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squeezing accomplished
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now that we’ve got the ellipse we need, let’s rotate it



workshop  

• This is a “workshop” presentation.

• I’m hoping you will understand what I’m 
trying to say, so you can explain it to me 
later today by the pool.
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ponderomotive--optical rigidity
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• the radiation pressure on a moveable 
mirror converts amplitude 
modulation into phase modulation.

• this coupling of the quadratures can 
be used to generate squeezing.

• the dispersion resulting from the 
optical rigidity can also be used to 
filter an already-squeezed input field.

magnitude in amplitude, and is the most important reason for
choosing an optical spring system as our candidate design for
the ponderomotive squeezer. Theoretically, such a suppres-
sion is present even when a mechanical spring is used. How-
ever, mechanical springs introduce thermal noise, which are
in general orders of magnitude higher than the vacuum noise
associated with optical springs !23,24".

D. Radiation-pressure-driven instabilities

The quasistatic approximation we used in this section can-
not describe the ponderomotive damping associated with op-
tical rigidity. The sign of this damping is known to be oppo-
site to that of the rigidity !22". In case we have a positive
rigidity, the damping will then be negative, leading an oscil-
latory instability at the resonance frequency, !, with a char-
acteristic time

"instab =
##1 + $̄ #

2$
2!2 . #32$

It can, therefore, be suppressed by a feedback system acting
in restricted band !±1/"instab, which is outside of our fre-
quency band of interest %&!. The control system for sup-
pressing this instability is detailed in Sec. IV C.

High circulating power in the detuned cavities, coupled
with high quality factor #Q$ mechanical modes of the mir-
rors, may give rise another type of radiation-pressure in-
duced instability !25". The motion of the mechanical modes
of the mirror creates phase modulation of the intracavity
field, which are converted into intensity modulation due to
the detuning of the cavity. The intensity fluctuations, in turn,
push back against the mechanical modes of the mirror. This
mechanism forms an optical feedback loop that may become
unstable in certain circumstances. In our case, the most likely
form of instability is that in which the frequency of the me-
chanical mode is comparable to the cavity linewidth. This
instability, which has been experimentally observed and
characterized for the input mirror modes of our experiment
!26", is well outside the bandwidth of our experiment, and
stabilizing it with a narrow band velocity damping loop
should have little effect on the experiment. The modes of the
end mirror are likely to be too high in frequency #compared
to the cavity linewidth$ to become unstable.

Radiation-pressure-induced torques can also lead to angu-
lar instability. Fabry-Perot cavities with suspended mirrors
are susceptible to a dynamical tilt instability !27": as the
cavity mirrors tilt, the beam spots also walk away from the
center of the mirrors, which induces a torque that drives the
mirrors further away. This effect is considered in detail in
Sec. III A.

E. Optical losses

When a cavity with nonzero losses is considered, the
noise spectrum at the ' quadrature becomes

S'
loss#%$ =

TIS'#%$ + A
TI + A

, #33$

where S'#%$ is the lossless noise spectrum of Eq. #26$, and
A is the total loss per bounce in the cavity. Assuming that
A /TI&(min and A&TI, we have

(min
loss#%$ % (min#%$ +

A
2TI

. #34$

III. EXPERIMENTAL DESIGN

In this section we describe the optical and mechanical
design of a realistic experimental setup for the ponderomo-
tive squeezer. The interferometer configuration shown in Fig.
1 is the baseline design for the experiment. The interferom-
eter is similar to that used in GW detection: a Michelson
interferometer with Fabry-Perot cavities in each arm. All the
mirrors of the interferometer are suspended as pendulums.
While squeezed light could be produced with the use of a
single cavity and suspended mirror, as shown in Sec. II, the
use of interferometry is necessary to introduce common
mode rejection of the laser noise, which would otherwise
mask the squeezed light. Moreover, dark fringe operation of
the Michelson interferometer allows for keeping the dc

FIG. 1. #Color online$ Schematic of a interferometer designed to
extract ponderomotively squeezed light due to radiation-pressure-
induced motion of the low-mass end mirrors. Light from a highly
amplitude- and phase-stabilized laser source is incident on the beam
splitter. High-finesse Fabry-Perot cavities in the arms of the Mich-
elson interferometer are used to build up the carrier field incident on
the end mirrors of the cavity. All interferometer components in the
shaded triangle are mounted on a seismically isolated platform in
vacuum. The input optical path comprises a pre-stabilized 10 Watt
laser, equipped with both an intensity stabilization servo and a fre-
quency stabilization servo. FI is a Faraday isolator.

