O
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
gwinc/IFOModel v1.0
gwinc/IFOModel v1.O
Geppo's value -
gwinc/IFOModel v1.0
upper blade thickness, NAR

```
gwinc/IFOModel v1.0
```

tmL -> 0.0017
8/4/06
magicnumber -> 0.0737472
53:90-99
deltabladeU -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00254266
deltawireL -> 0.00255524
deltafibre -> 0.00263381
taubladeU -> 0.113606
taubladeL -> 0.0525316
tauwireU -> 0.00072307
tauwireL -> 0.000228213
tausilica -> 0.00178564
damping[imag, bladeUtype] -> (0.0001 + 0.00130543 \#1
1 + 0.509525 \#1
0.000603633 \#1
damping[imag, bladeLtype] -> (0.0001 + -------------------- \&
1 + 0.108943 \#1
damping[imag, wireUtype] -> (0.0002 \& )
damping[imag, wireLtype] -> (0.0002 \& )
2
1 + 0.0000206405 \#1
3.66397 10 \#-6 \#1
damping[imag, wireLatype] -> (0.0002 + -------------------------- \& )
1 + 2.05608 10 \#1
damping[imag, fibretype] -> (0.0002 \& )
< - .34603 10-6
damping[imag, fibreatype] -> (0.0002 + -------------------------- \& )
1 + 2.61179 10 \#1
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx1 -> 0
kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0

```
```

kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 ->
kconroll2 -> 0
kconx3 -> 0
kcony3 -> 0
kconz3 -> 0
kconyaw3 -> 0
kconpitch3 -> 0
kconroll3 -> 0
lockedblades -> False
True for compatibility with very old Matlab.
kw1usual -> 71498.8
kw2usual -> 39862.5
kw3usual -> 10784.7
kbuzusual -> 179.796
kblzusual -> 109.665
6
kbuy -> 1.79796 10
6
kbly -> 1.09665 10
kbux -> 17979.6
kblx -> 10966.5
ifs -> 0.13777
nb -> D0901792-v2
txMC -> 0.07435
nb -> SolidWorks model of D020234 (MC metal mass[0.5 deg wedge])
m3MC -> 2.88者
SolidWorks model of D0901791
(MC metal mass [0.5 deg wedge] with metal prisms)
I3xMC -> 0.00832
SolidWorks model of D0901791
I3xMC -> 0.00832
I3yMC -> 0.0054
(MC metal mass [0.5 deg wedge] with metal prisms)
I3zMC -> 0.00557
SolidWorks model of D0901791
(MC metal mass [0.5 deg wedge] with metal prisms)
I3xyMC -> 0.
SolidWorks model of D0901791
(MC metal mass [0.5 deg wedge] with metal prisms)
I3yzMC -> 0.
(MC metal mass [0.5 deg wedge] with metal prisms)
I3zxMC -> 0.
SolidWorks model of D0901791
(MC metal mass [0.5 deg wedge] with metal prisms)
dl -> 0.
offset wedge mass imbalance
bssteel -> 2000000000
False for maximum realism.
SolidWorks model of D0901791
SolidWorks model of D0901791
correction to wire length to
breaking stress of steel

```
wssilica -> 7.7 10
 working stress of silica
rlopt -> 0.000145294
r2opt -> 0.0000840012
r3opt -> 0.00005412
dssilica -> 0.015 gwinc/IFOModel v1.0
taufibre -> 0.0000813372
```

Back to Top

# aLIGO SUS Operation Manual - Info on OMCS Suspensions 

Back to Operation Manual main page

## References

- © D1002740 aLIGO SUS HAM 5-6 Wiring Diagrams
- T1000061 aLIGO HAM Triple Suspension Controls Design Description (HLTS, HSTS and OMCS)
- E1100109 HAM Suspensions Controls Arrangement Poster (HLTS, HSTS and OMCS)


## Models

The OMCS suspension has been modelled. Key results are at Suspensions/OpsManual/OMCS/Models .

## Screens

OMCS MEDM screens are at/Screens.

## aLIGO SUS Operations Manual - Overview of OMCS MEDM screens

Back to Operation Manual main page
Back to OMCS main page
The OMCS screens described below live at/opt/rtcds/userapps/release/sus/common/medm/omcs/. They are all generic screens which rely for their execution on arguments passed in when they are called. Most of the arguments are defined in the macro file
/opt/rtcds/userapps/release/sus/common/medm/susomc_overview_macro.txt. The generic screens can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP.adl. See the MEDM page for further information.

## Overview Screen

Screen SUS_CUST_OMCS_OVERVIEW.adI
1


This is the overview screen and one of only a few specific to OMCS (with OMCS rather than OMCS in the name). There nominally two sensor-actuator groups, but only M1 is of much interest - there are no OSEMs on the suspended bench:

- Other - subscreens not associated with a sensor/actuator group
- M1-6 BOSEMs on the structure engaging the upper mass
- M2 - display of IPC channels from ISC.

M1 is used for local damping (relative to the structure). DC pitch and yaw offsets are also injected at M1.

## Other Screens



- MASTER SWITCH - a manual on/off switch for all actuation (common to all sensor-actuator groups).
- MEASUREMENT STATUS - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- HIERARCHY SWITCH - enables various ISC inputs and outputs.
- ADC - a monitor screen (common to all sensor-actuator groups) for the semi-raw ADC values as reported by the IOP process after downsampling.
- DAC - a popup allowing access to all the DAC outputs as reported by the IOP process.
- WATCHDOGS - a block implementing the watchdogs.
- IOP DACKILL - a watchdog that shuts off the IOP process (potentially other suspensions on the same front-end).
- H1IOPSUSH56 GDS TP (or the like; depends on the front-end computer name) - status of the IOP process for the front-end.
- H1SUSOMC GDS TP (or the like; depends on the suspension name) - status of the suspension process.

- H1SUSOMC Aux Ch (or the like; depends on the suspension name) - readbacks from coil driver channels for all OSEMs as reported by the corresponding auxiliary front-end processor.
- ODC STATUS - ODC status
- !GUARDIAN Guardian controls
- ISIINF - ISI input filters.
- CART2EUL - transformation from the ISI basis to SUS.


## Screen SUS_CUST_OMCS_ADC_MONITOR.adl



Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

## Screen SUS_CUST_OMCS_DAC_MONITOR.adI

DAC_MONITOR		
$\square$		
DACO	OUTPUT	
	SIGNAL	$\begin{aligned} & \text { OVER } \\ & \text { FLOWS } \end{aligned}$
OMC_M1_OSEM_T1_OUT (dac_0_4)	0	0
OMC_M1_OSEM_T2_OUT (dac_0_5)	0	0
OMC_M1_OSEM_T3_OUT (dac_0_6)	0	0
OMC_M1_OSEM_LF_OUT (dac_0_7)	0	0
OMC_M1_OSEM_RT_OUT (dac_1_0)	0	0
OMC_M1_OSEM_SD_OUT (dac_1_1)	0	0

Suspensions/OpsManual/Boilerplate/DAC_MONITOR:
Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Screen SUS_CUST_OMCS_MONITOR_OVERVIEW.adI


Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.

- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.

Screen SUS_CUST_OMCS_WD.adI


This screen allows for setting the watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.

Screen SUS_CUST_IOP_DACKILL.adl


Suspensions/OpsManual/Boilerplate/IOP_DACKILL:
The watchdog controls for the IOP process. If this WD is tripped it disables IO to/from all user models on the front end. RESET resets from the tripped state if there are no outstanding triggers. BYPASS is a manual override that allows for operation of the suspension if there is a trigger condition that is known by the operator to be harmless.

## Screen H1IOPSUSH56_GDS_TP.adI



Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., " 33 ", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

## Screen H1SUSOMC_GDS_TP.adl



Suspensions/OpsManual/Boilerplate/USER_GDS_TP:
This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPU, e.g., " 37 ", can be read from this screen just to the right of the "DAQ STATUS" heading.
The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.


Suspensions/OpsManual/Boilerplate/OMCS_BIO:
The Binary Input-Output control screen. State Requests for the various sensor-actuator groups can be input. Positive state values lock out manual control of the filters on the COILOUTF screen and set the digital dewhitening filters to match the analog whitening filters selected via the binary outputs. Negative state values allow the dewhitening filters to be manually overridden.

## Screen GUARD.adl



Suspensions/OpsManual/Boilerplate/GUARD:
The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.

## Screen SUS_CUST_OMCS_ODC.adl



Suspensions/OpsManual/Boilerplate/ODC:
ODC Status.
Screen SUS_CUST_OMCS_IPC.adI


Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).

Screen SUS_CUST_OMCS_M1_ISIINF.adI



Suspensions/OpsManual/Boilerplate/M1_ISIINF:
Filters for the diagnostic signals from the ISI.
Screen SUS_CUST_OMCS_M1_CART2EUL.adl


Suspensions/OpsManual/Boilerplate/M1_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face,+T left and + V up). See Suspensions/OpsManual/Projections and © T1100617.

## Sensor Actuator Group M1 - Upper Mass



Most of the items on the M1 section correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the local control loop, which involves the following elements:

- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly 20K-30K counts (depending on the OSEM), applies dewhitening and normalizes to $\mu \mathrm{m}$.
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- DAMP FILTERS - a filter bank applying the damping filters.
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- OPTICALIGN ("ALIGNMENT OFFSETS") - a place to apply DC actuation in pitch and yaw.
- LOCK FILTERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.


Suspensions/OpsManual/Boilerplate/M1_OSEMINF:
This block has 6 filter groups corresponding to the 6 M1 BOSEMs, T1/T2/T3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to $\mu \mathrm{m}$.

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_OMCS_M1_CENTERING.adI


Suspensions/OpsManual/Boilerplate/M1_CENTERING:
This screen gives various views of the M1 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

Screen SUS_CUST_OMCS_M1_OSEM2EUL.adl

M1 OSEM2EULER MATRIX							
				SEM	ASIS		
		T1	T2	T3	LF	RT	SD
E	L	0.00000	0.00000	0.00000	0.50000	0.50000	0.00000
	T	0.00000	0.00000	0.00000	0.00000	0.00000	-1.0000
R	$V$	-0,5000	-0.2500	-0.2500	0.00000	0.00000	0.00000
B	R	-5.0105	2.50530	2.50530	0.00000	0.00000	0.00000
5	P	0.00000	16.6667	-16.666	0.00000	0.00000	0.00000
S	Y	0.00000	0.00000	0.00000	-8.7425	8.74250	0.00000

Suspensions/OpsManual/Boilerplate/M1_OSEM2EUL:
This screen allows entry of the matrix which converts from the M1 OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^${ }^{\wedge}-1$ and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in $\mu \mathrm{m}$ the outputs are then in $\mu \mathrm{rad}$.

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. $+\mathrm{R},+\mathrm{P}$ and +Y are right-handed about the corresponding axes.

Screen SUS_CUST_OMCS_M1_SENSALIGN.adI



Suspensions/OpsManual/Boilerplate/M1_SENSALIGN:
This screen is reserved for tweaking the M1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_OMCS_M1_DAMP.adI


Suspensions/OpsManual/Boilerplate/M1_DAMP:
These filters implement the local damping. See Suspensions/OpsManual/Damping.
Screen SUS_CUST_OMCS_M1_OPTICALIGN.adI


Suspensions/OpsManual/Boilerplate/M1_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets. See Suspensions/OpsManual/Alignments for more info.

Screen SUS_CUST_OMCS_M1_TEST.adl


Suspensions/OpsManual/Boilerplate/M1_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1 . However offsets of $\approx 10000$ in $\mathrm{L} / \mathrm{T} / \mathrm{V}$ or $\approx 1000$ in $\mathrm{R} / \mathrm{P} / \mathrm{Y}$ can be applied temporarily to check that actuation is taking effect (and with the right sign). In such cases a Ramp Time of 10 s or so is often helpful. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

## Screen SUS_CUST_OMCS_M1_LOCK.adı



Screen SUS_CUST_OMCS_M1_DRIVEALIGN.adI


Suspensions/OpsManual/Boilerplate/M1_DRIVEALIGN:
This screen is reserved for tweaking the M1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_OMCS_M1_EUL2OSEM.adI

M1 EULER20SEM MATRIX							
				ULER	B ASI S		
		L	T	V	R	P	Y
0	T1	0,00000	0.00000	-0.5000	-5.0105	0.00000	0,00000
S	T2	0.00000	0.00000	-0.2500	2.50530	16.6667	0.00000
M	13	0.00000	0.00000	-0.2500	2.50530	-16.666	0.00000
B	LF	0.50000	0.00000	0.00000	0.00000	0.00000	-8.7425
S	RT	0.50000	0.00000	0.00000	¢0.00000	0.00000	8.74250
s	SD	0.00000	1.0000	0.00000	0.00000	0.00000	0.00000

Suspensions/OpsManual/Boilerplate/M1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_OMCS_M1_LKIN2OSEM.adI


Suspensions/OpsManual/Boilerplate/M1_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_OMCS_M1_COILOUTF.adI



Suspensions/OpsManual/Boilerplate/M1_COILOUTF:
This screen applies compensation for the hardware filters in the M1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of $\approx 10000[\mathrm{TBC}]$ can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the $\pm 1$ gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

## Sensor Actuator Group M2-OMC Bench

凹


The M2 level currently only has input filters for ISC inputs:

- ISCINF - ISI input filters.


## Screen SUS_CUST_OMCS_M2_ISCINF.adI



Suspensions/OpsManual/Boilerplate/M2_ISCINF:
Filters for inputs from ISC.

# aLIGO SUS Operations Manual - Models for OMCS Suspensions 

Back to Operation Manual main page
There are Mathematica ( T020205) and Matlab (OT080188) programs that take a parameter set describing the OMCS and calculate the dynamics. The parameter set needs to be formatted differently for Mathematica vs Matlab, but the parameter names are the same as far as was practical.

The OMCS Mathematica model and parameter sets for it live in the SUS SVN at
^/trunk/Common/MathematicaModels/DualLite2. Parameter sets for Matlab live at ^/trunk/QUAD/Common/MatlabTools/DoubleModel_Production. Mark Barton maintains the Mathematica parameter sets, Jeff Kissel maintains the Matlab. Unfortunately two different naming conventions are in use and it's difficult to tell what corresponds to what - if in doubt, ask. References given below are to Mathematica versions as subdirectories of $\wedge / t r u n k / C o m m o n / M a t h e m a t i c a M o d e l s / D u a l L i t e 2 D B L a t e r a l . ~$

Key cases of the OMCS model are given below, with results such as mode frequencies and mode shapes.
Explanation of the standard result set is at .../Key. Instructions for generating wiki pages for new cases of Mathematica models is at .../HowTo.

## Model 20130612OMCSmetal4904

/20130612OMCSmetal4904 corresponds to the omcsopt_metal.m r4904 of 6/12/13 in the SVN, with new values for the final bench design. Valid for metal or glass.

## Model 201305260MCSmetal4419

/20130526OMCSmetal4419 corresponds to the omcsopt_metal.m r4419 of 5/26/13 in the SVN.

## Model 20130526OMCSglass4419

/20130526OMCSglass4419 corresponds to the omcsopt_glass.m r4419 of 5/26/13 in the SVN.

## Model 20080601OMCasbuilt

The model /20080601OMCasbuilt corresponds to the eLIGO parameter set in © T080138.

