

Pulsar Timing Arrays Current and Future Instrumentation

Joseph Lazio Jet Propulsion Laboratory, California Institute of Technology

© 2012 California Institute of Technology. Government sponsorship acknowledged.

Pulsar Timing Arrays Current and Future Instrumentation

- What are the requirements?
 - Timing precision and instrumental performance
- What exists?
 - Telescopes
 - Feeds, receivers, and backends
 - IT infrastructure
- What is on the horizon?

Pulsar Timing Arrays Current Results

Demorest et al. 2012, submitted

Timing Precision

1937+21 1458 MHz

500

400

0.2

0.4

Pulse Phas

0.6

0.8

SNF

• Assume $\sigma_{TOA} \leq 100 \text{ ns}$ May be necessary, but not sufficient condition

SNR → signal-to-noise ratio

 $\sigma_{\text{TOA, n}}$

 Assumes sufficient calibration of telescope system

Other contributions can include pulse-phase jitter, uncorrected propagation effects

SNR

Radio Telescope

Radio Telescope

Radio Telescope

T R

Noise Temperature

- Replace entire telescope system by resistor in a heat bath
- Output voltage equivalent
- Not necessarily physical temperature
- $T_{sys} = T_{sky} + T_{spill} + T_{Rx} + ...$
- $P = k_B T \Delta v$

Radiometer Equation

Where can improvements be made?

- T_{sys} portion determined by telescope $T_{sys} = T_{sky} + T_{spill} + T_{Rx} + ...$
- $\Delta v processed bandwidth$
- A_{eff} effective area of telescope
- Δt observation time

within limits imposed by pulsar or ISM

Improvements benefit both timing and survey programs

S \rightarrow spectral flux density [W/m²/Hz] 1 Jy = 10⁻²⁶ W/m²/Hz

Pulsar Observations

Observational frequency determined by balancing

- pulsar spectrum vs.
- •sky spectrum vs.
- scattering

Typically about 1 GHz

Pulsar Timing Arrays Current Instrumentation

Pulsar Timing Arrays Current Instrumentation

Pulsar Timing Historical Context

- 1974: Hulse-Taylor binary pulsar
 - Arecibo telescope @ 430 MHz
 - ≤ 8 MHz bandwidth
 - 175 K system temperature
 - *T*_{sky} = 25 K @ 430 MHz
- 1982: first millisecond pulsar (B1937+21)
 - Arecibo telescope @ 1400 MHz
 - 16 MHz bandwidth
 - 40 K system temperature

*T*_{sky} ~ 7 K @ 1400 MHz

Pulsar Timing Arrays Current Instrumentation

Typical Parameters

- A_{eff} ~ 100 m
- $\Delta v \simeq 100 \text{ MHz}$
- 7_{sys} ~ 30 K
- $\Delta t \simeq 15$ min.

Current Publications

- Yardley et al. 2011, "On detection of the stochastic gravitational-wave background using the Parkes pulsar timing array," *Mon. Not. R. Astron. Soc.*, **414**, 1777
- van Haasteren et al. 2011, "Placing limits on the stochastic gravitational-wave background using European Pulsar Timing Array data," *Mon. Not. R. Astron. Soc.*, 414, 3117
- Demorest et al. 2012, "Limits on the Stochastic Gravitational Wave Background from the North American Nanohertz Observatory for Gravitational Waves," ApJ, in press
- Hobbs et al. 2010, "The International Pulsar Timing Array project: using pulsars as a gravitational wave detector," *Class. Quant. Grav.*, 27, 084013

Pulsar Timing Arrays Near Future

Instrumentation

Receiver performance reaching fundamental limits, e.g.,

- *T*_{sys} ≈ 20 K
- $\Delta v \sim 1$ GHz for observations near 1 GHz

New Pulsars

- Major radio pulsar surveys worldwide
 - HTRU (Parkes)
 - GBNCC (GBT)
 - GBT drift scan (GBT)
 - P-ALFA (Arecibo)
- Multi-wavelength MSPs a.k.a. *Fermi*

Pulsar Surveys

- New pulsars
 - Add more arms to PTA, increase sensitivity; or
 - For fixed amount of observing time, improve quality of PTA
- Survey algorithm
 - 1. Observe position on sky
 - Search resulting time series for periodic signal at period P with dispersion DM, with orbital parameters

– Loop

Pulsar Timing Arrays Near Future

New Millisecond Radio Pulsars Found in Fermi LAT Unidentified Sources

Pulsar Timing Arrays Digital Backends

- Green Bank Ultimate Pulsar Processing Instrument (GUPPI)
- BEE2 feeds 8 gaming systems w/NVIDIA GPUs
- 100, 200, or 800 MHz bandwidth
- Large improvement in timing precision
- ~1 TFLOP in real time
- operational