SQUEEZED-STATE SOURCE USING RADIATION-… PHYSICAL REVIEW A 73, 023801 #2006$

023801-5

Thomas Corbitt, Yanbei Chen, Farid Khalili, David 
Ottaway, Sergey Vyatchanin, Stan Whitcomb, 
and Nergis Mavalvala. Squeezed-state source 
using radiation-pressure-induced rigidity. 
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D. W. C. Brooks, T. Botter, N. Brahms, T. P. Purdy, S. Schreppler, 
and D. M. Stamper-Kurn. Ponderomotive light squeezing 
with atomic cavity optomechanics. ArXiv e-prints, July 2011.

ponderomotive squeezing recently reported



opto-mechanically 
induced transparency
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Stefan Weis, Rémi Rivière, Samuel Deléglise, Emanuel Gavartin, 
Olivier Arcizet, Albert Schliesser, and Tobias J. Kippenberg. 
Optomechanically induced transparency. Science, 330(6010):
1520–1523, 2010.

• using the ponderomotive effect, 
OMIT is an optomechanical 
analogue of electromagnetically 
induced transparency

pressure force oscillating at the frequency dif-
ference W. If this driving force oscillates close
to the mechanical resonance frequency Wm, the
mechanical mode starts to oscillate coherently,
dx(t) = 2Re[X e−iWt]. This in turn gives rise to
Stokes- and anti-Stokes scattering of light from
the strong intracavity control field. If the system
resides deep enough in the resolved-sideband
(RSB) regime with k << Wm, Stokes scattering
(to the optical frequency wl − W) is strongly
suppressed because it is highly off-resonant with
the optical cavity. We can therefore assume that
only an anti-Stokes field builds up inside the
cavity, da(t) ≈ A− e−iWt. However, this field of
frequency wp = wl + W is degenerate with the
near-resonant probe field sent to the cavity. De-
structive interference of these two driving waves
can suppress the build-up of an intracavity probe
field. These processes are captured by the Langevin
equations of motion for the complex amplitudes
A− and X, which require in the steady state (SOM
Eqs. S26 and S27)

ð−iD′ þ k=2ÞA− ¼ −iGaX þ ffiffiffiffiffiffiffi
hck

p
dsin ð3Þ

2meffWmð−iD′ þ Gm=2ÞX ¼ −iℏGaA− ð4Þ

where dsin is the amplitude of the probe field
drive, and we abbreviate D′ ≡ W − Wm. We have
assumed a high-quality factor of the mechanical
oscillator (Gm << Wm) and the control beam de-
tuning D ¼ −Wm. The solution for the intracavity
probe field amplitude reads

A− ¼
ffiffiffiffiffiffiffi
hck

p

ð−iD′ þ k=2Þ þ W2
c=4

− iD′ þ Gm=2

dsin ð5Þ

This solution has a form well known from the
response of an EIT medium to a probe field (1).
The coherence between the two ground states of
an atomic L system, and the coherence between
the levels probed by the probe laser undergo the
same evolution as do the mechanical oscillation
amplitude and the intracavity probe field in the
case of optomechanically induced transparency
(OMIT). The role of the control laser’s Rabi
frequency in an atomic system is taken by the op-
tomechanical coupling rate Wc ¼ 2aGxzpf , where
xzpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2meffWm

p
designates the spread of

the ground-state wave function of the mechanical
oscillator. For Wc > Gm, k the system enters the
strong coupling regime (22, 23) investigated re-

cently in themechanical domain (14), in which the
optical and mechanical systems are hybridized to
dressed states that differ by ℏWc in their energy.

OMIT is realized using toroidal whispering-
gallery-mode microresonators (Fig. 2A) (10, 17).
The cavity is operated in the undercoupled
regime (hc < 1/2), which together with modal
coupling between counterpropagating modes
(SOM Sec. 7) leads to a nonzero probe (ampli-
tude) transmission tr = tp(D′ = 0, Wc = 0) at
resonance (Fig. 2B), even in the absence of
the control beam. In the case of the present device,
|tr|

2 ≈ 0.5. [Note, however, that |tr|
2 < 0.01 can be

achieved with silica toroids (24).] To separate the
effects of this residual transmission from OMIT,
we introduce the normalized transmission of the
probe t′p ¼ ðtp − trÞ=ð1 − trÞ.