## Case 20130612OMCSmetal4904 of Mathematica model DualLite2

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

## Formal name and description

```
"201306120MCSmetal4904"
```

```
201306120MCSmetal4904 - equivalent to Matlab case omcs_metal.m r4904 of 6/12/13. Also valid for
glass bench.
```


## Links to Result Sections

## Mode Summary Mode Shapes Parameters

modeY1	modeT1	modeL1	modeR1	modeV1	modeP1
modeT2	modeL2	modeP2	modeY2	modeV2	modeR2

## Mode Summary

Back to Top

N	f	name	type	
1	0.500869	modeY1	yaw2	yaw1
2	0.722761	modeT1	roll2	roll1
3	0.728969	modeL1	pitch1	pitch2
4	0.963506	modeR1	roll2	roll1
5	1.01526	modeV1	z2	z1
6	1.90754	modeP1	pitch1	pitch2
7	2.62587	modeT2	y1	
8	2.72197	modeL2	pitch1	
9	3.84991	modeP2	pitch1	
10	3.85205	modeY2	yaw1	
11	4.27468	modeV2	z1	
12	6.76293	modeR2	roll1	


Violin Modes	UM	Bench
$\mathrm{f}(\mathrm{Hz}), \mathrm{n}=1-4$	511.8051024 .451538 .782055 .65	609.3681219 .11829 .572441 .13
$\mathrm{Q}, \mathrm{n}=1-4$	57709.881239 .891050 .190639 .5	73379.778073 .688003 .293678 .6

## Mode Shapes

## Mode \#1 - modeY1

	x	y	z	yaw	pitch	roll
Mass U	0	0	0	0.605535	0	0
Mass I	0	0	0	0.795819	0	0



Mode \#2-modeT1

Back to Top
0.722761 Hz

	x	y	z	yaw	pitch	roll
Mass U	0	-0.105271	0	0	0	-0.647413
Mass I	0	-0.242892	0	0	0	-0.714687



Page 363 of 466


## Mode \#3 - modeL1

Back to Top

```
0.728969 Hz
```

	x	y	z	yaw	pitch	roll
Mass U	0.118741	0	0	0	-0.684972	0
Mass I	0.268559	0	0	0	-0.666775	0



## Mode \#4 - modeR1

Back to Top
0.963506 Hz
$\left.\begin{array}{|llllll|}\hline & \text { x } & \text { y } & \text { z } & \text { yaw } & \text { pitch } \\ \text { Mass U } & 0 & 0.0344247 & 0 & 0 & 0\end{array}\right]-0.672564$



## Mode \#5-modeV1

Back to Top
1.01526 Hz
$\left.\begin{array}{|llllll|}\hline & \text { x } & \text { y } & \text { z } & \text { yaw } & \text { pitch } \\ \text { Mass U } & 0 & 0 & -0.605918 & 0 & 0\end{array}\right] 0$


## Mode \#6 - modeP1

Back to Top
1.90754 Hz

$x$	$y$	$z$	yaw	pitch	roll	
Mass U	-0.0232808	0	0	0	-0.789996	0
Mass I	0.000243226	0	0	0	-0.61267	0



## Mode \#7-modeT2

Back to Top
2.62587 Hz
$\left.\begin{array}{|llllll|}\hline & \text { x } & \text { y } & \text { z } & \text { yaw } & \text { pitch } \\ \text { Mass U } & 0 & -0.855455 & 0 & 0 & 0\end{array}\right)-0.353207$


Back to Top
2.72197 Hz

	x	$y$	$z$	yaw	pitch	roll
Mass U	0.0825194	0	0	0	-0.907918	0
Mass I	-0.0178333	0	0	0	-0.410558	0



## Mode \#9 - modeP2

Back to Top

```
3.84991 Hz
```

	$x$	$y$	$z$	yaw	pitch	roll
Mass U	-0.0028352	0	0	0	-0.974201	0
Mass I	0.000840731	0	0	0	0.225664	0




## Mode \#10-modeY2

Back to Top
3.85205 Hz

	x	y	z	yaw	pitch
Mass U	0	0	0	-0.997118	0
Mass I	0	0	0	0.0758702	0



## Mode \#11-modeV2

Back to Top

```
4.27468 Hz
```

	x	y	z	yaw	pitch
Mass U	0	0	-0.955143	0	0
Mass I	0	0	0.296143	0	0




## Mode \#12-modeR2

Back to Top
6.76293 Hz
$\left.\begin{array}{|llllll|}\hline & \mathrm{x} & \mathrm{y} & \mathrm{z} & \text { yaw } & \text { pitch } \\ \text { Mass U } & 0 & 0.000237302 & 0 & 0 & 0\end{array}\right)-0.994986$


## Parameters

Back to Top

```
g -> 9.81
```

```
ux -> 0.078
display only
uy -> 0.32 D0900295, DISPLAY ONLY
display only
uz -> 0.077 D0900295, DISPLAY ONLY
display only
m1 -> 2.9 As-built parameters, J.
Bartlett email, June 11 2013 4:34pm ET
I1x -> 0.015 from Chris e-mail 25 April
2008, T080138
I1y -> 0.00248 from Chris e-mail 25 April
2008, T080138
I1z -> 0.0148 from Chris e-mail 25 April
2008, T080138
ix -> 0.15 D0900295, DISPLAY ONLY
display only
iy -> 0.45 D0900295, DISPLAY ONLY
display only
iz -> 0.0381 D0900295, DISPLAY ONLY
display only
m2 -> 7.124 As-built parameters, J.
Bartlett email, June 11 2013 4:34pm ET
I2x -> 0.136 SolidWorks Assembly, D.
Bridges 2013-Mar-06
I2y -> 0.0152 SolidWorks Assembly, D.
Bridges 2013-Mar-06
I2z -> 0.148 SolidWorks Assembly, D.
Bridges 2013-Mar-06
l1 -> 0.2496 D0900295 (verified 2013-06-10,
JSK)
12 -> 0.22 D0900295 (verified 2013-06-10,
JSK)
nw1 -> 2
nw2 -> 4
r1 -> 0.000178 D0900295, 14 thou diameter
(verified 2013-06-10, JSK)
r2 -> 0.0001005 D0900295, 8 thou diameter
(verified 2013-06-10, JSK)
1 1
Barton Mark) + measured - Mark Barton ,
v3)
Y1 -> 2.119 10
Y2->2.119 10^11, nb[]->
1 1
Y2 -> 2.12 10
ufc1 -> 2.09
Fit to measured vertical
transfer functions, X2:SUS-OMC, 2013-06-11 using doub_spring_stiff_calc.m in
DoubleModel_Production directory.
ufc2 -> 2.09
Fit to measured vertical
transfer functions, X2:SUS-OMC, 2013-06-11 using doub_spring_stiff_calc.m in
DoubleModel_Production directory.
d0 -> -0.0014 Calculated via SolidWorks from
as-built blade tip heights, D. Bridges email 2013-06-12 1:24a
d1 -> -0.0001 Calculated via SolidWorks from
as-built blade tip heights, D. Bridges email 2013-06-12 1:24a
d2 -> 0.035
Fit to X2:SUS-OMC 2013-06-11
```

```
data
su -> 0.
sl -> 0.03
n0 -> 0.072 D0900295
n1 -> 0.072 D0900295
n2 -> 0.135 D0900295
n3 -> 0.135 D0900295
tl1 -> 0.2482
tl2 -> 0.2549
ltotal -> 0.5031
unstretched -> False
vertblades -> True
ul1 -> 0.249018
ul2 -> 0.219429
sl1 -> 0.2496
sl2 -> 0.22
si1 -> 0.
si2 -> 0.
c1 -> 1.
c2 -> 1.
pitchbul -> 0
pitchbur -> 0
pitchbll -> 0
pitchblr -> 0
pitchbllf -> 0
pitchblrf -> 0
pitchbllb -> 0
pitchblrb -> 0
rollbul -> 0
rollbur -> 0
rollbll -> 0
rollblr -> 0
rollbllf -> 0
rollblrf -> 0
rollbllb -> 0
rollblrb -> 0
A1 -> 9.95382 10
A2 -> 3.17309 10
kw1 -> 84503.8
kw2 -> 30577.
```

```
flex1 -> 0.00184336
Sqrt[nw1 M11
Y1/(m1+m2)/g]*c1^(3/2)
flex2 -> 0.000986004 Sqre[nw2 M21
Y2/(m2)/g]*C2^(3/2)
kbuz -> 250.046
kblz -> 307.126
bdu -> 0.196635
bdl -> 0.0568875
m12 -> 10.024
I1xy -> 0
I1yz -> 0
I1zx -> 0
COM1x -> 0
COM1y -> 0
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
Ibtxyl -> 0
Ibtyzl -> 0
Ibtzxl -> 0
I2xy -> 0
I2yz -> 0
I2zx -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03
zpad -> 0.05
phib -> 0.001
 -16
M11 -> 7.88442 10
M12 -> 7.88442 10-16
M12 -> 7.88442 10
 -17
M21 -> 8.01224 10
M22 -> 8.01224 10
temperature -> 290.
```

```
 -23
boltzmann -> 1.38066 10
alphasilica -> 5.1 10
betasilica -> 0.00015
rhosilica -> 2200.
Csilica -> }772
Ksilica -> 1.38
 1 0
Ysilica -> 7. 10
 -8
phisilica -> 2. 10
 -11
phissilica -> 3.3 10
rhosteel -> 7800.
Csteel -> 486.
Ksteel -> 49.
 1 1
Ysteel -> 2.12 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0002
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
 1 1
Ymarag -> 1.87 10
alphamarag -> 0.000011
betamarag -> -0.00025
phimarag -> 0.0001
tmU -> 0.0015 MC blade size
tmL -> 0.001
magicnumber -> 0.0737472
deltabladeU -> 0.00182883
deltabladeL -> 0.00182883
deltawireU -> 0.00256766
deltawireL -> 0.002595
taubladeU -> 0.0408983
taubladeL -> 0.018177
tauwireU -> 0.00072307
tauwireL -> 0.000230501
 0.000469956 #1
damping[imag, bladeUtype] -> (0.0001 + --------------------- &)
 + 0.0660344 #
```

damping[imag, bladeLtype] -> (0.0001 + --------------------- \&
1 + 0.0130438 \#1
damping[imag, wireUtype] -> (0.0002 \& )
damping[imag, wireLtype] -> (0.0002 \& )
0.0000116653 \#1
damping[imag, wireUatype] -> (0.0002 + ------------------------- \& )
1 + 0.0000206405 \#1
3.75828 10 \#1
damping[imag, wireLatype] -> (0.0002 +
1 + 2.09751 10 \#1
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx1 -> 0
kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0
si -> 0.03

Back to Top

## aLIGO SUS Operations Manual - Info on HTTS (TipTilt)

Back to Operation Manual main page
The HTTS suspensions are the responsibility of the ASC group, but have been adopted by SUS to some extent. They hold RM1, RM2, OM1, OM2 and OM3.

Unlike other suspensions (QUAD, BSFM etc), the software for HTTS is filed under ASC, e.g., the Simulink model for the H1 TipTilts lives in the cds_user_apps (userapps) repository at ^/trunk/asc/h1/models/h1asctt.


## References

- Tip-tilt group's wiki page
- © D1001396 HTTS Top Level Assembly
- $\Theta$ Stuff on HAUX and HTTS actuation ranges from LLO alog
- T1400030: aLIGO HTTS Controls Design Description


## Models

The HTTS suspension has been modeled in Mathematica/Matlab. Key results are post at Suspensions/OpsManual/HTTS/Models.

## Screens

HTTS MEDM screens are at/Screens.

## aLIGO SUS Operations Manual - Overview of HTTS MEDM screens

Back to Operation Manual main page
Back to HTTS main page
The HTTS screens described below are common to all HTTS (RM1-2, OM1-3) and live at
/opt/rtcds/userapps/release/sus/common/medm/htts/. They are all generic screens which rely for their execution on site-, interferometer- and suspension-specific arguments passed in when they are called. They can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP.adl. See the MEDM page for further information.

## Overview Screen

## Screen SUS_CUST_HSSS_OVERVIEW.adI

『


This is the overview screen. There is only one sensor-actuator group - M1:

- Other
- M1-4 AOSEMs on the structure engaging the optic

M1 is used for local damping (relative to the structure). DC pitch and yaw offsets are also injected at M1.

## Other Screens

- MASTER SWITCH - a manual on/off switch for all actuation
- COMMISSIONING - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- ADC - a monitor screen (common to all sensor-actuator groups) for the semi-raw ADC values as reported by the IOP process after downsampling.
- DAC - a popup allowing access to all the DAC outputs as reported by the IOP process.
- USER DACKILL - a watchdog that shuts off all sensor-actuator groups for the individual suspension but not the IOP process (potentially other suspensions on the same front-end).
- Note: the HTTSs do not have an IOP watchdog
- ODC STATUS - ODC status.
- IPC - interprocess control signals.
- H1IOPASC0 GDS TP (or the like; depends on the front-end computer name) - status of the IOP process for the frontend.
- H1SUSHTTS GDS TP (or the like; depends on the suspension name) - status of the suspension process.
- H1SUSHTTS BIO dummy warning screen - there are no binary input/outputs to control.
- H1SUSRM Aux Ch (or the like; depends on the suspension name) - readbacks from coil driver channels for all OSEMs as reported by the corresponding auxiliary front-end processor.
- GUARDIAN - Guardian.
- ISIINF - ISI input filters.
- CART2EUL - transformation from the ISI basis to SUS.

Screen SUS_CUST_HTTS_ADC_MONITOR.adI


Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.


Suspensions/OpsManual/Boilerplate/DAC_MONITOR:
Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

## Screen H1SUSHTTS_GDS_TP.adI



This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPU, e.g., "37", can be read from this screen just to the right of the "DAQ STATUS" heading.
The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the test points will be showing non-zero numbers. See
Suspensions/OpsManual/diag for instructions on clearing test points.

## Screen H1IOPASC0_GDS_TP.adl



Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., "33", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

## Screen SUS_CUST_HSSS_MONITOR_OVERVIEW.adI



Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.

- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.


## Screen SUS_CUST_HTTS_BIO_ALL.adI

This is a dummy screen that explains that the binary input output settings have been jumpered in hardware and are not under CDS control.

## Screen SUS_CUST_HTTS_DACKILL.adl



Suspensions/OpsManual/Boilerplate/SUS_CUST_HTTS_DACKILL:
A single user model runs all the HTTSs so there is a joint USER DACKILL screen. See Suspensions/OpsManual/Watchdogs for more info.

Screen SUS_CUST_HTTS_IPC.adl


Suspensions/OpsManual/Boilerplate/IPC:
Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).

## Screen SUS_CUST_HTTS_ODC.adI



Suspensions/OpsManual/Boilerplate/ODC:
ODC Status.

## Screen H1SUSRM_GUARDIAN.adl



Suspensions/OpsManual/Boilerplate/GUARD:
The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.

## Screen SUS_CUST_HSSS_M1_ISIINF.adI




Suspensions/OpsManual/Boilerplate/M1_ISIINF:
Filters for the diagnostic signals from the ISI.

## Screen SUS_CUST_HSSS_M1_CART2EUL.adl



Suspensions/OpsManual/Boilerplate/M1_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face, +T left and $+V$ up). See Suspensions/OpsManual/Projections and © T1100617.

## Sensor Actuator Group M1 - Optic

Most of the items on the M1 section correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the local control loop, which involves the following elements:

- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly $20 \mathrm{~K}-30 \mathrm{~K}$ counts (depending on the OSEM), applies dewhitening and normalizes to $\mu \mathrm{m}$.
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- LOCKIN P and Y - filters for global control signals
- DAMP FILTERS - a filter bank applying the damping filters.
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw
- LOCK FILTERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.
- WATCHDOG - a block implementing the watchdog on the M1 sensor actuator group.

Screen SUS_CUST_HSSS_M1_OSEMINF.adl


Suspensions/OpsManual/Boilerplate/M1_OSEMINF:
This block has 6 filter groups corresponding to the 6 M1 BOSEMs, T1/T2/T3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to $\mu \mathrm{m}$.

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

## Screen SUS_CUST_HSSS_M1_OSEM_ALIGN.adI



Suspensions/OpsManual/Boilerplate/M1_OSEM_ALIGN:
These screens give various views of the OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

## Screen SUS_CUST_HSSS_M1_OSEM2EUL.adl



Suspensions/OpsManual/Boilerplate/M1_OSEM2EUL:
This screen allows entry of the matrix which converts from the M1 OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^-1 and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in $\mu \mathrm{m}$ the outputs are then in $\mu \mathrm{rad}$.

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. $+\mathrm{R},+\mathrm{P}$ and +Y are right-handed about the corresponding axes.

Screen SUS_CUST_HSSS_M1_SENSALIGN.adI


Suspensions/OpsManual/Boilerplate/M1_SENSALIGN:
This screen is reserved for tweaking the M1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

## Screen SUS_CUST_HSSS_M1_DAMP.adl



[^0]Screen SUS_CUST_HSSS_M1_TEST.adI


Suspensions/OpsManual/Boilerplate/M1_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1 . However offsets of $\approx 10000$ in $\mathrm{L} / \mathrm{T} / \mathrm{V}$ or $\approx 1000$ in $\mathrm{R} / \mathrm{P} / \mathrm{Y}$ can be applied temporarily to check that actuation is taking effect (and with the right sign). In such cases a Ramp Time of 10 s or so is often helpful. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

## Screen SUS_CUST_HSSS_M1_OPTICALIGN.adI



Suspensions/OpsManual/Boilerplate/M1_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets. See Suspensions/OpsManual/Alignments for more info.

## Screen LOCKIN_DEMOD.adl (two versions: P and Y)



Need to find out what this does.
Screen SUS_CUST_HSSS_M1_LOCK.adl


Suspensions/OpsManual/Boilerplate/M1_LOCK:
Filters for the locking signals.
Screen SUS_CUST_HSSS_M1_DRIVEALIGN.adI



Suspensions/OpsManual/Boilerplate/M1_DRIVEALIGN:
This screen is reserved for tweaking the M1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info

Screen SUS_CUST_HSSS_M1_LKIN2OSEM.adI


Suspensions/OpsManual/Boilerplate/M1_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_HSSS_M1_EUL2OSEM.adI


Suspensions/OpsManual/Boilerplate/M1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

## Screen SUS_CUST_HSSS_M1_COILOUTF.adI



Suspensions/OpsManual/Boilerplate/M1_COILOUTF:
This screen applies compensation for the hardware filters in the M1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.

The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of $\approx 10000$ [TBC] can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the $\pm 1$ gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

## Screen SUS_CUST_HSSS_M1_WD.adI



Suspensions/OpsManual/Boilerplate/M1_WD:
This screen allows for setting the M1 watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.

## aLIOG SUS Operations Manual - HTTS (Tip-Tilt) Models

Back to Operation Manual main page
The Tip-Tilt suspension has been modeled in Mathematica. See Suspensions/MathematicaModels. Results will go here. There is also a Matlab equivalent. See ^/trunk/Common/MatlabTools/SingleModel_Production in the SUS SVN.

## Production Model

20140123HTTSdamp has new, correct data from D1001396-v3 for the MOIs. (The previous values from P1100090-v5 = Rev. Sci. Instrum. 82, 125108, were off by 10 in I0x, I0y and IOz and slightly out of date.) The final numbers are still an excellent match to the observed mode frequencies. Corresponds to httsopt_damp.m r6162 of 1/23/14.

## Old Models

20130723 TipTilt has data from P1100090-v5 = Rev. Sci. Instrum. 82, 125108, but with I0x, I0y and I0z increased by factors of 10,10 and 11.5 to match observed mode frequencies. Corresponds to httsopt_test.m r5233 of 7/23/13.

20130628TipTilt has data from P1100090-v5 = Rev. Sci. Instrum. 82, 125108. The relationship between t10 and 'pendulum length' has been fixed - tl0 is inclusive of dpitch whereas Bram has clarified that 'pendulum length' was not. Corresponds to httsopt_test.m r5013 of 6/28/13.

20130627 TipTilt is a first cut at the HTTS, with data from P1100090-v5 = Rev. Sci. Instrum. 82, 125108. Corresponds to httsopt_test.m of 6/27/13.