Pulsar Timing Arrays Digital Backends

Wide-bandwidth (1+ GHz), real-time systems implementing RFI mitigation and folding (in construction)

- Parkes HIPSR
- Effelsberg ASTERIX and follow-on
- Arecibo PUPPI Clone of GBT GUPPI

FPGA-based Reconfigurable Open Architecture Computing Hardware (ROACH), developed by Center for Astronomical Signal Processing and Electronics Research (CASPER, at UC

Berkeley)

- GBT Wide-Band Pulsar System
- Arecibo Wide-Band System
- Effelsberg Ultra-broad Band
- Arecibo AO40
- Five-hundred metre Aperture Spherical Telescope (FAST) multi-feed system

19 or 100 feed horns

CIT Quad-ridge Flared Horn (QRFH)

Frequency Range: 2 – 12 GHz Dimensions: 20 x 20 x 20 cm (slightly bigger than 3164-05) Mass: < 1 lbs (less than 3164-05)

 $T_{sys} \sim 29$ K (5K sky + 9K spill + 4K coax jct + 7K dewar jct + 3K LNA)

- GBT Wide-Band Pulsar System
- Arecibo Wide-Band System
- Effelsberg Ultra-broad Band
- Arecibo AO40
- Five-hundred metre Aperture Spherical Telescope (FAST) multi-feed system
 - 19 or 100 feed horns

QSC Feed (Cornell)

Quasi Self-Complementary Feed (developed under U.S. SKA auspices)

- GBT Wide-Band Pulsar System
- Arecibo Wide-Band System
- Effelsberg Ultra-broad Band
- Arecibo AO40
- Five-hundred metre Aperture Spherical Telescope (FAST) multi-feed system
 - 19 or 100 feed horns

continuous coverage from 600-3000 MHz cryogenically cooled receiver design by Weinreb (JPL/TDP) + MPIfR

- GBT Wide-Band Pulsar System
- Arecibo Wide-Band System
- Effelsberg Ultra-broad Band
- Arecibo AO40
- ?Five-hundred metre Aperture Spherical Telescope (FAST) multi-feed system
 - ? 19 or 100 feed horns

Pulsar Timing Arrays New Approaches

The European Pulsar Timing Array (EPTA): 100-m class telescopes

Ultimately forming the Large European Array for Pulsars (LEAP)

Pulsar Timing Arrays New Approaches

- Large European Array for Pulsars = LEAP!
- Current status:
- Hardware to record >128 MHz BW, 8 bits, baseband data in place at all telescopes:
 - ASTERIX-like systems at Effelsberg and Jodrell Bank
 - PUMA-II at Westerbork
 - BON at Nançay
 - DFB (in APSR-mode, to be tested) at Sardinia
- 24 hr observations at L-band, once per month (*in addition* to regular EPTA observations 30 TB/site/session)
- Data currently shipped by disk, internet tested
- Successful addition of EFF-JB-WSRT,
- Nançay added within days/week, SRT in Q4/2012

Pulsar Timing Arrays New Approaches

For a set of N telescopes and M pulsars, what is the optimal scheduling that maximizes the probability of detecting gravitational waves?

elsberg, Germany Pune, India Westerbork, The Green Bank, West Virginia Arecibo, Puerto Rico Cheshire, United Kingdom Nancay, France Parkes, Australia

Telescope Infrastructure

Pulsar Sample

Pulsar Timing Arrays Future Telescopes

Karl G. Jansky Very Large Array

•A_{eff} ~ 130 m

• YUPPI backend

- Clone of GUPPI, implemented in existing correlator
- Primarily a timing instrument

Five-hundred metre Aperture Spherical Telescope (FAST)

- •*D*_{eff} ~ 300 m
- •19 or 100-beam system
- ~ 500 new MSPs discovered (projected)

Pulsar Timing Arrays Future Telescopes

Australian Square Kilometre Array Pathfinder (ASKAP)

Karoo Array Telescope (MeerKAT)

- •A_{eff} ~ 60 m
- Phased array feed ~ 30 deg² field of view
- Primarily a search instrument

A_{eff} ~ 100 m
Primarily a timing instrument

Square Kilometre Array

The Global Radio Wavelength Observatory

- Originally: "Hydrogen telescope" Detect H I 21-cm emission from Milky Way-like galaxy at z ~ 1
- SKA science much broader
 - ⇒ Multi-wavelength, multimessenger
- On-going technical development
- International involvement

Radio Telescopes and Astrophysical Sources

Search for additional dual SMBHs,
progenitors of GW-emitting binary SMBHs
With VLBA now, SKA in the future
Belevant for future space-based GW

Relevant for future space-based GW mission

Very Long Baseline Array (VLBA)

Pulsar Timing Arrays Current and Future Instrumentation

- What are the requirements?
 - Instrumental performance improving steadily
- What exists?
 - Powerful set of telescopes
- What is on the horizon?
 - Increasing capability with new telescopes