The mechanical motion was detected using
a balanced homodyne detection scheme (fig.
S1) measuring the phase quadrature of the field
emerging from the cavity (25). This allows ex-
tracting the parameters of the device used in these
experiments, which are given by (meff, G/2p,
Gm/2 p, Wm/2 p, k/2 p) ≈ (20 ng, −12 GHz/nm,
41 kHz, 51.8 MHz, 15 MHz), placing it well into
the resolved sideband regime (25). To probe the
cavity transmission spectrum in the presence of
a control beam, the Ti:sapphire control laser is
frequency modulated at frequency W using a
broadband phase modulator, creating two side-
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Fig. 1. Optomechanically induced transparency. (A) A generic optomechanical system consists of an
optical cavity with a movable boundary, illustrated here as a Fabry-Perot–type resonator in which one
mirror acts like a mass-on-a-spring movable along x. The cavity has an intrinsic photon loss rate k0 and is
coupled to an external propagating mode at the rate kex. Through the external mode, the resonator is
populated with a control field (only intracavity field is shown). The response of this driven optomechanical
system is probed by a weak probe field sent toward the cavity, the transmission of which (i.e., the returned
field “Probe out”) is analyzed here. (B) The frequency of the control field is detuned by D from the cavity
resonance frequency, where a detuning close to the lower mechanical sideband,D ≈ −Wm, is chosen. The
probe laser’s frequency is offset by the tunable radio frequencyW from the control laser. The dynamics of
interest occur when the probe laser is tuned over the optical resonance of the cavity, which has a linewidth
of k = k0 + kex. (C) Level scheme of the optomechanical system. The control field is tuned close to red-
sideband transitions, in which a mechanical excitation quantum is annihilated (mechanical occupation
nm→ nm − 1) when a photon is added to the cavity (optical occupation np→ np + 1), therefore coupling the
corresponding energy eigenstates. The probe field probes transitions in which the mechanical oscillator
occupation is unchanged. (D) Transmission of the probe laser power through the optomechanical system
in the case of a critically coupled cavity k0 = kex as a function of normalized probe laser frequency offset,
when the control field is off (blue lines) and on (green lines). Dashed and full lines correspond to the
models based on the full (Eq. 1) and approximative (Eq. 5) calculations, respectively.
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Fig. 2. Optomechanical system. (Top) A toroidal
microcavity is used to demonstrate OMIT: The res-
onator is coupled to the control and probe fields
using a tapered fiber. The optical mode couples
through radiation pressure force to the mechanical
radial breathing mode of the structure. In this ring
geometry, the cavity transmission, defined by the
ratio of the returned probe-field amplitude divided
by the incoming probe field is simply given by the
transmission through the tapered fiber. (Bottom)Under
the chosen waveguide-toroid coupling conditions, there
is a nonzero probe power transmission |tr|2 at res-
onance. The control field induces an additional trans-
parency window with a contrast up to 1 − |tr|2.
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pressure force oscillating at the frequency dif-
ference W. If this driving force oscillates close
to the mechanical resonance frequency Wm, the
mechanical mode starts to oscillate coherently,
dx(t) = 2Re[X e−iWt]. This in turn gives rise to
Stokes- and anti-Stokes scattering of light from
the strong intracavity control field. If the system
resides deep enough in the resolved-sideband
(RSB) regime with k << Wm, Stokes scattering
(to the optical frequency wl − W) is strongly
suppressed because it is highly off-resonant with
the optical cavity. We can therefore assume that
only an anti-Stokes field builds up inside the
cavity, da(t) ≈ A− e−iWt. However, this field of
frequency wp = wl + W is degenerate with the
near-resonant probe field sent to the cavity. De-
structive interference of these two driving waves
can suppress the build-up of an intracavity probe
field. These processes are captured by the Langevin
equations of motion for the complex amplitudes
A− and X, which require in the steady state (SOM
Eqs. S26 and S27)

ð−iD′ þ k=2ÞA− ¼ −iGaX þ ffiffiffiffiffiffiffi
hck

p
dsin ð3Þ

2meffWmð−iD′ þ Gm=2ÞX ¼ −iℏGaA− ð4Þ

where dsin is the amplitude of the probe field
drive, and we abbreviate D′ ≡ W − Wm. We have
assumed a high-quality factor of the mechanical
oscillator (Gm << Wm) and the control beam de-
tuning D ¼ −Wm. The solution for the intracavity
probe field amplitude reads