## Data

Corrected info on masses and MOIs from Bram Slagmolen. © D1001396

## Case 20140123HTTSdamp of Mathematica model TwoWireSimpleBlades

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

## Formal name and description

```
"20140123HTTSdamp"
```

```
20140123HTTSdamp. Uses tweaked model with support for ECD. Corresponds to httsopt_damp.m r6162
of 1/23/14, including damping. Non-ECD damping disabled. New as-built MOI data from D1001396-v3
relative to 20130723TipTilt.
```


## Links to Result Sections

| Mode Summary | Mode Shapes | Parameters |
| :--- | :--- | :--- | :--- | :--- |
| modeL1 modeT1 modeY1 modeP1 modeV1 modeR1 |  |  |

## Mode Summary

Back to Top

$N$	f	name	type
1	1.30721	modeL1	pitch0
2	1.33756	modeT1	roll0
3	1.58336	modeY1	yaw0
4	1.69967	modeP1	pitch0
5	6.12635	modeV1	z0
6	8.73955	modeR1	roll0


Violin Modes	Optic
$\mathrm{f}(\mathrm{Hz}), \mathrm{n}=1-4$	243.907490 .052740 .742998 .426
$\mathrm{Q}, \mathrm{n}=1-4$	58299.731376 .18723 .312129 .5

## Mode Shapes

## Mode \#1 - modeL1

Back to Top

```
1.30721 Hz
```

$x$	$y$	$z$	yaw	pitch	roll
optic	0.0527637	0	0	0	-0.998607



## Mode \#2-modeT1

Back to Top

```
1.33756 Hz
```

	$x$	$y$	$z$	yaw	pitch
optic	0	-0.212819	0	0	0



## Mode \#3-modeY1

Back to Top

```
1.58336 Hz
```



Mode \#4-modeP1

Back to Top
1.69967 Hz

x	$y$	$z$	yaw	pitch	roll	
optic	0.00656515	0	0	0	0.999978	0

## Mode \#5-modeV1

Back to Top

```
6.12635 Hz
```

	x	y	z	yaw	pitch
optic roll					
	0	0	1.	0	0



Mode \#6 - modeR1

Back to Top
8.73955 Hz

$x$	$y$	z	yaw	pitch
optic	0	-0.00332535	0	0




## Parameters

Back to Top

```
g -> 9.81
tx -> 0.02 P1100090, USED ONLY FOR DRAWING
tr -> 0.0381
den0 -> 4000.
m0 -> 0.0885
COMx -> 0
COMy -> 0
COMz -> 0
IOx -> 0.0000641
IOy -> 0.0000307
IOz -> 0.0000377
IOxy -> 0
IOyz -> 0
IOzx -> 0
10 -> 0.141893
nw0 -> 2
r0 -> --------
1 1
Y0 -> 2.119 10
dpitch -> 0.0013
dyaw1 -> 0.03
dyaw2 -> 0.0762
tl0 -> 0.1413
ltotal -> 0.1413
dpend -> 0.1413
ul0 -> 0.14187
sl0 -> 0.141893
si0 -> 0.162799
c0 -> 0.986659
A0 -> 1.26677 10
kw0 -> 18917.7
flex0 -> 0.00244691
```

```
 -17
M01 -> 1.27698 10
M02 -> 1.27698 10
vertblades -> True
pitchbl -> 0
pitchbr -> 0
rollbl -> 0
rollbr -> 0
kbz -> 65.8 P1100090
bd -> 0.00659715
btx -> 0.01 display size of blade tip
bty -> 0.01 display size of blade tip
btz -> 0.01 display size of blade tip
temperature -> 290.
 -23
boltzmann -> 1.38066 10
alphasilica -> 5.1 10
betasilica -> 0.0002
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
 1 0
Ysilica -> 7. 10
 -8
phisilica -> 2. 10
 -11
phissilica -> 3.3 10
rhosteel -> 7800.
Csteel -> 486.
Ksteel -> 49.
 1 1
Ysteel -> 1.65 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0002
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
 1 1
Ymarag -> 1.65 10
alphamarag -> 0.000011
betamarag -> 0.
phimarag -> 0.0001
```

```
tmU -> 0.0045
tmI -> 0.0055
tmL -> 0.005
deltablade -> 0.00161367
taublade -> 0.368085
damping[imag, bladetype] -> (0 &)
magicnumber -> 0.0732
deltafibre -> 0.00183364
taufibre -> 0.0000913384
damping[imag, fibretype] -> (0 &)
damping[imag, fibreatype] -> (0 &)
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx0 -> 0
kcony0 -> 0
kconz0 -> 0
kconyaw0 -> 0
kconpitch0 -> 0
kconroll0 -> 0
damping[real, ECDtype] -> (0 &)
damping[imag, ECDtype] -> (2 Pi #1 &)
bx1 -> 0.00885
by1 -> 0.00885
bz1 -> 0.00885
byaw1 -> 0.00001885
bpitch1 -> 3.07 10
broll1 -> 6.41 10
```

Back to Top

## aLIGO SUS Operation Manual - Info on HAUX

Back to Operation Manual main page

## Overview

The HAUX suspensions are the responsibility of the IOO group, but to some extent have been adopted by SUS. They hold the input optics IM1, IM2, IM3 and IM4.


## References

- $\Theta$ https://dcc.ligo.org/LIGO-D1000120 HAUX Top Assembly
- $\Theta$ Stuff on HAUX and HTTS actuation ranges from LLO alog
- T1400029 aLIGO HAUX Controls Design Description


## Models

The HAUX suspension has been modeled in Mathematica/Matlab. Key results are posted at Suspensions/OpsManual/HAUX/Models .

## Screens

HAUX MEDM screens are at/Screens.

## aLIGO SUS Operations Manual - Overview of HAUX MEDM screens

Back to Operation Manual main page
Back to HAUX main page
The HAUX screens described below are common to all HAUX (IM1-4) and live at
/opt/rtcds/userapps/release/sus/common/medm/haux/. They are all generic screens which rely for their execution on site-, interferometer- and suspension-specific arguments passed in when they are called. They can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP.adl. See the MEDM page for further information.

## Overview Screen

## Screen SUS_CUST_HSSS_OVERVIEW.adI

『


This is the overview screen. There is only one sensor-actuator group - M1:

- Other
- M1-4 AOSEMs on the structure engaging the optic

M1 is used for local damping (relative to the structure). DC pitch and yaw offsets are also injected at M1.

## Other Screens

- MASTER SWITCH - a manual on/off switch for all actuation
- COMMISSIONING - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- ADC - a monitor screen (common to all sensor-actuator groups) for the semi-raw ADC values as reported by the IOP process after downsampling.
- DAC - a popup allowing access to all the DAC outputs as reported by the IOP process.
- USER DACKILL - a watchdog that shuts off all sensor-actuator groups for the individual suspension but not the IOP process (potentially other suspensions on the same front-end).
- Note: the IMs do not have an IOP watchdog
- ODC STATUS - ODC status.
- IPC - interprocess control signals.
- H1SUSIM GDS TP (or the like) - status of the suspension process.
- H1IOPSUSH2B GDS TP (or the like) - status of the IOP process for the front-end.
- H1SUSIM BIO (or the like) - binary input/output controls.
- H1SUSIM Aux Ch (or the like) - readbacks from coil driver channels for all OSEMs as reported by the corresponding auxiliary front-end processor.
- GUARDIAN - Guardian.
- ISIINF - ISI input filters.
- CART2EUL - transformation from the ISI basis to SUS.

Screen SUS_CUST_IM_ADC_MONITOR.adI
Ө O O X SUS_CUST_IM_ADC_MONITOR.adl

ADC_MONITOR	Thu Feb 6 14:55:47 2014	
	IM1_M1_OSEMINF_UL (adc_0_0)	10788.574
IM1_M1_OSEMINF_LL (adc_0_1)	9790.560	
IM1_M1_OSEMINF_UR (adc_0_2)	12124.727	
IM1_M1_OSEMINF_LR (adc_0_3)	13211.603	
IM2_M1_OSEMINF_UL (adc_0_8)	10606.067	
IM2_M1_OSEMINF_LL (adc_0_9)	12607.835	
IM2_M1_OSEMINF_UR (adc_0_10)	13158.946	
IM2_M1_OSEMINF_LR (adc_0_11)	10014.024	


IM3_M1_OSEMINF_UL (adc_0_12)	11466.808	
	IM3_M1_OSEMINF_LL (adc_0_13)	10531.799
	IM3_M1_OSEMINF_UR (adc_0_14)	12451.370
	IM3_M1_OSEMINF_LR (adc_0_15)	12054.432
IM4_M1_OSEMINF_UL (adc_0_4)	12764.849	
IM4_M1_OSEMINF_LL (adc_0_5)	18661.505	
IM4_M1_OSEMINF_UR (adc_0_6)	10042.624	
IM4_M1_OSEMINF_LR (adc_0_7)	13614.986	

Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Screen SUS_CUST_IM_DAC_MONITOR.adI


Suspensions/OpsManual/Boilerplate/DAC_MONITOR:
Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

## Screen H1SUSIM_GDS_TP.adl



This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPU, e.g., "37", can be read from this screen just to the right of the "DAQ STATUS" heading.
The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.


Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., " 33 ", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

## Screen SUS_CUST_HSSS_MONITOR_OVERVIEW.adI



Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.

- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.


## Screen SUS_CUST_IM_BIO_ALL.adI



Suspensions/OpsManual/Boilerplate/SUS_CUST_IM_BIO_ALL:
The binary input/output (BIO) settings for all the IM suspensions.

## Screen SUS_CUST_IM_DACKILL.adI



Suspensions/OpsManual/Boilerplate/SUS_CUST_IM_DACKILL:
One user model runs all the IM suspensions, so there is a joint USER DACKILL. See Suspensions/OpsManual/Watchdogs for more info.

Screen SUS_CUST_IM_IPC.adl


Suspensions/OpsManual/Boilerplate/IPC:
Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).


Suspensions/OpsManual/Boilerplate/ODC:
ODC Status.

## Screen H1SUSIM_GUARDIAN.adI



Suspensions/OpsManual/Boilerplate/GUARD:
The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.
Screen SUS_CUST_HSSS_M1_ISIINF.adl


Suspensions/OpsManual/Boilerplate/M1_ISIINF:
Filters for the diagnostic signals from the ISI.

## Screen SUS_CUST_HSSS_M1_CART2EUL.adI



Suspensions/OpsManual/Boilerplate/M1_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face, +T left and +V up). See Suspensions/OpsManual/Projections and © T1100617.

## Sensor Actuator Group M1 - Optic

Most of the items on the M1 section correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the local control loop, which involves the following elements:

- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly $20 \mathrm{~K}-30 \mathrm{~K}$ counts (depending on the OSEM), applies dewhitening and normalizes to $\mu \mathrm{m}$.
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSAI IGN - a block reserved for annlving corrections if the sensors are not well-matched (the identitv matrix bv
- LOCKIN P and Y - filters for global control signals.
- DAMP FILTERS - a filter bank applying the damping filters.
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw.
- LOCK FILTERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O - ???.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.
- WATCHDOG - a block implementing the watchdog on the M1 sensor actuator group.


## Screen SUS_CUST_HSSS_M1_OSEMINF.adl



Suspensions/OpsManual/Boilerplate/M1_OSEMINF:
This block has 6 filter groups corresponding to the 6 M1 BOSEMs, T1/T2/T3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to $\mu \mathrm{m}$.

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.

## Screen SUS_CUST_HSSS_M1_OSEM_ALIGN.adl



Suspensions/OpsManual/Boilerplate/M1_OSEM_ALIGN:
These screens give various views of the OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

## Screen SUS_CUST_HSSS_M1_OSEM2EUL.adl



Suspensions/OpsManual/Boilerplate/M1_OSEM2EUL:
This screen allows entry of the matrix which converts from the M1 OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter ${ }^{\wedge}-1$ and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in $\mu \mathrm{m}$ the outputs are then in $\mu \mathrm{rad}$.

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the

Screen SUS_CUST_HSSS_M1_SENSALIGN.adl


Suspensions/OpsManual/Boilerplate/M1_SENSALIGN:
This screen is reserved for tweaking the M1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

## Screen SUS_CUST_HSSS_M1_DAMP.ad



Suspensions/OpsManual/Boilerplate/M1_DAMP:
These filters implement the local damping. See Suspensions/OpsManual/Damping.
Screen SUS_CUST_HSSS_M1_TEST.adl


Suspensions/OpsManual/Boilerplate/M1_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1 . However offsets of $\approx 10000$ in L/T/V or $\approx 1000$ in R/P/Y can be applied temporarily to check that actuation is taking effect (and with the right sign). In such cases a Ramp Time of 10 s or so is often helpful. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

## Screen SUS_CUST_HSSS_M1_OPTICALIGN.adI



Suspensions/OpsManual/Boilerplate/M1_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets. See Suspensions/OpsManual/Alignments for more info.

## Screen LOCKIN_DEMOD.adl (two versions: $\mathbf{P}$ and $\mathbf{Y}$ )




Need to find out what this does.
Screen SUS_CUST_HSSS_M1_LOCK.adl


Suspensions/OpsManual/Boilerplate/M1_LOCK:
Filters for the locking signals.

## Screen SUS_CUST_HSSS_M1_DRIVEALIGN.adl



Suspensions/OpsManual/Boilerplate/M1_DRIVEALIGN:
This screen is reserved for tweaking the M1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_HSSS_M1_LKIN2OSEM.adI


Suspensions/OpsManual/Boilerplate/M1_LKIN2OSEM:
Need to find out what this does.
Screen SUS_CUST_HSSS_M1_EUL2OSEM.adl
Ө○○ Х SUS_CUST_HSSS_M1_E... H1 IM1 M1 EULER20SEM MATRIX

```
 EULER BASIS
```

    L \(\quad\) P \(\quad\) Y
    

Suspensions/OpsManual/Boilerplate/M1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

## Screen SUS_CUST_HSSS_M1_COILOUTF.adI



Suspensions/OpsManual/Boilerplate/M1_COILOUTF:
This screen applies compensation for the hardware filters in the M1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of $\approx 10000$ [TBC] can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the $\pm 1$ gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

## Screen SUS_CUST_HSSS_M1_WD.adI



Suspensions/OpsManual/Boilerplate/M1_WD:
This screen allows for setting the M1 watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.

## aLIGO SUS Operations Manual - HAUX Models

Back to Operation Manual main page
The HAUX suspension has been modeled in Mathematica and Matlab. See Suspensions/MathematicaModels.

## HAUX Production Model

The current best HAUX model is /20131231HAUXdamp. It includes the built-in eddy-current damping in both the Matlab and Mathematica versions.

## HAUX_Design Model

/HAUX_Design

## Case 20131231HAUXdamp of Mathematica model TwoWireSimpleBlades

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

## Formal name and description

```
"20131231HAUXdamp"
```

```
20131231HAUXdamp. Uses tweaked model with support for ECD. Corresponds to hauxopt_damp.m rTBD of
TBD, including damping. Non-ECD damping disabled.
```


## Links to Result Sections

$|$| Pendulum Mode Summary | Violin Mode Summary |  | Pendulum Mode Shapes | Parameters |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| modeY1 | modeL1 | modeT1 | modeP1 | modeV1 | modeR1 |

## Pendulum Mode Summary

Back to Top

N	f	name	type
1	0.754235	modeY1	yaw0
2	0.976308	modeL1	pitch0
3	0.99325	modeT1	roll0
4	1.11873	modeP1	pitch0
5	7.09832	modeV1	z0
6	10.4881	modeR1	roll0

## Violin Mode Summary

Back to Top

Violin Modes	Optic
$\mathrm{f}(\mathrm{Hz}), \mathrm{n}=1-4$	228.297456 .904686 .131916 .292
Q, $\mathrm{n}=1-4$	131563.79259 .256340 .443486 .7

## Mode Shapes

Mode \#1 - modeY1
Back to Top

```
0.754235 Hz
```

	$x$	$y$	$z$	yaw	pitch	roll
optic	0	0	0	1.	0	0



Mode \#2-modeL1

Back to Top

```
0.976308 Hz
```

$x$	$y$	$z$	yaw	pitch	roll
optic	-0.050974	0	0	0	0.9987
0					



Mode \#3-modeT1

Back to Top

	x	y	z	yaw	pitch	roll
optic	0	-0.27852	0	0	0	-0.96043



## Mode \#4 - modeP1

Back to Top
1.11873 Hz

$x$	$y$	$z$	yaw	pitch	roll
optic	0.0111109	0	0	0	0.999938



Mode \#5-modeV1

Back to Top
7.09832 Hz

	x	y	z	yaw	pitch roll
optic	0	0	-1.	0	0



## Mode \#6 - modeR1

Back to Top
10.4881 Hz

	x	y	z	yaw	pitch
optic	0	-0.00401153	0	0	0




Parameters

Back to Top

```
g -> 9.81
tx -> 0.0254
tr -> 0.0381
den0 -> 4000.
m0 -> 0.3738
COMx -> 0
coordinates)
COMy -> 0
coordinates)
COMz -> 0
coordinates)
IOx -> 0.000434854
IOy -> 0.000211996
IOz -> 0.00026846
I0xy -> 0
IOyz -> 0
IOzx -> 0
10 -> 0.253842
nw0 -> 2
r0 -> 0.0000762
 1 1
Y0 -> 2.1 10
dpitch -> 0.001
origin
dyaw1 -> 0.0157
dyaw2 -> 0.10033
tl0 -> 0.25029
ltotal -> 0.25029
dpend -> 0.25029
ul0 -> 0.253719
sl0 -> 0.253842
si0 -> 0.166698
c0 -> 0.986008
```

thickness of optic, USED ONLY FOR DRAWING radius of optic, USED ONLY FOR DRAWING
mass of the suspended assembly
suspended assembly COM $x$ coordinate (in local
suspended assembly COM y coordinate (in local
suspended assembly COM z coordinate (in local
moment of inertia (roll) in body coordinates
moment of inertia (pitch) in body coordinates
moment of inertia (yaw) in body coordinates
wire length
radius of wire
wires' Young's modulus
height of wire break-off above optic local coordinate
$y$-separation of wires at structure
$y$-separation of wires at optic
vertical distance between wire attachment points

```
A0 -> 1.82415 10
kw0 -> 15090.9
flex0 -> 0.00170508
M01 -> 2.64795 10
-17
M02 -> 2.64795 10
vertblades -> True
pitchbl -> 0
pitchbr -> 0
rollbl -> 0
rollbr -> 0
2 2 m0
2 2 m0
GUESSTIMATE-blade strength to give measured bounce
frequency (including wires' effects). The value coming from the blade modeling would be 381 (or
7.19 4 \pi --). To match a resonace frequency (calculated for the blades, thus not accounting
for wires) use: f 4 \pi --)
kbz -> 381.441
2
2
bd -> 0.00480675
btx -> 0.01 display size of blade tip
bty -> 0.01 display size of blade tip
btz -> 0.01 display size of blade tip
temperature -> 290.
 -23
boltzmann -> 1.38066 10
alphasilica -> 5.1 10
betasilica -> 0.0002
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
 1 0
Ysilica -> 7. 10
phisilica -> 2. 10
 -11
phissilica -> 3.3 10
rhosteel -> 7800.
Csteel -> 486.
Ksteel -> 49.
 1 1
Ysteel -> 1.65 10
alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0002
```

```
rnomarag -> I४UU.
Cmarag -> 460.
Kmarag -> 20.
 1 1
Ymarag -> 1.65 10
alphamarag -> 0.000011
betamarag -> 0.
phimarag -> 0.0001
tmU -> 0.0045
tmI -> 0.0055
tmL -> 0.005
deltablade -> 0.00161367
taublade -> 0.368085
damping[imag, bladetype] -> (0 &)
magicnumber -> 0.0732
deltafibre -> 0.00186476
taufibre -> 0.000131527
damping[imag, fibretype] -> (0 &)
damping[imag, fibreatype] -> (0 &)
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx0 -> 0
kcony0 -> 0
kconz0 -> 0
kconyaw0 -> 0
kconpitch0 -> 0
kconroll0 -> 0
damping[real, ECDtype] -> (0 &)
damping[imag, ECDtype] -> (2 Pi #1 &)
bx0 -> 0.1869
by0 -> 0.3738
bz0 -> 0.3738
byaw0 -> 0.000013423
bpitch0 -> 0.000423992
broll0 -> 0.000434854
```