A− ¼
ffiffiffiffiffiffiffi
hck

p

ð−iD′ þ k=2Þ þ W2
c=4

− iD′ þ Gm=2

dsin ð5Þ

This solution has a form well known from the
response of an EIT medium to a probe field (1).
The coherence between the two ground states of
an atomic L system, and the coherence between
the levels probed by the probe laser undergo the
same evolution as do the mechanical oscillation
amplitude and the intracavity probe field in the
case of optomechanically induced transparency
(OMIT). The role of the control laser’s Rabi
frequency in an atomic system is taken by the op-
tomechanical coupling rate Wc ¼ 2aGxzpf , where
xzpf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2meffWm

p
designates the spread of

the ground-state wave function of the mechanical
oscillator. For Wc > Gm, k the system enters the
strong coupling regime (22, 23) investigated re-

cently in themechanical domain (14), in which the
optical and mechanical systems are hybridized to
dressed states that differ by ℏWc in their energy.

OMIT is realized using toroidal whispering-
gallery-mode microresonators (Fig. 2A) (10, 17).
The cavity is operated in the undercoupled
regime (hc < 1/2), which together with modal
coupling between counterpropagating modes
(SOM Sec. 7) leads to a nonzero probe (ampli-
tude) transmission tr = tp(D′ = 0, Wc = 0) at
resonance (Fig. 2B), even in the absence of
the control beam. In the case of the present device,
|tr|

2 ≈ 0.5. [Note, however, that |tr|
2 < 0.01 can be

achieved with silica toroids (24).] To separate the
effects of this residual transmission from OMIT,
we introduce the normalized transmission of the
probe t′p ¼ ðtp − trÞ=ð1 − trÞ.

The mechanical motion was detected using
a balanced homodyne detection scheme (fig.
S1) measuring the phase quadrature of the field
emerging from the cavity (25). This allows ex-
tracting the parameters of the device used in these
experiments, which are given by (meff, G/2p,
Gm/2 p, Wm/2 p, k/2 p) ≈ (20 ng, −12 GHz/nm,
41 kHz, 51.8 MHz, 15 MHz), placing it well into
the resolved sideband regime (25). To probe the
cavity transmission spectrum in the presence of
a control beam, the Ti:sapphire control laser is
frequency modulated at frequency W using a
broadband phase modulator, creating two side-
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Fig. 1. Optomechanically induced transparency. (A) A generic optomechanical system consists of an
optical cavity with a movable boundary, illustrated here as a Fabry-Perot–type resonator in which one
mirror acts like a mass-on-a-spring movable along x. The cavity has an intrinsic photon loss rate k0 and is
coupled to an external propagating mode at the rate kex. Through the external mode, the resonator is
populated with a control field (only intracavity field is shown). The response of this driven optomechanical
system is probed by a weak probe field sent toward the cavity, the transmission of which (i.e., the returned
field “Probe out”) is analyzed here. (B) The frequency of the control field is detuned by D from the cavity
resonance frequency, where a detuning close to the lower mechanical sideband,D ≈ −Wm, is chosen. The
probe laser’s frequency is offset by the tunable radio frequencyW from the control laser. The dynamics of
interest occur when the probe laser is tuned over the optical resonance of the cavity, which has a linewidth
of k = k0 + kex. (C) Level scheme of the optomechanical system. The control field is tuned close to red-
sideband transitions, in which a mechanical excitation quantum is annihilated (mechanical occupation
nm→ nm − 1) when a photon is added to the cavity (optical occupation np→ np + 1), therefore coupling the
corresponding energy eigenstates. The probe field probes transitions in which the mechanical oscillator
occupation is unchanged. (D) Transmission of the probe laser power through the optomechanical system
in the case of a critically coupled cavity k0 = kex as a function of normalized probe laser frequency offset,
when the control field is off (blue lines) and on (green lines). Dashed and full lines correspond to the
models based on the full (Eq. 1) and approximative (Eq. 5) calculations, respectively.
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Fig. 2. Optomechanical system. (Top) A toroidal
microcavity is used to demonstrate OMIT: The res-
onator is coupled to the control and probe fields
using a tapered fiber. The optical mode couples
through radiation pressure force to the mechanical
radial breathing mode of the structure. In this ring
geometry, the cavity transmission, defined by the
ratio of the returned probe-field amplitude divided
by the incoming probe field is simply given by the
transmission through the tapered fiber. (Bottom)Under
the chosen waveguide-toroid coupling conditions, there
is a nonzero probe power transmission |tr|2 at res-
onance. The control field induces an additional trans-
parency window with a contrast up to 1 − |tr|2.
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�(⌦) =
1

meff

1

⌦2
m � ⌦2 � i⌦�m

r
probe

= 1� 1 + if(⌦)

�i(�+ ⌦) + /2 + 2�f(⌦)
⌘
c



f(⌦) = ~G2ā2
�(⌦)

i(�� ⌦) + /2

OMIT and ponderomotive squeezing 
are kind of the same thing

Thierry Botter, Daniel W. C. Brooks, Nathan Brahms, Sydney Schreppler, and 
Dan M. Stamper-Kurn. Linear amplifier model for optomechanical systems. 
Phys. Rev. A, 85:013812, Jan 2012.
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make the back mirror 
moveable
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look closer
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over-coupled cavity
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Strongly overcouple the cavity.   Still get the phase shift.  Looks like 
a great filter cavity.
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A system with ~these parameters can be 
realised with commercially available components.

desired width: �OMIT = �m + ⌦2
c/ ⇠ 100Hz

cavity linewidth  100 kHz
mech. frequency !m 1MHz

mech. Q Qm 106

optomechanical coupling ⌦c = 2Gāxzpf 2 kHz



a high finesse system: 
membrane in the middle
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!p
!l

Qm =
!m

�m
⇠ 106

• Use a SiN membrane as 
mechanical oscillator.  

• Cheaply available.

• High Q, resonant 
frequency (fundamental 
mode ~ 300kHz for 
1mm x 1mm x 50 nm).

LETTERS

Strong dispersive coupling of a high-finesse cavity to
a micromechanical membrane
J. D. Thompson1, B. M. Zwickl1, A. M. Jayich1, Florian Marquardt2, S. M. Girvin1,3 & J. G. E. Harris1,3

Macroscopic mechanical objects and electromagnetic degrees of
freedom can couple to each other through radiation pressure.
Optomechanical systems in which this coupling is sufficiently
strong are predicted to show quantum effects and are a topic of
considerable interest. Devices in this regime would offer new types
of control over the quantum state of both light and matter1–4, and
would provide a new arena in which to explore the boundary
between quantum and classical physics5–7. Experiments so far have
achieved sufficient optomechanical coupling to laser-cool mech-
anical devices8–12, but have not yet reached the quantum regime.
The outstanding technical challenge in this field is integrating
sensitive micromechanical elements (which must be small, light
and flexible) into high-finesse cavities (which are typically rigid
and massive) without compromising the mechanical or optical
properties of either. A second, and more fundamental, challenge
is to read out the mechanical element’s energy eigenstate.
Displacement measurements (no matter how sensitive) cannot
determine an oscillator’s energy eigenstate13, and measurements
coupling to quantities other than displacement14–16 have been dif-
ficult to realize in practice. Here we present an optomechanical
system that has the potential to resolve both of these challenges.
We demonstrate a cavity which is detuned by the motion of a 50-
nm-thick dielectric membrane placed between two macroscopic,
rigid, high-finesse mirrors. This approach segregates optical and
mechanical functionality to physically distinct structures and
avoids compromising either. It also allows for direct measurement
of the square of the membrane’s displacement, and thus in prin-
ciple the membrane’s energy eigenstate. We estimate that it should
be practical to use this scheme to observe quantum jumps of a
mechanical system, an important goal in the field of quantum
measurement.

Experiments and theoretical proposals aiming to study quantum
aspects of the interaction between optical cavities and mechanical
objects have focused on cavities in which one of the cavity’s mirrors is
free to move (for example, in response to radiation pressure exerted
by light in the cavity). A schematic of such a setup is shown in Fig. 1a.
Although quite simple, Fig. 1a captures the relevant features of nearly
all optomechanical systems described in the literature, including
cavities with ‘folded’ geometries, cavities in which multiple mirrors
are free to move5, and whispering gallery mode resonators14 in which
light is confined to a waveguide. All these approaches share two
important features. First, the optical cavity’s detuning is proportional
to the displacement of a mechanical degree of freedom (that is, mir-
ror displacement or waveguide elongation). Second, a single device
must provide both optical confinement and mechanical pliability.