## aLIGO SUS Operation Manual - Info on TMTS Suspensions

Back to Operation Manual main page

## Background

The Transmon Telescope proper is suspended as the bottom mass of a double pendulum, with two blades in the structure, and two blades at the top mass. The telescope proper has a mass of $\approx 80 \mathrm{~kg}$, equivalent to the bottom two masses of a quad. To save design effort a number of parts were taken over from the quad:

- The TMTS top mass is based on a QUAD UIM (upper intermediate mass; $\approx 22 \mathrm{~kg}$ ), heavily ballasted with extra weight equivalent to that of a quad top mass ( $\approx 22 \mathrm{~kg}$ ).
- The two TMTS top blades are QUAD top blades rated for a total of $22+22+40+40=124 \mathrm{~kg}$, and are used with quad blade mounts in a quad upper structure weldment.

There are left- and right-handed versions of the TMTS (the one in the picture below is a "right"):

Left	H1:TMSY, H2:TMSX, L1:TMSY
Right	H1:TMSX, H2:TMSY, L1:TMSX



## References

- © D0901880: aLIGO AOS Transmission Monitor System Assembly
- © E1100537: TRANSMISSION MONITOR TELESCOPE SUSPENSION (TMS) FINAL DESIGN
- T1200364: Double Pendulum Parameter Descriptions and Naming Convention (Note -v1 is inaccurate in several respects for TMTS.)
- D0900419: AdvLIGO SUS BSC6-H2, XYZ Local CS for TMS ETM Tel Assy (First Article in-chamber drawing and eDrawing)
- E1200045: TMTS Suspension Controls Arrangement Poster
-     - https://dcc.ligo.org/LIGO-T1300537 aLIGO TMTS Controls Design Description


## Models

The TMTS suspension has been modelled. Key results are at Suspensions/OpsManual/TMTS/Models .

## Screens

TMTS MEDM screens are at /Screens.

## aLIGO SUS Operations Manual - Overview of TMTS MEDM screens

Back to Operation Manual main page
Back to TMTS main page
The TMTS screens described below live at/opt/rtcds/userapps/release/sus/common/medm/tmts/. They are all generic screens which rely for their execution on arguments passed in when they are called. Most of the arguments are defined in suspension specific files
/opt/rtcds/userapps/release/sus/common/medm/sustms*_overview_macro.txt (*=x/y). The generic screens can be edited in MEDM but can't usefully be executed directly from there. Rather they need to be opened directly or indirectly from the SITEMAP screen /opt/rtcds/\$\{site\}/\$\{ifo\}/medm/SITEMAP.adl. See the MEDM page for further information.

## Overview Screen

## Screen SUS_CUST_TMTS_OVERVIEW.adI

1


This is the overview screen. There is one sensor-actuator group, M1 - there are no OSEMs on the telescope:

- Other - subscreens not associated with a sensor/actuator group
- M1-6 BOSEMs on the structure engaging the upper mass

M1 is used for local damping (relative to the structure). DC pitch and yaw offsets are also injected at M1.
Other Screens


- MASTER SWITCH - a manual on/off switch for all actuation (common to all sensor-actuator groups).
- MEASUREMENT STATUS - flashes when manually set to ON, alerting other users to the fact that someone has claimed the suspension for testing.
- HIERARCHY SWITCH - enables various ISC inputs and outputs.
- ADC - a monitor screen (common to all sensor-actuator groups) for the semi-raw ADC values as reported by the IOP process after downsampling.
- DAC DAC - a popup allowing access to all the DAC outputs as reported by the IOP process.
- WATCHDOGS - a block implementing the watchdogs.
- IOP DACKILL - a watchdog that shuts off the IOP process (potentially other suspensions on the same front-end).
- H1IOPSUSEX GDS TP (or the like; depends on the front-end computer name) - status of the IOP process for the front-end.
- H1SUSTMSX GDS TP (or the like; depends on the suspension name) - status of the suspension process.
- H1SUSTMSX BIO (or the like; depends on the suspension name) - binary input/output controls

 OSEMs as reported by the corresponding auxiliary front-end processor.
- ODC STATUS - ODC status
- !GUARDIAN - Guardian
- ISIINF - ISI input filters.
- CART2EUL - transformation from the ISI basis to SUS.


## Screen SUS_CUST_TMTS_ADC_MONITOR.adl



Suspensions/OpsManual/Boilerplate/ADC_MONITOR:
Shows the raw OSEM etc signals as reported by the IOP process. The ADC channel numbers are hard-coded in suspensionspecific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

Screen SUS_CUST_TMTS_DAC_MONITOR.adI

DAC_MONITOR		
$\square$		
DACO	OUTPUT	
	SIGNAL	$\begin{gathered} \text { OVER } \\ \text { FLOWS } \end{gathered}$
THSX_M1_OSEM_F1_OUT (dac_0_4)	0	0
TMSX_M1_OSEM_F2_OUT (dac_0_5)	52010	0
TMSX_M1_OSEM_F3_OUT (dac_0_6)	51782	0
TMSX_M1_OSEM_LF_OUT (dac_0_7)	109732	0
TMSX_M1_OSEM_RT_OUT (dac_1_0)	109785	0
TMSX_M1_OSEM_SD_OUT (dac_1_1)	0	0

Suspensions/OpsManual/Boilerplate/DAC_MONITOR:
Actuation signals just before the DAC as reported by the IOP process. The DAC channel numbers are hard-coded in suspension-specific macro files read by MEDM when the screen is displayed - see Suspensions/OpsManual/MEDM.

## Screen H1IOPSUSEX_GDS_TP.adI



Suspensions/OpsManual/Boilerplate/IOP_GDS_TP:
This screen reports the status of the CPU running the IOP model for the suspension, which runs on a different core of the same front-end computer running the user model and is responsible for ADC and DAC access. Of particular importance:

The number of the CPU running the IOP process, e.g., "33", can be read from this screen just to the right of the "DAQ STATUS" heading.

The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the Test Points will be non-zero. If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

## Screen H1SUSTMSX_GDS_TP.adI



This screen reports the status of the CPU running the user model for the suspension. Of particular importance:
The number of the CPIT คo "37" ran he read from thic crreen inct to the rioht of the "NA STATIIC" heading

The Coeff Load button reloads all the filters for the model.
If an excitation is active, one or more of the test points will be showing non-zero numbers. See Suspensions/OpsManual/diag for instructions on clearing test points.

## Screen SUS_CUST_TMTS_MONITOR_OVERVIEW.adl



Suspensions/OpsManual/Boilerplate/MONITOR_OVERVIEW:
This screen shows the OSEM readback channels as reported by the AUX model for the suspension.

- VOLTS is a measure of the analog voltage at the coil driver.
- FAST_I is a measure of the current output by the coil driver.
- RMS_I is a low-passed measure of the current.
- NOISE is a high-passed measure of the current.


## Screen SUS_CUST_TMTS_BIO.adI



The Binary Input-Output control screen. State Requests for the various sensor-actuator groups can be input. Positive state values lock out manual control of the filters on the COILOUTF screen and set the digital dewhitening filters to match the analog whitening filters selected via the binary outputs. Negative state values allow the dewhitening filters to be manually overridden.

## Screen SUS_CUST_TMTS_WD.adI



Suspensions/OpsManual/Boilerplate/WD:
This screen allows for setting the watchdog thresholds and for resetting the watchdog should it trip. See Watchdogs for more information.


Suspensions/OpsManual/Boilerplate/IOP_DACKILL:
The watchdog controls for the IOP process. If this WD is tripped it disables IO toffrom all user models on the front end. RESET resets from the tripped state if there are no outstanding triggers. BYPASS is a manual override that allows for operation of the suspension if there is a trigger condition that is known by the operator to be harmless.

Screen SUS_CUST_TMTS_DACKILL.adI


Suspensions/OpsManual/Boilerplate/USER_DACKILL:
The watchdog controls for the user process. If this WD is tripped it disables IO to/from all sensor/actuator levels of the suspension. RESET resets from the tripped state if there are no outstanding triggers.

Screen SUS_CUST_TMTS_IPC.adl


Monitor screen for the interprocess communication (IPC) signals from the associated SEI platform (ISI) and from the IFO sensing and control system (ISC).

## Screen GUARD.adI



Suspensions/OpsManual/Boilerplate/GUARD:
The Guardian screen. See Suspensions/OpsManual/Guardian and Suspensions/OpsManual/OperatingInstructions.

## Screen SUS_CUST_TMTS_ODC.adI




Suspensions/OpsManual/Boilerplate/ODC:
ODC Status.

## Screen SUS_CUST_TMTS_M1_ISIINF.adl



Suspensions/OpsManual/Boilerplate/M1_ISIINF:
Filters for the diagnostic signals from the ISI.

## Screen SUS_CUST_TMTS_M1_CART2EUL.adI



Suspensions/OpsManual/Boilerplate/M1_CART2EUL:
A matrix to diagonalize/rotate the ISI signals into the SUS basis (with +L from AR looking towards the HR face,+T left and + V up). See Suspensions/OpsManual/Projections and © T1100617.

## Sensor Actuator Group M1 - Upper Mass

Most of the items on the M1 section correspond to blocks in the underlying Simulink model and can be clicked on to access subscreens with settings for those block. It is laid out to reflect the flow of the local control loop, which involves the following elements:

- OSEM INPUT FILTERS - a block that accepts OSEM inputs from 0 to roughly $20 \mathrm{~K}-30 \mathrm{~K}$ counts (depending on the OSEM), applies dewhitening and normalizes to $\mu \mathrm{m}$.
- CENTERING - a utility screen which displays the OSEM readouts as large on-screen meters that can be read at a distance, for convenience while mechanically adjusting OSEMs.
- OSEM2EUL - a block that diagonalizes the OSEM signal to signals in a longitudinal/transverse/vertical/roll/pitch/yaw (L/T/V/R/P/Y) basis.
- SENSALIGN - a block reserved for applying corrections if the sensors are not well-matched (the identity matrix by default).
- DAMP FILTERS - a filter bank applying the damping filters.
- TEST FILTERS - a filter bank group (with no filters!) serving as a place to apply AWG actuation in the L/T/V/R/P/Y basis without it having to go through the damping filters.
- ALIGNMENT OFFSETS - a place to apply DC actuation in pitch and yaw.
- LOCK FILTERS - filters for global control signals.
- DRIVEALIGN - a block reserved for applying corrections if the actuators are not well-matched (the identity matrix by default).
- EUL2OSEM - a block that de-diagonalizes the damping signals back to per-OSEM signals.
- L2O-????.
- COIL OUTPUT FILTERS - a filter bank that corrects for hardware run/acquisition mode filters and for magnet polarity.


Suspensions/OpsManual/Boilerplate/M1_OSEMINF:
This block has 6 filter groups corresponding to the 6 M1 BOSEMs, T1/T2/T3/LF/RT/SD. See OSEMs and Calibration for more information on appropriate gain/offset settings.

The filter in slot FM1 corrects for the hardware whitening filter and should always be on. The filter in slot FM5 converts normalized counts to $\mu \mathrm{m}$.

The Limit and Ramp Time fields should be 0 and both ON/OFF switches should be ON.
Screen SUS_CUST_TMTS_M1_CENTERING.adI


Suspensions/OpsManual/Boilerplate/M1_CENTERING:
This screen gives various views of the M1 OSEM signals as meter panels for ease of viewing when mechanically adjusting OSEMs.

Screen SUS_CUST_TMTS_M1_OSEM2EUL.adl
QOO X SUS_CUST_TMTS_M1_OSEM2EUL.adl


Suspensions/OpsManual/Boilerplate/M1_OSEM2EUL:
This screen allows entry of the matrix which converts from the M1 OSEM basis to the Euler basis. See Suspensions/OpsManual/Projections for more info. The entries for the linear DOFs L, T and V are dimensionless and implement appropriate averages of the OSEMS.

The entries for the angular DOFs R, P and Y have dimensions meter^-1 and incorporate the lever arms from the COM to the OSEM positions. Since the inputs are in $\mu \mathrm{m}$ the outputs are then in $\mu \mathrm{rad}$.

The sign convention is the one that has been used consistently in SUS modelling efforts: +L is forward (looking from the AR side towards the HR side), +T is left (looking forward) and +V is up. $+\mathrm{R},+\mathrm{P}$ and +Y are right-handed about the corresponding axes.

## Screen SUS_CUST_TMTS_M1_SENSALIGN.adI

H1 THSX M1 SENSFLIGN MATRIX							
				M I S A	LIGNE		
		L	T	V	R	P	Y
	L	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000
A	T	0.00000	1.00000	0.00000	0.00000	0.00000	0.00000
	v	0.00000	0.00000	1.00000	0.00000	0.00000	6.00000


N	R	0.00000	0.00000	0.00000	1.00000	0.00000	0.00000
E							
I	P	0.00000	0.00000	0,00000	0.00000	1.00000	0.00000
	Y	0.00000	0.00000	0,00000	0.00000	0.00000	1.00000

Suspensions/OpsManual/Boilerplate/M1_SENSALIGN:
This screen is reserved for tweaking the M1 sensing diagonalization. It defaults to the identity matrix. See Suspensions/OpsManual/Projections for more info.

Screen SUS_CUST_TMTS_M1_DAMP.adI


Suspensions/OpsManual/Boilerplate/M1_DAMP:
These filters implement the local damping. See Suspensions/OpsManual/Damping.
Screen SUS_CUST_TMTS_M1_OPTICALIGN.adI


Suspensions/OpsManual/Boilerplate/M1_OPTICALIGN:
This screen has sliders for dialling in static pitch and yaw actuation offsets. See Suspensions/OpsManual/Alignments for more info.

Screen SUS_CUST_TMTS_M1_TEST.adl


Suspensions/OpsManual/Boilerplate/M1_TEST:
This is a deliberately empty set of 6 filter banks corresponding to the Euler DOFs. It allows AWG excitations to be applied at the EXC test points without passing through the damping filters. Offsets should normally be 0 and gains should be 1 . However offsets of $\approx 10000$ in $\mathrm{L} / \mathrm{T} / \mathrm{V}$ or $\approx 1000$ in $\mathrm{R} / \mathrm{P} / \mathrm{Y}$ can be applied temporarily to check that actuation is taking effect (and with the right sign). In such cases a Ramp Time of 10 s or so is often helpful. The button on the main screen which brings up this screen has a series of indicators, one for each filter, that are green when both the left and right ON/OFF switches are ON. Thus although the left switch doesn't do anything useful (there are no inputs before it and excitations are injected after it), it should be left ON so that the indicator tracks the right switch.

## Screen SUS_CUST_TMTS_M1_LOCK.adl



Suspensions/OpsManual/Boilerplate/M1_LOCK:
Filters for the locking signals.
Screen SUS_CUST_TMTS_M1_DRIVEALIGN.adI


Suspensions/OpsManual/Boilerplate/M1_DRIVEALIGN:
This screen is reserved for tweaking the M1 actuator diagonalization and frequency response. Unlike SENSALIGN there is also a single-slot filter bank associated with each entry. See Suspensions/OpsManual/Projections for more info.

## Screen SUS CUST TMTS M1 EUL2OSEM.adl

H1 TMSX M1 EULER20SEM MATRIX							
				ULER	BASIS		
		L	T	$V$	R	P	Y
0	F1	0.00000	0.00000	0.00000	-12.820	0.00000	D, 00000
S	F2	0.00000	10.5000	0.00000	${ }^{6} .41030$	0.00000	4.16670
M	F3	0,00000	1-0.5000	0.00000	6. 41030	0.00000	-4.1667
B	LF	0.00000	0.00000	-0.5000	0.00000	-2.7778	0.00000
S	RT	0.00000	0.00000	0.5000	0.00000	2.77780	0.00000
S	SD	1.00000	0.00000	0.00000	0.00000	0.00000	0.00000

Suspensions/OpsManual/Boilerplate/M1_EUL2OSEM:
This screen allows entry of the matrix which converts force/torque requests from the Euler basis to the OSEM basis. See Suspensions/OpsManual/Projections for more info. The sign convention for the input forces/torques is the same as for linear/angular displacements in the Euler basis. The sign convention for the outputs is that positive is a request for the actuator to push. Lever arms have been taken into account but not any any calibration of the actuation train.