In these systems, optomechanical coupling can be strong enough
to laser-cool their brownian motion by a factor of 400 via passive
cooling13. But the coupling has been insufficient to observe quantum

1Department of Physics, Yale University, 217 Prospect Street, New Haven, Connecticut, 06520, USA. 2Physics Department, Center for NanoScience, and Arnold Sommerfeld Center for
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Figure 1 | Schematic of the dispersive optomechanical set-up.
a, Conceptual illustration of ‘reflective’ optomechanical coupling. The cavity
mode (green) is defined by reflective surfaces, one of which is free to move.
The cavity detuning is proportional to the displacement x. b, Conceptual
illustration of the ‘dispersive’ optomechanical coupling used in this work.
The cavity is defined by rigid mirrors. The only mechanical degree of
freedom is that of a thin dielectric membrane (orange) in the cavity mode
(green). The cavity detuning is periodic in the displacement x. The total
cavity length is L 5 6.7 cm. c, Photograph of a SiN membrane
(1 mm 3 1 mm 3 50 nm) on a silicon chip. d, Schematic of the optical and
vacuum setup. The vacuum chamber (dotted line) is ion-pumped to
,1026 torr. The membrane chip is shown in orange. The optical path
includes an AOM for switching the laser beam on and off, and a
proportional-integral (PI) servo loop for locking the laser to the cavity. The
reflected laser power is recorded by a data acquisition system (DAQ).
e, Calculation of the cavity frequency vcav(x) in units of vFSR 5pc/L. Each
curve corresponds to a different value of the membrane reflectivity rc.
Extrema in vcav(x) occur when the membrane is at a node (or antinode) of
the cavity mode. Positive (negative) slope of vcav(x) indicates the light
energy is stored predominantly in the right (left) half of the cavity, with
radiation pressure force acting to the left (right).
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challenges 

ness, and cleanliness. SPI estimates a surface roughness for
their membranes !0.2 nm and surface flatness !1 nm over
the entire membrane, figures which are sufficient for super-
polished high-F mirrors.14

Although there is no single figure of merit for the per-
formance of a micromechanical device, it is useful to com-
pare these membranes with other micromechanical devices
using two parameters relevant to a broad range of applica-
tions. The first is the membrane’s thermal force noise, SF

1/2

="4kkBT /"0Q. For the Norcada membrane at 300 mK,
SF

1/2=8#10−18 NHz−1/2, within an order of magnitude of SF
1/2

for the single-crystal silicon cantilever used to detect spin
resonance of a single electron.17,18

A second useful figure of merit is the Q relative to the
size #either thickness or volume$. There is a widely noted
trend that smaller resonators have lower Q’s19,20 #for instance
the 60 nm thick Si cantilevers in Ref. 18 have Q=6700$.
However, Q=1.1#107 observed here for 50 nm thick Nor-
cada membranes breaks sharply from this trend. Such a large
Q is typically seen in the bulk vibrations of centimeter-scale
single crystal silicon.21 Other SiNx nanoresonators have been
reported with unusually high quality factors, including a Q
=1.2#105 resonator at cryogenic temperatures,22 and a Q
=1.1#106 resonator at room temperatures,23 indicating some
SiNx films may have especially low mechanical dissipation.

In conclusion, silicon nitride membranes offer an out-
standing combination of high force sensitivity and a large
surface area in a commercially available device. They have
remarkably high Q factors at both room and cryogenic tem-
peratures and in the presence of large magnetic fields. These
properties combined with their small near-IR optical loss
make them particularly well-suited for experiments involv-
ing radiation pressure in optical cavities, which typically re-
quire sensitive micromechanical devices with transverse di-
mensions large enough to accommodate an optical spot of

10–100 $m. These properties make silicon nitride mem-
branes attractive in a broad range of applications of sensitive
force detectors.24–26
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FIG. 4. #Color online$ Ringdown of transmission from cavity after the laser
is chopped at t=0, shown with fitted values of finesse.

103125-3 Zwickl et al. Appl. Phys. Lett. 92, 103125 !2008"

Downloaded 19 Feb 2012 to 150.203.48.159. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

B. M. Zwickl, et al. Applied Physics Letters, 
92(10):103125, 2008.

z (µ m)

y 
(µ

 m
)

0 100 200 300 400 500
0

100

200

300

400

500

Fig. 4. Location of the cavity modes relative to the membrane surface for experiments
reported in Section 4.2 – 4.4. Density plots of the intra-cavity intensities of TEM00 (red)
and TEM01 (blue) modes are displayed on top of a black contour plot representing the
axial displacement of the (2,6) membrane mode. Averaging the displacement of the surface
weighted by the intensity profile gives the “effective displacement”,δxm, for membrane
motion; in this case the effective displacement of the (2,6) mode is greater for the TEM00
mode than it is for TEM01 mode.

Otherwise, all three are functions of the membrane’s axial position relative to the intracavity
standing-wave (Eqs. (18)–(19)).

To simplify the discussion of differential sensitivity, we confine our attention to a single
vibrational mode of the membrane, with generalized amplitude bm and undamped mechanical
frequency fm (Appendix B). We assume that cavity resonance frequencies ν p

c and νsc have
different sensitivities to bm but are equally sensitive to substrate motion at Fourier frequencies
near fm. We can express these two conditions in terms of the Fourier transforms [46] of the
effective displacements:

δxp,sm ( f )≡ ηp,sbm( f ); ηp "= ηs
δxp1,2( f )# δxs1,2( f )≡ δx1,2( f ).

(2)

Hereafter ηp,s will be referred to as “spatial overlap” factors.
The first assumption of Eq. (2) is valid if the vibrational mode shape of the membrane varies

rapidly on a spatial scale set by the cavity waist size, w0. The latter assumption is valid if the
opposite is true, i.e., we confine our attention to low order substrate vibrational modes, whose
shape varies slowly on a scale set by w0. The substrate noise shown in Fig. 2 fits this descrip-
tion, provided that the cavity mode is also of low order, e.g., cavity modes TEM00 and TEM01
(Eq. (24)). To visualize the differential sensitivity of TEM00 and TEM01, in Fig. 4 we plot the
transverse intensity profile of each mode atop contours representing the amplitude of the (2,6)
drum vibration of the membrane (Eq. (23)), with waist size and position and the membrane di-
mensions representing the experimental conditions discussed in Section 4.2. Choosing TEM01
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• Optical losses

• membrane has complex index of refraction; imaginary part ~ 10-4

• impact depends on microscopic position (and thus opto-mechanical 
coupling)

• Modal overlap

• membrane acoustic mode not perfectly matched to optical mode

• membrane higher order modes

• Thermal noise

• some form of cooling necessary

• combination of refrigeration and laser cooling (resolved sideband)

• more on this from Zach coming up next!



laser cooling
• the membrane can 

theoretically be cooled to the 
quantum ground state

• laser cooling changes the 
OMIT linewidth, so cannot 
rely on it too much  
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mechanical mode bath temperature, Tb, as a function of the cryostat
sample mount temperature, Tc (independently measured using a
silicon diode thermometer attached to the copper sample mount).

Figure 3b shows that the optical mode thermometry predicts a mode
temperature in good correspondence with the absolute temperature of
the sample mount for Tc . 50 K; below this value, the mode temper-
ature deviates from Tc and saturates to a value of Tb 5 17.6 6 0.8 K
owing to thermal radiative heating of the device through the imaging
aperture in the radiation shield of our cryostat.

In a second set of measurements, we determine the mechanical
damping, c, and the cavity–laser detuning, D, by optical spectroscopy
of the driven cavity. By sweeping a second probe beam, of frequency
vs, over the cavity, with the cooling beam tuned to D 5 vm, spectra
showing electromagnetically induced transparency26 (EIT) are mea-
sured (Fig. 3c). Owing to the high single-photon cooperativity of the
system, an intracavity population of only nc < 5 switches the system
from reflecting to transmitting for the probe beam. The corresponding
dip at the centre of the optical cavity resonance occurs at a two-photon
detuning of Dsl ; vs 2 vl 5 vm and has a bandwidth equal to the
mechanical damping rate, ci(1 1 C). In Fig. 4a, we plot the measured
mechanical linewidth as a function of intracavity photon number,
showing good correspondence between both mechanical and optical
spectroscopy techniques, and indicating that the system remains in the
weak-coupling regime for all measured cooling powers. From a fit to
the measured mechanical damping rate as a function of nc (Fig. 4a,
dashed red line), the zero-point optomechanical coupling rate is deter-
mined to be g/2p5 910 kHz.