Screen SUS_CUST_TMTS_M1_LKIN2OSEM.adI


Suspensions/OpsManual/Boilerplate/M1_LKIN2OSEM:
Need to find out what this does.

## Screen SUS_CUST_TMTS_M1_COILOUTF.adI




Suspensions/OpsManual/Boilerplate/M1_COILOUTF:
This screen applies compensation for the hardware filters in the M1 actuation electronics and also for the magnet sign. In normal use, the filters cannot be set manually but are enabled or disabled automatically in sync with the hardware filters. (If it should be necessary for testing purposes, this automatic control can be disabled in the BIO screen by entering a negative state request value.)

See the Calibration page for information on setting the gain fields.
The Offset, Limit and Ramp Time fields should normally be 0 and both ON/OFF switches should be ON. However offsets of $\approx 10000[\mathrm{TBC}]$ can be applied temporarily to check that actuation is taking effect (and with the right sign). A positive offset applied here (i.e., before the $\pm 1$ gain applied later on the same screen) should give a positive displacement in the corresponding OSEM signal, otherwise the sign of the gain and the magnet don't match.

The sign convention at the output is positive for a positive current (rather than force).

# aLIGO SUS Operations Manual - Models for TMTS Suspensions 

## Back to Operation Manual main page

There are Mathematica ( $\Theta$ T020205) and Matlab ( $\mathcal{T} 080188$ ) programs that take a parameter set describing the TMTS and calculate the dynamics. The parameter set needs to be formatted differently for Mathematica vs Matlab, but the parameter names are the same as far as was practical.

The Mathematica version of the TMTS model (DualLite2DBLateral) was based on the OMCS model (DualLite2) with three main modifications:

- There are only two blades at the top mass rather than four (two wires attach to each blade rather than one).
- The lower wires toe out in both directions rather than being parallel in one.
- Blade lateral compliance was included for the blades in the top mass, because it is a modified quad UIM and lateral compliance has been found important for the quad.

The Matlab version of the TMTS has been included as a special case of that for the OMCS. If the flag pend. db is set to 1 (true) in the data structure defining the pendulum, matrix elements appropriate for TMTS are used.

The +x direction is defined normal to the plan of the top wires, as for OMCS. However since the telescope axis ( +y ) is the one of most interest to the operators, this has been defined as L in the EPICS/MEDM. Thus unlike every other model where $\mathrm{L}=\mathrm{x}$ and $\mathrm{T}=\mathrm{y}$, for TMTS, $\mathrm{L}=\mathrm{y}$ and $\mathrm{T}=-\mathrm{x}$. Similarly, $\mathrm{R}=$ pitch and $\mathrm{P}=$-roll.

The TMTS Mathematica model and parameter sets for it live in the SUS SVN at
^/trunk/Common/MathematicaModels/DualLite2DBLateral. Parameter sets for Matlab live at ^/trunk/QUAD/Common/MatlabTools/DoubleModel_Production. Mark Barton maintains the Mathematica parameter sets, Jeff Kissel maintains the Matlab. Unfortunately two different naming conventions are in use and it's difficult to tell what corresponds to what - if in doubt, ask. References given below are to Mathematica versions as subdirectories of $\wedge / t r u n k / C o m m o n / M a t h e m a t i c a M o d e l s / D u a l L i t e 2 D B L a t e r a l . ~$

Key cases of the TMTS model are given below, with results such as mode frequencies and mode shapes.
Explanation of the standard result set is at .../Key. Instructions for generating wiki pages for new cases of Mathematica models is at .../HowTo.

## First Article Model

Current best model for the first article (as installed as TMSy at LHO) is 20131224TMTS_FirstArticle. It has all as-built numbers from D0902773-v8 except for a tweak of +2.7 mm to d 1 to better match modeR1. It is equivalent to Matlab parameter set tmtsopt_firstarticle.m r6273 of 2/14/14.

## Production Model

Current best model for the production TMTS is 20131224TMTS_Production. It has all as-built numbers from D0902773v8. It is equivalent to Matlab parameter set tmtsopt_production.m r6273 of 2/14/14.

## Old

20130501TMTS_FirstArticle has all as-built numbers as far as they could be determined except for a tweak of +4.3 mm to d1 to better match modeR1. 20130426TMTS_FirstArticle has all as-built numbers as far as they could be determined but didn't match modeR1 very well.

## Data

Some screenshots supplied by Ken Mailand showing SolidWorks MOI values are attached for future reference.

## First Article

- ЏTMTS Top Mass Properties - First Article.pdf
- @TMTS Telescope Mass Properties - First Article.pdf


## Production Build

- 【TMTS Top Mass Properties - Production.pdf- 凹TMTS Telescope Mass Properties - Production.pdf


## Case 20131224TMTS_FirstArticle of Mathematica model DualLite2DBLat

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

## Formal name and description

```
"20131224TMTS_FirstArticle"
```

First article case of TMS with data from D0902773-v8 of $12 / 24 / 13$, with +2.7 mm tweak to d1 to
better match fundamental pitch ('R') mode of 0.679 Hz , equivalent to tmtsopt_firstarticle r6273
of 2/14/14.

## Links to Result Sections

Mode Summary	Mode Shapes	Parameters			
modeY1	modeT1	modeL1	modeR1	modeV1	modeP1
modeT2	modeL2	modeV2	modeP2	modeY2	modeR2

## Mode Summary

Back to Top

$N$	f	name	type	
1	0.357487	modeY1	yaw2	
2	0.44897	modeT1	pitch1	x2
3	0.474697	modeL1	y2	roll2
4	0.679192	modeR1	pitch1	
5	0.73404	modeV1	z2	
6	0.754609	modeP1	roll1	roll2
7	1.36581	modeT2	pitch2	x1
8	1.72179	modeL2	y1	roll1
9	2.40182	modeV2	z1	
10	2.44429	modeP2	roll1	
11	2.58853	modeY2	yaw1	
12	4.14866	modeR2	pitch2	pitch1


Violin Modes	UM	Telescope
$\mathrm{f}(\mathrm{Hz}), \mathrm{n}=1-4$	330.376661 .737995 .0791331 .42	103.424207 .22311 .767417 .452
$\mathrm{Q}, \mathrm{n}=1-4$	115715.132493 .121822 .103683.	59792.179433 .880124 .972435 .1

## Mode Shapes

## Mode \#1 - modeY1

Back to Top

	x	$y$	$z$	yaw	pitch	roll
Mass U	0.00251884	0	0	-0.539942	-0.0517532	-0.000535574
Mass I	0.0150708	-0.000100741	0	-0.839774	-0.0181643	-0.00046231



## Mode \#2-modeT1

Back to Top

```
0.44897 Hz
```

$x$	$y$	$z$	$y a w$	pitch	roll	
Mass U	-0.119878	0.000763099	0	-0.0929112	0.74162	0.00721203
Mass I	-0.470044	0.00543945	0	-0.142829	0.430686	0.00906475




## Mode \#3 - modeL1

Back to Top

```
0.474697 Hz
```

x	y	z	yaw	pitch	roll	
Mass U	0.00283183	0.139576	0	0.000532582	0.00443452	0.260558
Mass I	0.0102213	0.726303	0	0.000700188	-0.00778284	0.620418



## Mode \#4 - modeR1

Back to Top

```
0.679192 Hz
```

| x | $y$ | $z$ | yaw | pitch | roll |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Mass U | -0.000678194 | 0.0012376 | 0 | 0.00458067 | -0.998873 | -0.0165986 |
| Mass I | -0.0111506 | 0.00143269 | 0 | 0.00677182 | -0.0403708 | -0.012351 |




## Mode \#5 - modeV1

Back to Top

```
0.73404 Hz
```

	x	y	z	yaw	pitch	roll
Mass U	0	0	-0.546978	0	0	0
Mass I	0	0	-0.837147	0	0	0



## Mode \#6 - modeP1

Back to Top

```
0.754609 Hz
```

| $x$ | $y$ | $z$ | $y a w$ | pitch | roll |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Mass U 0.00120088 | -0.0612507 | 0 | 0.000855226 | -0.246071 | 0.726837 |  |



Mode \#7-modeT2

Back to Top

```
1.36581 Hz
```

	x	$y$	$z$	yaw	pitch	roll
Mass U	0.559138	0.00214459	0	-0.0846648	-0.335605	-0.0245928
Mass I	-0.0367902	-0.000223457	0	-0.0954877	0.745868	-0.0129017



## Mode \#8 - modeL2

Back to Top

```
1.72179 Hz
```

	x	y	z	yaw	pitch	roll
Mass U	0.00218559	-0.831405	0	-0.00307276	0.0333112	-0.474583
Mass I	-0.000493154	0.11687	0	0.000122685	0.0039364	-0.262181



## Mode \#9-modeV2

Back to Top

```
2.40182 Hz
```

	x	y	z	yaw	pitch
Mass U	0	0	-0.938207	0	0
Mass I	0	0	0.346076	0	0




Mode \#10-modeP2

Back to Top

```
2.44429 Hz
```

| x | y | z | yaw | pitch | roll |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Mass U | -0.0014845 | 0.00254942 | 0 | -0.0659853 | 0.0527661 | -0.990937 |
| Mass I | 0.000647649 | -0.0063968 | 0 | 0.00365049 | 0.00352797 | 0.104069 |



Mode \#11-modeY2

Back to Top

```
2.58853 Hz
```

| x | y | z | yaw | pitch | roll |  |
| :---: | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Mass U | 0.00246406 | 0 | 0 | 0.996598 | 0.0115421 | -0.0588346 |
| Mass I | -0.00103983 | -0.000322964 | 0 | -0.0562088 | -0.00150423 | 0.00544294 |




Mode \#12-modeR2

Back to Top

```
4.14866 Hz
```

	$x$	$y$	z	yaw	pitch	roll
Mass U	0.127633	0.000144401	0	-0.0399531	0.536705	-0.0283866
Mass I	-0.0649891	-0.000125685	0	0.106124	-0.823118	0.0157009



## Parameters

Back to Top

```
g -> 9.81
```

```
ux -> 0.18
uy -> 0.5
uz -> 0.152
uzz -> 0
m1 -> 44.371
I1x -> 0.832304
I1y -> 0.4312
I1z -> 0.698457
I1xy -> 0.0231722
I1yz -> 0.000044516
I1zx -> 0.00559483
lx -> 0.368
ly -> 0.762
lz -> 0.588
lzz -> -0.176
m2 -> 78.595
I2x -> 8.73011
I2y -> 5.46882
I2z -> 7.93248
I2xy -> 0.147437
I2yz -> 0.993508
I2zx -> 0.00692386
11 -> 0.45621
12 -> 0.80185
nw1 -> 2
nw2 -> 4
r1 -> -----
r2 -> ------
1 1
Y1 -> 2.119 10
Y2 -> 2.119 10
d0 -> 0.0005
d1 -> -0.00409
mm, breakoff is above COM, so negative
d2 -> 0.07031
su -> 0.
slu -> 0.00236
sll -> 0.049022
n0 -> 0.25302
D0900419 measured; Display only
D0900419 measured; Display only
D0900419 measured; Display only
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0900419 measured; Display only
D0900419 measured; Display only
D0900419 measured; Display only
D0900419 measured; Display only
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8
D0902773-v8, 16.76"
D0902773-v8
D1101166 (item 1 in parts list)
D1101163 (item 2 in parts list)
measured
measured
D0902773-v8
D0902773-v8 with fudge of +2.7
D0902773-v8
D0902773-v8
D0902773-v8 (1.93")
D0902773-v8
```

```
n1 -> 0.08888
D0902773-v8
n2 0.15323 D0902773-v8
n3 0.26194 D0902773-v8
tl1 -> 0.426159
tl2 -> 0.859295
1total -> 1.28545
unstretched -> False
vertblades -> True
ul1 -> 0.454746
ul2 -> 0.801074
sl1 -> 0.45621
sl2 -> 0.80185
si1 -> -0.35979
si2 -> 0.147535
c1 -> 0.933033
c2 -> 0.989057
pitchbul -> 0
pitchbur -> 0
pitchbll -> 0
pitchblr -> 0
rollbul -> 0
rollbur -> 0
collbll -> 0
rollblr -> 0
-7
A1 -> 9.50332 10
A2 -> 9.50332 10
kw1 -> 441409.
kw2 -> 251138.
flex1 -> 0.00452866
flex2 -> 0.0087431
kbuz -> 1759.3 doub_spring_stiff_calc.m using
2013-03-14 H1TMSY Measured Data, [k1_est k2_est] =
doub_spring_stiff_calc(0.7031,2.391,1.242,44,88)
kblz -> 2423.55
2013-03-14 H1TMSY Measured Data, [k1_est k2_est] =
doub_spring_stiff_calc(0.7031,2.391,1.242,44,88)
kblx -> 146988.
Same ratio as for the quad
suspension (kbix/kbiz)
bdu -> 0.342834
bdl -> 0.159068
m12 -> 122.966
COM1x -> 0
COM1v -> 0
```

```
COM1z -> 0
FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
Ibtxyl -> 0
Ibtyzl -> 0
Ibtzxl -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03
zpad -> 0.1
phib -> 0.001
M11 -> 7.18688 10
M12 -> 7.18688 10
 -14
M21 -> 7.18688 10
 -14
M22 -> 7.18688 10
temperature -> 290.
boltzmann -> 1.38066 10
alphasilica -> 5.110
betasilica -> 0.00015
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
 1 0
Ysilica -> 7. 10
phisilica -> 2. 10
phissilica -> 3.3 10
rhosteel -> 7800.
Csteel -> 486.
Ksteel -> 49.
```

alphasteel -> 0.000012
betasteel -> -0.00025
phisteel -> 0.0002
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
1 1
Ymarag -> 1.65 10
alphamarag -> 0.000011
betamarag -> 0.
phimarag -> 0.0001
tmU -> 0.0045
tmL -> 0.005
magicnumber -> 0.0732
deltabladeU -> 0.00161367
deltabladeL -> 0.00161367
deltawireU -> 0.00265699
deltawireL -> 0.0024294
taubladeU -> 0.368085
taubladeL -> 0.454426
tauwireU -> 0.00685222
tauwireL -> 0.00685222
damping[imag, bladeUtype] -> (0.0001 + 0.00373201 \#1
1 + 5.34879 \#1
0.00460742 \#1
damping[imag, bladeLtype] -> (0.0001 + ------------------- \& )
1 + 8.15239 \#1
damping[imag, wireUtype] -> (0.0002 \& )
damping[imag, wireLtype] -> (0.0002 \& )
0.000114393 \#1
damping[imag, wireUatype] -> (0.0002 + --------------------- \& )
1 + 0.00185363 \#1
0.000104595 \#1
damping[imag, wireLatype] -> (0.0002 + ----------------------
1 + 0.00185363 \#1
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx1 -> 0

```
```

kcony1 -> 0
kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0

```

Back to Top
aLIGO: Suspensions/OpsManual/TMTS/Models/20131224TMTS_FirstArticle (last edited 2014-02-27 18:52:58 by MarkBarton)

\section*{Case 20131224TMTS_Production of Mathematica model DualLite2DBLat}

This page is automatically generated and manual edits may be lost. Put page-specific notes in subpage /Notes. Guidance on how to interpret the results is in ../Key.

\section*{Formal name and description}
```

"20131224TMTS_Production"

```
Production case of TMS with data from D0902773-v8 of 12/24/13, equivalent to tmtsopt_production
r6273 of \(2 / 14 / 14\).

\section*{Links to Result Sections}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Mode Summary} & Mode Shapes & \multicolumn{2}{|l|}{Parameters} & \multirow[b]{2}{*}{modeV1} \\
\hline modeY1 & modeT1 & modeL1 & modeR1 & modeP1 & \\
\hline modeT2 & modeL2 & modeV2 & modeP2 & modeY2 & modeR2 \\
\hline
\end{tabular}

\section*{Mode Summary}

Back to Top
\begin{tabular}{|lllll|}
\hline\(N\) & f & name & type & \\
1 & 0.356438 & modeY1 & yaw2 & yaw1 \\
2 & 0.44903 & modeT1 & pitch1 & x2 \\
3 & 0.474545 & modeL1 & y2 & roll2 \\
4 & 0.650001 & modeR1 & pitch1 & \\
5 & 0.729786 & modeP1 & z2 & \\
6 & 0.750216 & modeV1 & roll1 & roll2 \\
7 & 1.37346 & modeT2 & pitch2 & x1 \\
8 & 1.73388 & modeL2 & y1 & \\
9 & 2.40454 & modeV2 & z1 & \\
10 & 2.56147 & modeP2 & roll1 & \\
11 & 2.71571 & modeY2 & yaw1 & \\
12 & 4.31193 & modeR2 & pitch2 & pitch1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline Violin Modes & UM & Telescope \\
\hline \(\mathrm{f}(\mathrm{Hz}), \mathrm{n}=1-4\) & 331.653664 .287998 .8931336 .48 & 104.241208 .852314 .207420 .689 \\
\hline \(\mathrm{Q}, \mathrm{n}=1-4\) & 116353.133227 .122540 .104334. & 60584.180515 .81258 .973503 .5 \\
\hline
\end{tabular}

\section*{Mode Shapes}

\section*{Mode \#1 - modeY1}
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0.00214618 & 0 & 0 & -0.548084 & -0.0566326 & 0 \\
Mass I & 0.0124007 & 0 & 0 & -0.834263 & -0.0155783 & 0.000106431 \\
\hline
\end{tabular}

\section*{Mode \#2 - modeT1}

Back to Top
```