In Fig. 4b, we plot the calibrated Lorentzian noise PSD area, in units of
phonon occupancy, as a function of red-detuned (D 5 vm) drive-laser
power. Owing to the low effective temperature of the laser drive, the
mechanical mode is not only damped but is also cooled substantially.
The minimum measured average mode occupancy for the highest drive
power (corresponding to nc < 2,000) is !n~0:85+0:08, putting the
mechanical oscillator in a thermal state with ground-state occupancy
probability greater than 50%. The dashed blue line in Fig. 4b represents
the ideal back-action-cooled phonon occupancy estimated using
both the measured mechanical damping rate in Fig. 4a and the
low-drive-power intrinsic mechanical damping rate. Deviation of the
measured phonon occupancy from the ideal cooling model is seen to
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Figure 3 | Mechanical and optical response. a, Typical measured mechanical
noise spectra around the resonance frequency of the breathing mode for low
drive-laser power (nc 5 1.4). The blue and red curves correspond to the spectra
measured with the drive laser blue- and, respectively, red-detuned by a
mechanical frequency from the optical cavity resonance. The black trace
corresponds to the measured noise floor (dominated by EDFA noise) with the
drive laser detuned far from the cavity resonance. b, Plot of the measured
(squares) mechanical mode bath temperature (Tb) as a function of cryostat
sample mount temperature (Tc). The dashed line indicates the curve
corresponding to perfect following of the cryostat temperature by the mode
temperature (Tb 5 Tc). c, Typical reflection spectrum (normalized power
reflection) of the cavity while driven by the cooling laser (D 5 vm, nc 5 56,
C 5 11), as measured by a weaker probe beam at two-photon detuning Dsl. The
signature reflection dip on resonance with the bare cavity mode, highlighted in
the inset, is indicative of EIT caused by coupling of the optical and mechanical
degrees of freedom by the cooling laser beam.
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Figure 4 | Optical cooling results. a, Measured mechanical mode linewidth
(squares), EIT transparency bandwidth (circles) and predicted optomechanical
damping rate estimated using the zero-point optomechanical coupling rate,
g/2p5 910 kHz (red dashed line). Inset, measured EIT transparency window at
the highest cooling-beam drive power. b, Measured (circles) average phonon
number, !n, in the breathing mechanical mode at vm/2p5 3.68 GHz, versus
cooling drive-laser power (in units of intracavity photons, nc), as deduced from
the calibrated area under the Lorentzian line shape of the mechanical noise
power spectrum. The inset spectra show the measured noise PSD (using
xzpf 5 2.7 fm, corresponding to the numerically computed motional mass for
the breathing mode with m 5 311 fg). The dashed blue line indicates the
estimated mode phonon number calculated from the measured optical

damping alone. Error bars indicate estimated uncertainties as outlined in
Supplementary Information. c, Estimated bath temperature, Tb, versus cooling
laser intracavity photon number, nc. d, Measured change in the intrinsic
mechanical damping rate versus nc (circles). A polynomial fit to the mechanical
damping dependence on nc is shown as a dashed line. For more details, see
Supplementary Information. e, The measured (squares) background noise PSD
versus drive-laser power (nc), in units of effective phonon quanta. The red
dashed curve corresponds to the theoretical imprecision assuming shot-noise-
limited detection but all other cavity properties and optical loss as in the
experiment. The solid black curve is for an ideal, quantum-limited continuous
position measurement of mechanical motion.
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• engineer non-uniform capacitor plates around the 
membrane.  

• Fringing fields creative capacitive sensor/actuator, 
like ESD in aLIGO.

• Couple mechanical system to electronic 
oscillator --> modify mechanical susceptibility.

• Use an electronic oscillator rather than 
mechanical oscillator.

• thermal noise?

• Capacitive coupler never been done

• requires ~ um size electrode gap

• other actuator/sensor systems possible (e.g., 
second laser)

J. M. Taylor, A. S. Sørensen, C. M. Marcus, and 
E. S. Polzik. Laser cooling and optical 
detection of excitations in a lc electrical 
circuit. Phys. Rev. Lett., 107:273601, Dec 
2011.
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and someone’s already built 
something like it

• A fiber-coupled system on a 
chip, with a Si disk resonator 
evanescently coupled to a 
SiN ring, with electronic 
actuation.  Batch processible.

• Oscillator f, Q, too low, and 
fibers are lossy.
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Figure 1 Device geometry. (a) Scanning electron micrograph (SEM) of the fabricated device with color 

indicating different material layers. (inset) Finite element simulation of the fundamental mechanical mode 

of the mechanical structure (actuator plus silicon nitride (SiNx) ring). (b) Zoomed-in view of the sensor 

area. (c)-(d) 2D  and (e) 3D cross-sectional illustrations of the device. The illustration shown in (d) is a 

zoomed-in cross section of the microdisk resonator and SiNx ring. The illustration shown in (c) is a cross 

section taken through the key elements of the mechanical transducer and optical sensor (i.e., SiNx anchors, 

silicon (Si) MEMS actuator, SiNx ring, and Si disk).  In these cross-section illustrations, the Z axis scale 

has been adjusted for clarity.
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