0.44903 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0.114052 & 0.000231643 & 0 & 0.0735923 & -0.777863 & -0.0006473 \\
Mass I & 0.442885 & 0.00117691 & 0 & 0.110837 & -0.409965 & 0.000978118 \\
\hline
\end{tabular}

\section*{Mode \#3 - modeL1}

Back to Top
```

0.474545 Hz

```
\begin{tabular}{|lllllll|}
\hline & \(x\) & \(y\) & z & yaw & pitch & roll \\
Mass U & 0.000678823 & -0.141594 & 0 & -0.000149739 & -0.0221134 & -0.250844 \\
Mass I & 0.00196371 & -0.72946 & 0 & -0.000188325 & -0.00250301 & -0.620013 \\
\hline
\end{tabular}

\section*{Mode \#4 - modeR1}

Back to Top
0.650001 Hz
\begin{tabular}{|lllllll|}
\hline & x & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & -0.000446624 & -0.000779975 & 0 & -0.00400759 & 0.998975 & 0.0118903 \\
Mass I & 0.010147 & -0.000917391 & 0 & -0.00587751 & 0.0411041 & 0.00798482 \\
\hline
\end{tabular}

Mode \#5 - modeP1
Back to Top
0.729786 Hz
\begin{tabular}{|llllll|}
\hline & x & y & z & yaw & pitch \\
Mass U roll \\
Mass I & 0 & 0 & 0.546094 & 0 & 0 \\
0 & 0 & 0.837724 & 0 & 0 & 0
\end{tabular}

\section*{Mode \#6 - modeV1}

Back to Top
0.750216 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0.000344524 & 0.0606695 & 0 & -0.00131059 & 0.217234 & -0.731098 \\
Mass I & 0.00215234 & 0.0564335 & 0 & -0.00161743 & 0.00987833 & -0.641352
\end{tabular}

\section*{Mode \#7-modeT2}

Back to Top
1.37346 Hz
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0.556436 & -0.00124418 & 0 & -0.0679998 & -0.375888 & 0.00448965 \\
Mass I & -0.0350134 & 0 & 0 & -0.0774597 & 0.73291 & 0.0076415 \\
\hline
\end{tabular}

Back to Top
1.73388 Hz
\begin{tabular}{|lllllll|}
\hline & \(x\) & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & 0.00156555 & 0.842152 & 0 & 0.00107783 & -0.0409143 & 0.456129 \\
Mass I & -0.000444717 & -0.116251 & 0 & 0.000100647 & -0.000588995 & 0.259873 \\
\hline
\end{tabular}

\section*{Mode \#9-modeV2}

Back to Top
```

2.40454 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & y & z & yaw & pitch & roll \\
Mass U & 0 & 0 & 0.940944 & 0 & 0 & 0 \\
Mass I & 0 & 0 & -0.338562 & 0 & 0 & 0 \\
\hline
\end{tabular}

\section*{Mode \#10 - modeP2}

Back to Top
2.56147 Hz
\begin{tabular}{|lllllll|}
\hline x & \(y\) & z & yaw & pitch & roll \\
Mass U & -0.000798488 & 0.00197712 & 0 & -0.025076 & 0.0851658 & -0.99185 \\
Mass I & 0.000387809 & -0.00564603 & 0 & 0.00100205 & 0.005129 & 0.0910412 \\
\hline
\end{tabular}

Mode \#11-modeY2

Back to Top
```

2.71571 Hz

```
\begin{tabular}{|lllllll|}
\hline & x & \(y\) & \(z\) & yaw & pitch & roll \\
Mass U & 0.00197368 & 0 & 0 & 0.998259 & 0.0102511 & -0.0241291 \\
Mass I & -0.000835285 & -0.000116255 & 0 & -0.0527468 & -0.00130051 & 0.00187436 \\
\hline
\end{tabular}

Mode \#12-moder2
Back to Top
```

4.31193 Hz

```
\begin{tabular}{|lllllll}
\hline x & \(y\) & z & yaw & pitch & roll \\
Mass U & 0.118649 & 0 & 0 & -0.0318432 & 0.649881 & -0.0345202 \\
Mass I & -0.0594217 & 0 & 0 & 0.0788201 & -0.742705 & -0.00411072
\end{tabular}

\section*{Parameters}

Back to Top
```

g -> 9.81

```
\begin{tabular}{|c|c|}
\hline ux -> 0.18 & D0900419 measured; Display only \\
\hline uy -> 0.5 & D0900419 measured; Display only \\
\hline uz -> 0.152 & D0900419 measured; Display only \\
\hline uzz -> 0 & \\
\hline m1 -> 44.079 & D0902773-v8 \\
\hline I1x -> 0.744504 & D0902773-v8 \\
\hline I1y -> 0.338025 & D0902773-v8 \\
\hline I1z -> 0.665289 & D0902773-v8 \\
\hline I1xy -> 0.0283922 & D0902773-v8 \\
\hline IIyz -> 0.000228387 & D0902773-v8 \\
\hline I1zx -> 0.0019529 & D0902773-v8 \\
\hline lx -> 0.368 & D0900419 measured; Display only \\
\hline ly -> 0.762 & D0900419 measured; Display only \\
\hline \(1 z->0.588\) & D0900419 measured; Display only \\
\hline \(1 z z->-0.176\) & D0900419 measured; Display only \\
\hline m2 -> 79.859 & D0902773-v8 \\
\hline I2x -> 8.88186 & D0902773-v8 \\
\hline I2y -> 5.59111 & D0902773-v8 \\
\hline I2z -> 8.25 & D0902773-v8 \\
\hline I2xy -> -0.0576386 & D0902773-v8 \\
\hline I2yz -> 0.851031 & D0902773-v8 \\
\hline I2zx -> -0.00509547 & D0902773-v8 \\
\hline 11 -> 0.45621 & D0902773-v8 \\
\hline 12 -> 0.80185 & D0902773-v8 \\
\hline nw1 -> 2 & \\
\hline nw2 -> 4 & \\
\hline 11 & \\
\hline \[
\begin{aligned}
r 1 \text {-> } & ------ \\
& 20000
\end{aligned}
\] & D1101166 (item 1 in parts list) \\
\hline 11 & \\
\hline \[
\begin{array}{r}
r 2 \text {-> } \\
20000
\end{array}
\] & D1101163 (item 2 in parts list) \\
\hline 11 & \\
\hline Y1 -> 2.11910 & measured \\
\hline 11 & \\
\hline Y2 -> 2.11910 & measured \\
\hline d0 -> 0.00046 & D0902773-v8 \\
\hline d1 -> -0.00675 & D0902773-v8 \\
\hline d2 -> 0.07031 & D0902773-v8 \\
\hline su -> 0. & \\
\hline slu -> 0.00236 & D0902773-v8 \\
\hline sll -> 0.05142 & D0902773-v8 \\
\hline n0 -> 0.25302 & D0902773-v8 \\
\hline n1 -> 0.08887 & D0902773-v8 \\
\hline
\end{tabular}
```

n2 -> 0.15323
n3 -> 0.26194
D0902773-v8
tl1 -> 0.426115
tl2 -> 0.85649
ltotal -> 1.28261
unstretched -> False
vertblades -> True
ul1 -> 0.454734
ul2 -> 0.801061
sl1 -> 0.45621
s12 -> 0.80185
si1 -> -0.359812
si2 -> 0.14874
c1 -> 0.933025
c2 -> 0.988876
pitchbul -> 0
pitchbur -> 0
pitchbll -> 0
pitchblr -> 0
rollbul -> 0
rollbur -> 0
rollbll -> 0
rollblr -> 0
A1 -> 9.50332 10
A2 -> 9.50332
kw1 -> 441409.
kw2 -> 251138.
flex1 -> 0.0045108
flex2 -> 0.00867126
kbuz -> 1759.3
2013-03-14 H1TMSY Measured Data, [k1_est k2_est] =
doub_spring_stiff_calc(0.7031,2.391,1.242,44,88)
kblz -> 2423.55
2013-03-14 H1TMSY Measured Data, [k1_est k2_est] =
doub_spring_stiff_calc(0.7031,2.391,1.242,44,88)
kblx -> 146988.
Same ratio as for the quad
suspension (kbix/kbiz)
bdu -> 0.345544
bdl -> 0.161626
m12 -> 123.938
COM1x -> 0
COM1y -> 0
COM1z -> 0

```
```

FRP1x -> 0
FRP1y -> 0
FRP1z -> 0
Ibtxyl -> 0
Ibtyzl -> 0
Ibtzxl -> 0
COM2x -> 0
COM2y -> 0
COM2z -> 0
FRP2x -> 0
FRP2y -> 0
FRP2z -> 0
btx -> 0.03
bty -> 0.03
btz -> 0.03
zpad -> 0.1
phib -> 0.001
M11 -> 7.18688 10
-14
M12 -> 7.18688 10
M21 -> 7.18688 10
M22 -> 7.18688 10
temperature -> 290.
boltzmann -> 1.38066 10-23
boltzmann -> 1.38066 10
alphasilica -> 5.1 10
betasilica -> 0.00015
rhosilica -> 2200.
Csilica -> 772.
Ksilica -> 1.38
1 0
Ysilica -> 7. 10
phisilica -> 2. 10
-11
phissilica -> 3.3 10
rhosteel -> 7800.
Csteel -> 486.
Ksteel -> 49.
Ysteel -> 2.119 10

```
```

betasteel -> -0.00025
phisteel -> 0.0002
rhomarag -> 7800.
Cmarag -> 460.
Kmarag -> 20.
1 1
Ymarag -> 1.65 10
alphamarag -> 0.000011
betamarag -> 0.
phimarag -> 0.0001
tmu -> 0.0045
tmL -> 0.005
magicnumber -> 0.0732
deltabladeU -> 0.00161367
deltabladeL -> 0.00161367
deltawireU -> 0.00265962
deltawireL -> 0.00243096
taubladeU -> 0.368085
taubladeL -> 0.454426
tauwireU -> 0.00685222
tauwireL -> 0.00685222
damping[imag, bladeUtype] -> (0.0001 + ---------------------
+ 5.34879 \#1
0.00460742 \#1
damping[imag, bladeLtype] -> (0.0001 + ------------------ \& )
1 + 8.15239 \#1
damping[imag, wireUtype] -> (0.0002 \& )
damping[imag, wireLtype] -> (0.0002 \& )
0.000114507 \#1
damping[imag, wireUatype] -> (0.0002 + --------------------- \& )
1 + 0.00185363 \#1
0.000104662 \#1
damping[imag, wireLatype] -> (0.0002 + --------------------- \& )
1 + 0.00185363 \#1
x00 -> 0
y00 -> 0
z00 -> 0
yaw00 -> 0
pitch00 -> 0
roll00 -> 0
kconx1 -> 0
kcony1 -> 0

```
```

kconz1 -> 0
kconyaw1 -> 0
kconpitch1 -> 0
kconroll1 -> 0
kconx2 -> 0
kcony2 -> 0
kconz2 -> 0
kconyaw2 -> 0
kconpitch2 -> 0
kconroll2 -> 0

```

Back to Top
aLIGO: Suspensions/OpsManual/TMTS/Models/20131224TMTS_Production (last edited 2014-02-27 18:54:16 by MarkBarton)

\section*{aLIGO SUS Operation Manual - Info on OFIS}

Back to Operation Manual main page

\section*{Background}

The Output Faraday Isolator (OFI) is suspended in an Output Faraday Isolator Suspension (OFIS). The suspension is a passive design with only eddy current damping and no electronic damping or CDS interface. Both OFI and OFIS are the responsibility of the AOS group. See Auxillary_Optics_Stuff for more information.

\section*{Models}

The OFIS suspension has not been modelled in Mathematica/Matlab. If this ever gets done, results will be put at Suspensions/OpsManual/OFIS/Models .

\section*{Screens}

There are no OFIS screens.

\section*{Suspension Models in Mathematica}

This page is now an honorary part of the SUS Operations Manual.

\section*{Introduction}

Welcome to Mark Barton's LIGO suspension modeling wiki page. Generalizing on some work I did in Japan, I've developed a Mathematica toolkit for modeling mass-wire-spring systems of the sort commonly used for vibration isolation, as well as models of many specific systems of interest to LIGO.

The toolkit and selected models were formerly published at \(\Theta\) http://www.ligo.caltech.edu/~e2e/SUSmodels/. The explanatory content will gradually be moved here. The models are being uploaded to the SUS SVN repository, browsable at Ө https://redoubt.ligo-wa.caltech.edu/websvn/listing.php?repname=sus\& and accessible with a subversion client at https://redoubt.ligo-wa.caltech.edu/svn/sus . If you're viewing this wiki page you presumably already have LIGO.ORG credentials, which are what you need for browse or checkout access to the SVN. However for commit access to the SVN you need to apply to David Barker of LHO.

\section*{Requirements}

To use any of this, you need a tolerably recent version of Mathematica, preferably v6 or later - v5 at a pinch, but not v4. (1/7/12: v9 has been tested and doesn't seem to have any issues.) See Compatibility for more info. You also need an SVN client to download stuff from the repository. See \(\boldsymbol{\text { http} : / / s u b v e r s i o n . a p a c h e . o r g / ~ f o r ~ s o f t w a r e ~ a n d ~} \boldsymbol{\theta} \mathrm{http}: / / \mathrm{svn}\) book.redbean.com/for documentation.

\section*{Directory Structure}

The toolkit and models assume a particular directory structure (see DirectoryStructure) which you should review carefully because it's fairly complicated and has recently been updated to be more SVN-friendly (see SVNInstructions). Considerable thought has been given to backward compatibility, so if you have a working setup with models downloaded from the old website, they should continue to work. You can even checkout the new to the same directory as the old and have them coexist. However you probably want to delete your old toolkit directory (or rename it out of the way) because old-format models will give it precedence over the new SVN-based one, and you won't get the benefit of easy updates.

\section*{Toolkit}

The toolkit is a set of Mathematica packages which provide support for the following:
- rigid body masses with \(\mathrm{x}, \mathrm{y}, \mathrm{z}\), yaw, pitch and roll DOFs
- wires or ribbons, without distributed mass (no true violin modes) but with a detailed elasticity model including longitudinal, torsional, and bending near the attachment points
- spring elements with a \(6^{*} 6\) stiffness matrix and a 6 component vector of preload forces/torques
- optional massless connecting elements between elastic elements
- arbitrary frequency-dependent damping on all sources of elasticity
- dissipation dilution
- fully symbolic expressions for the potential and kinetic energy
- numerical solutions for the minimum of the potential and the eigenvalues and eigenvectors
- ::usage tags defined for all symbols (for use with the Mathematica help operator "?")
- utility functions to plot mode shapes, transfer functions and thermal noise
- automatic saving of results of time-consuming calculations for easy reloading later
- a default parameter set which is easily overridable to reflect design variations
- export of state-space matrices to Matlab and/or E2E
- export of parameter files in quadopt.mor triplep.m format to Matlab, with comments.
© T020205 describes how to create models with the toolkit and the method of calculation. However -v1 is out of date with respect to the new SVN-friendly directory structure and installation method. See the Toolkit page on this wiki for more information, and SVNInstructions\#Toolkit for instructions on download and installation from the SVN.

Using this toolkit, I've developed models of a generic GEO-style triple pendulum, and a generic quad pendulum as proposed for Advanced LIGO, as well as many toy models.

\section*{Quad Lateral Model}

This reflects the conceptual design of the test-mass suspension for Advanced LIGO, with 4 masses, 6 blade springs and 14 wires. The "Lateral" in the name reflects the fact that blade lateral compliance is allowed for.

See QuadLite2LateralModel.

\section*{Triple Model}

This reflects the conceptual design of the GEO suspension (or BS or HLTS or HSTS), with 3 masses, 6 blade springs and 10 wires. Blade lateral compliance is not included because it turns out to be negligible for all the aLIGO triples. (But a version with it exists if anyone needs it.)

See TripleLite2Model.

\section*{Dual Model}

This reflects the conceptual design of the OMC suspension with 2 masses, 6 blade springs and 6 wires.
See DualLite2Model.

\section*{Dual-Blade Dual Model}

This reflects the conceptual design of the TMTS suspension with 2 masses, 4 blade springs and 6 wires.
See DualLite2DBLateralModel.

\section*{Two Wire Simple Pendulum}

This is a two-wire (one loop) single mass suspension with blades as for the iLIGO LOS and SOS.
See TwoWireSimpleModel.

\section*{Two Wire Simple Pendulum with Blades}

This is a two-wire (one loop) single mass suspension with blades as for the aLIGO TipTilts and aLIGO HAM Aux.
See TwoWireSimpleBladesModel.

\section*{Other Models}

Other models that have been developed include:
- A triple model with blade lateral compliance.
- Quad and Triple models with beads in the final stage fibres/wires to approximate violin modes.
- Lots more.

If there there's a model you'd like to see posted in the new format, please hassle Mark Barton.

\title{
Directory Structure for Mathematica Suspension Models
}

\author{
Mathematica Suspension Models Main Page \\ SUS Operations Manual Main Page
}

This page explains the new SVN-friendly directory structure supported by the Mathematica pendulum modelling toolkit and how to work with it. However the toolkit doesn't absolutely require an SVN (in principle, models and cases could be exchanged by any method) and the scope of this page is non-SVN-specific. For information (especially etiquette) on using it with the aLIGO SUS SVN, see SVNInstructions

\section*{Old-School Directory Structure (Historical Interest Only - Not Recommended)}

The formerly recommended directory structure is explained here because some features of the new layout are a bit puzzling unless you know what they're trying to be backward compatible with. It is rather unsatisfactory because paths to two key directories need to be hard-coded into the calculation notebook for each case, but it seemed to be the least bad system achievable under Mathematica v4, for which the toolkit was first developed. For a single user it was not too bad - since most models and cases were derived by cut and paste from existing ones, the hard-coded paths rarely needed to be touched.

Unfortunately since the hard-coded paths normally need to be different for different users, this made collaboration difficult one couldn't send another user a case of a model and have it be immediately usable. With an SVN it would have been intolerable, because different users would be continually overwriting files for non-substantive changes. Fortunately new features introduced in Mathematica v5 made it possible to do better - see below.
```

toolkit/ (Support files are installed here - see note below.)
PendUtil.nb (Mathematica package with functions for modelling suspensions.)
PendUtil.m (Autosave file with executable code from PendUtil.nb.)
... (Other toolkit files.)
quadlite2lateral/ (A directory for quad model stuff but not "the" model directory! See note below.)
old/ (Old versions of the quad model.)
current/ ("The" model directory - see notes.)
ASUS4L2LateralModelDefn.nb (The "model definition notebook" for the quad model.)
ASUS4L2LateralModelDefn.m (Autosave file with executable code from model definition
notebook.)
default/ (The "case directory" for the default case of the quad model)
ASUS4XLLateralModelCalcDefault.nb (The "case calculation notebook" for the
default case.)
precomputed/ (Precomputed results for the default case.)
anothercase/ (Another case, with different numerical parameters.)
ASUS4XLLateralModelCalcAnotherCase.nb
precomputed/
... (Other cases.)

```
... (Other models.)

\section*{Notes}
- The exact name toolkit is arbitrary, but the Mathematica variable modelsupportdirectory needs to be set to point there by every calculation notebook for every model.
- The old/current level of the hierarchy was useful to Mark Barton but dispensable for other users.
- The exact name current doesn't matter, but the Mathematica variable modeldirectory needs to be set to point here by the calculation notebook for every case of the particular model.
- The name of the case directory (e.g., default, anothercase) matters: it has to agree with the Mathematica variable modelcase, set in the case calculation notebook.

\section*{New-Style Directory Structure (Recommended)}
\$BaseDirectory/Autoload/PendulumToolkit/
or \$UserBaseDirectory/Autoload/PendulumToolkit/ (Toolkit files are checked out here from the SVN - see notes below.)

PendUtil.nb (Mathematica package with functions for modelling suspensions.)
PendUtil.m (Autosave file with executable code from PendUtil.nb.)
init.nb (Source file for init.m.)
init.m (Discovered and run by Mathematica; does path setup - see note below.)
... (Lots of other support files.)
\$BaseDirectory/Kernel/
or \$UserBaseDirectory/Kernel/ (A patch needed for Mathematica v7 and earlier lives here - see note below.)
init.nb (Source notebook for patch.)
init.m (Executable for patch.)
QuadLite2Lateral/ (The model directory, checked out from the SVN.)
ASUS4L2LateralModelDefn.nb (Model definition notebook for the quad model.)
ASUS4L2LateralModelDefn.m (Autosave version with executable code from above.)
default/ (The "case directory" for the default case of the quad model)
ASUS4XLLateralCaseDefn.nb (The case definition notebook for the default case.) ASUS4XLLateralCaseDefn.m (Autosave version with executable code from above.) precomputed/ (Precomputed results for the default case.) stdcalc (Pseudo-user directory with prototype version of calculation.)

ASUS4XLLateralModelCalcPlots.nb (User calculation notebook for pseudo-user stdcalc with representative collection of plots.)
ASUS4XLLateralModelCalcExport.nb (User calculation notebook for pseudo-user stdcalc that generates standard set of exported result files.) quickcalc (Pseudo-user directory with prototype version of quick calculation.)

ASUS4XLLateralModelCalcPlots.nb (User calculation notebook for pseudo-user quickcalc with representative collection of plots.)
ASUS4XLLateralModelCalcExport.nb (User calculation notebook for pseudo-user stdcalc that generates standard set of exported result files.).) albert.einstein (User directory for A. Einstein with custom calculation.)

ASUS4XLLateralModelCalcDefault.nb (User calculation notebook for A. Einstein.)
anothercase/ (Another case, with different numerical parameters.) ASUS4XLLateralCaseDefn.nb (The case definition notebook for anothercase.) precomputed/ stdcalc/ quickcalc
SuchAndSuchCases (A folder for a particular type of case.) asuchandsuchcase (A case in a folder.) SoAndSoCases (A subfolder for a particular subtype of case.) asoandsocase (A case in a subfolder.) ... (And so on to arbitrary depth.)
... (Other cases at the top level. Note however that default is the only top-level case allowed in the SVN.)
... (Other models.)
See the Toolkit page and pages for individual models (QuadLite2LateralModel, TripleLite2Model) for help setting up this structure.

\section*{Notes}

The need to make the toolkit and models SVN-friendly was the impetus to revise the old scheme. The key changes are as follows:
- We now insist that the toolkit files are stored in one of the Autoload directories that are on the Mathematica path by default, either \$BaseDirectory/Autoload/PendulumToolkit or \$UserBaseDirectory/Autoload/PendulumToolkit. (These path specifiers are a hybrid of Mathematica (\$BaseDirectory) and Unix (. . ./Autoload/PendulumToolkit/) syntaxes, but the idea is that they're relative to the system and user preferences areas for the particular OS.) The exact name PendulumToolkit is convenient because it matches the SVN but is not significant to the toolkit.
- The init.m in PendulumToolkit does most of the path set up. It adds PendulumToolkit to the Mathematica path (\$Path) (eliminating the need for the modelsupportdirectory variable), and defines
functions to make it easy to define modeldirectory relative to the calculation notebook.
- In Mathematica v7 and earlier, there is no function by which the init.m file in PendulumToolkit can tell the name of the directory it is in, which it needs to set the path to include itself. Thus we use a supplementary init.m file in \$BaseDirectory/Kernel/ or \$UserBaseDirectory/Kernel/ to provide that information via one hard-coded assignment. Templates for creating one of these files are provided, but only need be installed by users with older versions.
- The old/current level of the hierarchy is gone. "The" model directory (the one pointed to by modeldirectory) can now have a name reflecting the model. It's easiest to have it be the same as on the SVN (e.g., QuadLite2Lateral) but you can check it out under another name if you prefer. Models can be checked out in arbitrary places - different models don't have to be siblings.
- There can now be an arbitrary number of levels of intermediate subdirectories. Directories used for the purpose of grouping cases will be called folders. For cases in folders, the Mathematica symbol modelcase should be a list of strings locating the case directory as a sequence of folders below the model directory plus the case directory itself.
- A new "user" level has been added at the bottom of the hierarchy. Each person using a case of a model from the SVN is strongly encouraged to have their own calculation notebook in their own user subdirectory, with their preferred set of plots etc. There are two standard pseudo-users, stdcalc and quickcalc, with template calculations that can be customized. stdcalc is the full calculation as of old. quickcalc is currently only available for quad and triple model and uses the package QuickQuadLateral or QuickTriple to do a slightly approximate but quicker version of the calculation.
- The case calculation notebook has been split into a case definition notebook that contains only definitional stuff and lives on the case level, and a user calculation notebook that lives on the user level.
- The case definition notebook now has all cells set to be initialization cells and has an associated autosave . m file like the model definition notebook.
- The user calculation notebook is responsible for loading the case definition, which in turn is responsible for loading the model definition. Functions are provided to make this easy.

\section*{How It All Works (Gory Detail)}

The following sequence illustrates how everything gets loaded for a case
\{"myfolder", "mysubfolder", "mycase"\} of the quad model when the toolkit has been installed in \$UserBaseDirectory/Autoload/PendulumToolkit.
1. When the Mathematica kernel launches, \$UserBaseDirectory/Kernel/init.m file is discovered and run (assuming it has been created as recommended for Mathematica v7 or earlier). If it is actually Mathematica v7 or earlier that is running, it adds \$UserBaseDirectory/Autoload/PendulumToolkit to \$Path.
2. The \$UserBaseDirectory/Autoload/PendulumToolkit/init.m file is discovered and run, and for Mathematica v8 or later adds \$UserBaseDirectory/Autoload/PendulumToolkit to \$Path.
3. Regardless of version, \$UserBaseDirectory/Autoload/PendulumToolkit/init.m also defines a number of useful functions for managing the hierarchy, all based on notebookdirectory [] which returns the directory of the notebook from which it is executed (typically a user calculation notebook). The key ones are loadcasefromuser [] which attempts to load a case definition, and loadmodelfromuser [] which attempts to load a model definition.
4. The user calculation notebook,

QuadLite2Lateral/myfolder/mysubfolder/mycase/stdcalc/ASUS4XLLateralModelCalc.nb is responsible for calling loadcasefromuser ["ASUS4XLLateralCaseDefn.m"] to run the. m version of the case definition notebook in the directory one level above
(QuadLite2Lateral/myfolder/mysubfolder/mycase/ASUS4XLLateralCaseDefn.m).
5. The case definition notebook is responsible for setting
modelcase = \{"myfolder","mysubfolder","mycase"\} and calling
loadmodelfromuser["ASUS4L2LateralModelDefn.m"] to load the model.
loadmodelfromuser[] searches upward from the case directory
(QuadLite2Lateral/myfolder/mysubfolder/mycase) to the model directory (QuadLite2Lateral).

\section*{Notes}
- The name of the function loadmodelfromuser [] is potentially confusing because it reflects the anticipated situation at runtime rather than anything about the source code. The call to the function will normally appear in the case definition notebook, and will be copied to the associated . m file by the autosave process. The. m file will be run by a call to loadcasefromuser [] in the user calculation notebook, so the user calculation notebook will be the current notebook for the execution of both calls. If you evaluate loadmodelfromuser [] directly in the case definition notebook with Shift-Return or the like, it will fail. Normally this should not be a problem because there's so
nue non-uivial coue minust case uenmmon mes mat il can ve uevuggen smpry by saving cinanges anu evanuanng me loadcasefromuser [] line in the user calculation notebook. If you do ever have a particularly complicated case definition notebook that you would like to debug a cell at a time you can change loadmodelfromuser [] to loadmodelfromcase [] temporarily. In Mathematica v8 there's a variable \$InputFileName by which the . m version of the case definition notebook could know where it is, but this has been avoided for backward compatibility.
- In older versions of the toolkit, some functions like saveprecomputed [] assumed that the Mathematica working directory was set to the case directory, and the case notebook was responsible for setting it. That requirement has been eliminated from the toolkit and the setup for it has been eliminated from the default template cases, but if it matters to your own code you can always reinstate it with SetDirectory[casedirectory[]] after the model has been loaded.
- The search behaviour of loadmodelfromuser [] is a natural generalization of the old system. Formerly the standard code for loading a model would search the case directory and the model directory in that order. That way, a customised model (say with added asymmetry) in the case directory would be given precedence. Now the search goes from the case directory via all intermediate levels to the model directory. If you have a group of cases with the same type of asymmetry, consider taking advantage of this by putting them in a subfolder with a shared custom model definition.

\title{
aLIGO SUS SVN Structure and Installation Instructions for Mathematica Suspension Models
}

Mathematica Suspension Models Main Page
SUS Operations Manual Main Page
This page describes how the generic directory structure described at DirectoryStructure works in practice with the aLIGO SUS SVN:
- How to install the toolkit from the SVN
- How to install models from the SVN.
- How to work with existing cases
- How to create new cases.
- How to adapt old-format cases.

\section*{SVN 101}

SVN is variously short for Apache Subversion (a particular open-source version control system) or Subversion repository, a virtual filesystem that is hosted on a server computer by Subversion server software and contains current and past versions of files that have been committed to it. Files on the server are identified by browser-style URLs and can be viewed by a web browser in a pinch, but are intended to be accessed by special Subversion client software. It is common to run a parallel WebSVN server that gives a more browser-friendly view of the same files. For the aLIGO SUS repository the root URLs for the two views are
- -https://redoubt.ligo-wa.caltech.edu/svn/sus (SVN-native)
- Өhttps://redoubt.ligo-wa.caltech.edu/websvn/listing.php?repname=sus\& (WebSVN)

LIGO.ORG credentials are required for read access. For write access, additional authorization from David Barker of LHO is required. Hereafter, all URLs will be given in the SVN-native form, or with \(\wedge\) used as shorthand for the root, e.g.,
\(\wedge /\) trunk/Common/MathematicaModels.
Between a server and client, a number of useful operations are supported:
- Importing a set of files from the client to populate the repository or create a new subtree.
- Checking out a working copy of some or all of the repository to a client machine. A working copy includes extra information in hidden directories (. svn or the like) that allows the client to keep track efficiently of which files are under version control, which have been modified, etc, etc, while minimizing network operations.
- Exporting a clean copy of some or all of the repository with no hidden directories.
- Committing changes from some or all of the working copy to create a new revision on the server.
- Resolving conflicts when multiple users attempt to commit different changes to the same file.
- Updating some or all of the working copy to the latest revision on the server, or some historic revision.
- Adding, deleting, moving and copying files and directories.

See \(\Theta\) http://subversion.apache.org/ for software and \(\Theta\) http://svnbook.red-bean.com/ for documentation.

\section*{aLIGO SUS SVN Structure}

To make stuff easy to find and prevent different users from trampling each other, the following rules are ordained for the Mathematica models section of the aLIGO SUS SVN
- The only case of a model that should ever exist in the model directory is the template case, default.
- All model cases relevant to aLIGO production hardware should exist in a folder named according to Jeff Kissel's fourletter scheme used throughout the SVN.
- QUAD, for QUADruple suspension
- BSFM, for Beam Splitter / Folding Mirror
- HSTS, for Ham Small Triple Suspension
- HLTS, for Ham Large Triple Suspension
- OMCS, for Output Mode Cleaner Suspension
- TMTS, for Transmission Monitor and Telescope Suspension
- HAUX, for Ham AUXiliary Suspension
- OFIS, for Output Faraday Isolation and Suspension
- HTTS, for Ham Tip-Tilt Suspension
- For suspensions under the scope of the aLIGO SUS group there will be more rules - stay tuned.
- Folders for non-SUS suspensions can be organized according to the discretion of the respective groups (but please do use some discretion!).
- Personal stuff should exist in folders with the LIGO.ORG name of the respective user (e.g., albert . einstein). These can be at the top level and/or wherever else it makes sense.
- What users do on their own computers is their business. However if they don't put personal work in personal folders, they may not add it to the SVN, and it may be deleted on sight if it shows up.

\section*{Toolkit Installation Instructions}

The overall goal here is (i) get the files onto your system, and (ii) make sure that all the .m files are on the Mathematica directory search path (\$Path). Feel free to adapt the suggestions to suit the setup of your computer, but avoid changing any of the existing files, lest you cause problems for other users if your changes ever get committed. (Implicit in that of course is, please don't commit changes to toolkit files! Rather, please send requests for, or trial implementations of, suggested bug fixes or cool new features to Mark Barton, who will make every effort to incorporate them without breaking anything.)

The example terminal sessions assume a Mac OS X terminal session and file layout, but the commentary is written so as to make it as obvious as possible how to adapt it to other flavours of Unix, as well as Windows.
1. Decide whether you want to make the toolkit available to all users on your system, or just yourself.
2. If all users, then in Mathematica, see what the value of \$BaseDirectory is. If just yourself, see what \$UserBaseDirectory is:
\(\ln [1]=\) SBaseDirectory
Out \([1]=\) /Library/Mathematica
\(\operatorname{In}[2]=\) \$UserBaseDirectory
Out[2]= /Users/aeinstein/Library/Mathematica
Check that the directory you just identified exists and has a subdirectory Autoload, creating them if necessary.
Check out \(\wedge /\) trunk/Common/MathematicaModels/PendulumTookit into Autoload
\# go to the Autoload directory
\$ cd/Users/aeinstein/Library/Mathematica/Autoload
\# do checkout - svn will prompt for username and password
\$ svn checkout https://redoubt.ligo-
wa.caltech.edu/svn/sus/trunk/Common/MathematicaModels/PendulumToolkit
\# now have /Users/aeinstein/Library/Mathematica/Autoload/PendulumToolkit with files
5. If you're running Mathematica v8, that's it. The init.m file that is part of the checked-out collection will be automatically found and read when Mathematica starts up, and contains a command to add its enclosing directory to \$Path. Otherwise continue to the next step
6. If you're running Mathematica v7 or earlier, then depending on whether you took the \$BaseDirectory or the \$UserBaseDirectory route, open kernel_init_template.nb or user_kernel_init_template.nb and follow the instructions therein. Briefly, you will be told to make a copy of the file under the name init.nb in a certain nearby directory and edit it to point back to where the files are. (The reason for having you create the patch elsewhere is to avoid it accidentally getting committed back to the SVN.)

\section*{Notes:}
- In Unix (including Mac OS X), Mathematica follows symlinks, so if you would much rather keep the toolkit directory with your LIGO files, you can do that and put a symlink to it in one of the Autoload directories. Symlinks in Windows Vista and 7 probably work as well. However Mac OS X aliases definitely don't work and Windows shortcuts probably don't.
- If at a later time you want to get the latest versions of the toolkit files, just do an update:
\$ cd/Users/aeinstein/Library/Mathematica/Autoload/PendulumToolkit
\$ svn update

\section*{Generic Model Installation Instructions}

The instructions assume a Mac OS X terminal session but should be readily adaptable to other flavours of Unix, and Windows). Change albert. einstein to your own LIGO.ORG name and fill in the other placeholders such as <modelname> according to the following table:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Suspension \\
Type
\end{tabular} & <modeldirectory> & <modeldefnfilename> & <casedefnfilename> & <usercalcfilename> & <userquickcalcfilename> \\
\hline Quad: QUAD & QuadLite2Lateral & ASUS4L2LateralModelDefn & ASUS4XLLateralCaseDefn & ASUS4XLLateralModelCalc & ASUS4XLLateralModelQuickCalc \\
\hline Triple: BSFM, HLTS, HSTS & TripleLite2 & ASUS3L2ModelDefn & ASUS3L2ModelCaseDefn & ASUS3L2ModelCalc & ASUS3L2ModelQuickCalc \\
\hline Double: OMCS, TMTS & TBD & TBD & TBD & TBD & TBD \\
\hline \begin{tabular}{l}
Single with blades: \\
HAUX, \\
HTTS
\end{tabular} & TwoWireSimpleBlades & TwoWireSimpleBladesDefn & TwoWireSimpleBladesCaseDefn & TwoWireSimpleBladesCalc & TwoWireSimpleBladesQuickCalc \\
\hline \begin{tabular}{l}
Single: \\
OFIS?
\end{tabular} & TwoWireSimple & TwoWireSimpleDefn & TwoWireSimpleCaseDefn & TwoWireSimpleCalc & TwoWireSimpleQuickCalc \\
\hline
\end{tabular}

\section*{Clean Installation}
1. If you've never worked with a particular model before, or don't care to blend old and new, do a shallow checkout of the appropriate model directory of the repository to a new local directory:
```


# go to a convenient place where there is no existing directory <modeldirectory>

\$ cd /Users/aeinstein/ligo

# do checkout - svn will prompt for username and password and create a new directory - note

use of --depth switch
\& svn checkout --depth immediates https://redoubt.ligo-
wa.caltech.edu/svn/sus/trunk/Common/MathematicaModels/<modelname>

# now have /Users/aeinstein/ligo/<modeldirectory> with model definition files, empty

default case directory, and empty versions of any folders

```
2. Fully check out the default case
```


# still in /Users/aeinstein/ligo

\$ cd <modeldirectory>
\$ svn update --set-depth infinity default

```
3. Make yourself a user directory in the default case by copying either the stdcalc or quickcalc pseudo-user template directories within default. An invisible . svn directory may come along for the ride, but the svn client is smart enough to realize that it is inapplicable in the copy and ignore it.)
\# still in /Users/aeinstein/ligo/<modeldirectory>
\$ cd default
\$ cp -R stdcalc albert.einstein \# or, cp -R quickcalc albert.einstein
4. Open the "plots" calculation notebook in your user directory
albert.einstein/<usercalcfilename>Plots.nb or
albert.einstein/<userquickcalcfilename>Plots.nb), customize as you see fit, and check that if you select and evaluate all the cells, a status window opens, precomputed results are read (or the quick calculation is done), and plots are regenerated.
5. Repeat the previous step for the "export" calculation notebook
albert.einstein/<usercalcfilename>Export.nb or
albert.einstein/<userquickcalcfilename>Export.nb) and check that results are exported to your user directory.
6. Selectively extend checkout to include folders of interest, e.g, albert. einstein or XYZW, hereafter <interestingfolder>. If you think you may want to pick and choose among the subfolders of the folder, use --set-depth immediates, otherwise--set-depth infinity.
\# still in /Users/aeinstein/ligo/<modeldirectory>
\$ svn update --set-depth immediates <interestingfolder> \# or --set-depth infinity \# repeat for other folders of interest
7. Move down a level, inside <interestingfolder>, and check out additional cases and subfolders of interest

\section*{Parallel Installation}

If you have an existing installation of a particular model, you can checkout on top of it and have old and new cases coexisting:
1. Review what files and directories exist in the model directory on the SVN (should be just the model definition files the case directory for default, some user folders, and some aLIGO folders)
\$ svn list https://redoubt.ligo-
wa.caltech.edu/svn/sus/trunk/Common/MathematicaModels/<modelname>
2. Identify the model directory of your existing installation (where you set all the instances of modeldirectory to point to, hereafter <modeldirectoryofexisting>).
3. Delete or rename out of the way any top-level subdirectories that conflict with ones on the server (typically just default).
\# go to existing model directory
\$ cd /Users/aeinstein/ligo/<modeldirectoryofexisting>
\$ mv default defaultold
4. Delete or rename out of the way the. nb and. m versions of the model definition file.
```

\# still in /Users/aeinstein/ligo/<modeldirectoryofexisting>

```
\(\$ \mathrm{mv}\) <modeldefnfilename>.nb <modeldefnfilename>old.nb
\$ mv <modeldefnfilename>.m <modeldefnfilename>old.m
5. Do the checkout.
\# still in /Users/aeinstein/ligo/<modeldirectoryofexisting>
\$ svn checkout --depth immediates https://redoubt.ligo-
wa.caltech.edu/svn/sus/trunk/Common/MathematicaModels/<modelname>. \# note "." = current
directory
directory
6. If you have missed any directory conflicts the operation will abort leaving everything unchanged - just fix them and retry. If you missed any file conflicts, nothing will be overwritten but the old, local versions will be marked as versioncontrolled and modified - consider reverting them to the new versions (with svn revert) to avoid accidentally committing them. Non-conflicting files will also be left in place but will be left as unversioned.
7. Continue from Step 2 of the clean installation instructions, substituting <modeldirectoryofexisting> for <modeldirectory>

\section*{Other Operations}

\section*{Making yourself a user folder}

Any personal work that's not narrowly related to aLIGO production hardware and that you want to commit to the SVN must be in a personal folder.
1. Make yourself a user folder (directories used for grouping different cases of a model are called folders):
```


# go to model directory

\$ cd /Users/aeinstein/ligo/<modelname>
\$ mkdir albert.einstein

```
2. (Optional) Add it to the SVN:
```


# still in /Users/aeinstein/ligo/<modelname>

\$ svn add albert.einstein
\$ svn commit

```

Note that as you subsequently add cases of a model to your user folder, you need to add them in the analogous way: \$ cd albert.einstein; svn add interestingcase; svn commit

\section*{Creating New Cases}

The easiest way to proceed is to copy the case directory for an existing case and customize it. The following steps illustrate the process for a case mycase of the quad model, to be based on the default case:
1. Duplicate the default subdirectory and rename the copy mycase. Unless you are quite sure that you will never add this case to the SVN, you should put it in a personal folder (e.g., albert. einstein) or other appropriate SVN-legal folder.
2. Look in mycase/stdcalc and mycase/quickcalc and delete any output files such as uadLite2Lateral_default_MatlabSS.m left over from the default calculation.
3. Open mycase/ASUS4XLLateralCaseDefn.nb (the case definition notebook).
4. Find the modelcase \(=\) "default" statement in the source and change default to mycase (i.e., to match the new subdirectory name). (Or, if you're putting it in a folder or subfolder, make it a list of strings as appropriate: modelcase = \{"albert.einstein","mysubfolder","mycase"\}
5. Find the modelcasecomment \(=" . .{ }^{\prime}\) statement in the source and edit the text in the quotes as appropriate for the new case
6. Find the overrides \(=\{ \}\) statement and add substitutions as appropriate to define the new case. Be sure to comment the substitutions liberally using the new-style commenting provisions.
7. Save and close mycase/<casedefnfilename>.
8. Open mycase/stdcalc/<userplotsfilename>.
9. Find the assignment to useprecomputed in the destination and change it to useprecomputed \(=\) False.
10. Select and evaluate the whole notebook, debugging the case definition notebook if any errors are noticed. Be sure to save the case definition notebook after any edits so that the associated <casedefnfilename> file is generated. It's also a good idea to quit the Mathematica kernel each time (with the Evaluation->Quit Kernel->Local menu item) so that you're starting from a known state.
11. Change the assignment to useprecomputed back to useprecomputed \(=\) False and save the notebook. Once you as the model author are satisfied that the results in precomputed are sensible, nobody else should evaluate anything with useprecomputed = False ever again
12. When you have mycase/stdcalc/<userplotsfilename> working, open and evaluate all the cells in mycase/stdcalc/<userexportfilename> to evaluate the standard set of exported results. (Feel free to customize this as appropriate.)
13. Even if you are the model author, once you have the stdcalc subdirectory set up, create your own user directory based on it and use that to be going on with.
14. If there are any other user directories, feel free to delete them. The affected users are responsible for recreating them if they have an interest in your new case.

\section*{Converting Old Cases}

If you have a case in the old format that you want to modernize, the easiest way to proceed is probably to copy the directory for the default case and transplant the customized bits. The following steps illustrate the process for a case myoldcase of the quad model:
1. Rename the mycase subdirectory to mycasebackup or the like.
2. Duplicate the default subdirectory and rename the copy mycase. Unless you're quite sure you will never want to upload it to the SVN, move it to a folder or subfolder
3. Delete any output files such as QuadLite2Lateral_default.txt left over from the default calculation.
4. Open mycasebackup/ASUS4XLLateralModelCalcMyCase.nb (hereafter "the source") and mycase/ASUS4XLLateralModelCaseDefn.nb (hereafter, at least for the next few steps, "the destination").
5. Find any introductory comments that are specific to mycase and copy them over comments mentioning default in the destination.
6. Find the modelcase \(=" \ldots\) statement in the source and copy the contents of the quotes to the equivalent spot in the destination. If you moved the case to a folder or subfolder, convert the RHS to a list and prepend the sequence of subfolders: modelcase \(=\) mycase" becomes modelcase = \{"mvfolder"."mvsubfolder". "mvcase"\} or the like.
7. Find the modelcasecomment \(=" . . . "\) statement in the source and copy the contents of the quotes to the equivalent spot in the destination.
8. Find the overrides \(=\{\ldots\}\) statement in the source and copy the contents of the braces to the equivalent spot in the destination. Update any old-style comments to use the new commenting mechanism (see section "Adding NewStyle Comments" below)
9. Find any cells that implement modifications to the structure of the model and copy them to the destination. Make sure they have the Initialization Cell attribute checked (Cell->Cell Properties->Initialization Cell menu item). (The same applies to any complete cells you copy into new-style case definition notebooks from old-style case calculation notebooks.)
10. Save and close mycase/ASUS4XLLateralCaseDefn.nb.
11. Open mycase/stdcalc/ASUS4XLLateralModelCalcPlots.nb, hereafter the (new) destination.
12. Find any useful custom plots or tables in the source and copy them to the destination. Delete any of the standard plots or tables in the destination that are not of interest.
13. Find the assignment to useprecomputed in the destination and change it to useprecomputed \(=\) False
14. Select and evaluate the whole notebook, debugging if any errors are noticed.
15. Change the assignment to useprecomputed back to useprecomputed \(=\) True, and save and close the notebook.
16. Open mycase/stdcalc/ASUS4XLLateralModelCalcExport.nb and do Select All, Evaluate, Save and Close. (You don't need to touch the assignment to precomputed.) Check that the standard export files are generated and look plausible.
17. If the quick version of the calculation may be useful (i.e., if your case is of a supported type, and is symmetrical and you don't need damping or thermal noise results), repeat the previous step with mycase/quickcalc/ASUS4XLLateralModelCalcQuickPlots.nb and mycase/quickcalc/ASUS4XLLateralModelCalcQuickExport.nb. Otherwise delete the quickcalc subdirectory.

\section*{Adding New-Style Comments}

Older models will have an overrides list where the entries which define values for quantities are commented with ordinary Mathematica comments:
```

overrides = {
m3 -> 41, (* extra heavy optic per email from Norna, 5/4/11 *

```

The problem with this is that Mathematica totally ignores the comment text, making it unavailable to uses such as summary reports and export to Matlab. Thus the processing mechanism has been extended to accept comment strings via a function nb[]:
```

overrides = {
m3 -> 41, nb[]->"extra heavy optic per email from Norna, 5/4/11",
};

```

Note the usage of commas: the substitution for nb [] is an entry in the list and needs to be set off from any adjacent entries by commas. (It's easy to end up with one missing comma and one spurious comma at the end of the list with a search and replace on (* and *).) For your convenience, considerable processing is done on the comments between overrides and the fully numeric form constval. Any substitutions to an argumentless nb [] will be filled in based on the immediately preceding non-comment substitution (i.e., nb [] becomes nb [m3] in the above example). Then (if it's not already the case) all comments are sorted to appear in constval immediately after the substitution they relate to. The expression findcomment [x , constval] can then be used to find the comment string for x and the function expression findcomment [x , constval] can then be used to find the comment string for x and the function
tablecomments [constval]//TableForm can be used to print a neat table of substitutions and comments.

\title{
Mathematica Suspension Modeling Toolkit
}

\author{
Mathematica Suspension Models Main Page
}

SUS Operations Manual Main Page

\section*{Introduction}

The toolkit is a collection of Mathematica packages. As is conventional for packages, each has a .nb file and a .m file. The .nb file is the source and contains the comments. The .m file is the version actually loaded. The .nb file has the AutoGeneratedPackage option set so that the .m file is automatically regenerated whenever the .nb file is edited.
- PendUtil. *: The pendulum-specific utilities.
- StatusWindow. *: Utilities to display progress and timing information in a status window. Loaded directly by PendUtil.
- RotationsXYZ. *: A package similar to the standard Mathematica package Geometry\Rotations except that it uses a yaw, pitch and roll convention for angles. Loaded directly by PendUtil.
- MyShapes . *: This package is obsolete. It had two functions: (i) in versions of Mathematica prior to v6, some 3D shapes in the standard Mathematica package GraphicsShapes did not respond properly to Translate [] and Rotate [] commands, so better-behaving equivalents were defined, and (ii) some additional shapes of interest, like open-ended boxes and cylinders, were defined. Since Mathematica v6 introduced radical changes to the graphics system, new versions of all the routines needed to be written, and it was decided to move all the functionality into PendUtil. PendUtil checks which version of Mathematica is running and loads old or new definitions appropriately. However MyShapes is still left in the distribution for the benefit of very old code.
- IFOModel. *: Badly out of date. A Mathematica implementation of key parts of the Bench model of a generic LIGO interferometer, including all the physical and interferometer specific constants. Loaded by all the standard models, but otherwise optional.
- Mat labExport. *: Utilities to export numbers, numerical vectors and matrices as Matlab ".m" files. Loaded by many calculation notebooks.
- E2EExport. *: Utilities to export numbers, numerical vectors and matrices as text files suitable for importing into the E2E model. Loaded by many calculation notebooks.
- QuickQuadLateral . * and QuickTriple . *: Utilities to do a slightly approximate but quick (seconds rather than minutes) version of the calculation for the quad and triple models. Off-diagonal MOI terms are supported, but other asymmetries, damping and thermal noise are not.
- QuadLateralMatlabParamExport.* and TripleMatlabParamExport.*: Utilities to export numerical values defining a case of the quad or triple models as a quadopt.m or triplep.m file for use by the corresponding Matlab models.
- ViolinModes . *: Utilities contributed by Ben Lee, formerly of UWA, which add violin modes.
- init. *: A one-liner which, in Mathematica v8 at least, identifies the name of the directory it is run from and adds it to the Mathematica path.
- kernel_init_template.nb and user_kernel_init_template.nb: Templates for init.* files that support Mathematica v7 and earlier.

\section*{Installation}

See SVNInstructions.

\section*{Usage}
[Add lots more here.]

\section*{Quad Lateral Model}

Mathematica Suspension Models Main Page
SUS Operations Manual Main Page.
This reflects the conceptual design of the test-mass suspension for Advanced LIGO, with 4 masses, 6 blade springs and 14 wires. The "Lite2" in the name reflects the fact that blades are modelled as massless. The "Lateral" reflects the fact that blade lateral compliance is allowed for.

\section*{Installation}

See SVNInstructions for instructions on download and installation from the SVN, as well as other common operations, such as creating a new case.

\section*{Triple Model}

Mathematica Suspension Models Main Page
SUS Operations Manual Main Page.
This reflects the conceptual design of the GEO suspension (or aLIGO BS or HLTS or HSTS), with 3 masses, 6 blade springs and 10 wires. The "Lite2" in the name reflects the fact that the blades are modelled as massless. Blade lateral compliance is not included because it turns out to be negligible for all the aLIGO triples. (But a version with it exists if anyone needs it.)

\section*{Installation}

See SVNInstructions for instructions on download and installation from the SVN, as well as other common operations, such as creating a new case.

\section*{Cases}

See the BSFM, HLTS and HSTS model pages for cases of particular interest to aLIGO.
- BSFM: Suspensions/OpsManual/BSFM/Models
- HLTS: Suspensions/OpsManual/HLTS/Models
- HSTS: Suspensions/OpsManual/HSTS/Models

\section*{(Plain) DualLite2 Model}

Mathematica Suspension Models Main Page
SUS Operations Manual Main Page.
This reflects the conceptual design of the OMC suspension, with 2 masses, 6 blade springs and 6 wires. The "Lite2" in the name reflects the fact that the blades are modelled as massless. Blade lateral compliance is not included because it turns out to be negligible for all the aLIGO triples.

\section*{Installation}

See SVNInstructions for instructions on download and installation from the SVN, as well as other common operations, such as creating a new case.

\section*{Cases}

See the OMCS models page for cases of particular interest to aLIGO.
- OMCS: Suspensions/OpsManual/OMCS/Models

\section*{DualLite2DBLateral Model}

Mathematica Suspension Models Main Page
SUS Operations Manual Main Page.
This reflects the conceptual design of the TMTS suspension, with 2 masses, 4 blade springs and 6 wires. "DB" in the name reflects taht there are two blades at the top mass rather than four as for OMC. The "Lite2" reflects the fact that the blades are modelled as massless. Blade lateral compliance is included because it is important in the quad suspensions which the top mass was adapted from. Toe-out of the wires in both the frnt-back and side-side directions is allowed for to accommodate the TMTS (most models, including the plain DualLite2 for the OMCS, only have side-side toe-out).

\section*{Installation}

See SVNInstructions for instructions on download and installation from the SVN, as well as other common operations, such as creating a new case.

\section*{Cases}

See the TMTS models page for cases of particular interest to aLIGO.
- TMTS: Suspensions/OpsManual/TMTS/Models

\section*{Two Wire Simple Pendulum with Blades}

Mathematica Suspension Models Main Page
SUS Operations Manual Main Page.
This is a two-wire (one loop) single mass suspension with blades as for the aLIGO TipTilts and aLIGO HAM Aux.

\section*{Installation}

See SVNInstructions for instructions on download and installation from the SVN, as well as other common operations, such as creating a new case.```

[^0]: Suspensions/OpsManual/Boilerplate/M1_DAMP:

