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Gravity + Causality = Gravitational Waves

In Newtonian gravity, force dep on distance btwn objects
If massive object suddenly moved, grav field at a distance
would change instantaneously
In relativity, no signal can travel faster than light
−→ time-dep grav fields must propagate like light waves
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Generation of Gravitational Waves

EM waves generated by moving/oscillating charges
GW generated by moving/oscillating masses
Lowest multipole is quadrupole
Different types of signals:

Burst (transient, unmodelled)
Stochastic (long-lived, unmodelled)
Binary coalescence (transient, modelled)
Periodic (long-lived, modelled)

Periodic sources have simpler waveforms,
but interaction w/detector complicated by signal modulation
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Sources of Periodic Gravitational Waves

System w/quadrupole moment oscillating at frequency Ω
emits periodic GWs w/frequency fgw = 2 Ω

2π
Hulse-Taylor binary pulsar 1913+16 (slowly inspiralling)
Porb ≈ 7.75 hr −→ fgw ≈ 72µHz (too low)
White-dwarf binary fgw ∼ 1− 10 mHz (LISA/NGO source)
e.g., AM CVn Porb ≈ 103 s −→ fgw ≈ 2 mHz
Triaxial neutron star (pulsar or LMXB) fgw ∼ 1− 103 Hz
(LIGO/Virgo source) e.g., Crab frot ≈ 30 Hz −→ fgw ≈ 60 Hz
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Gravity as Geometry

Minkowski Spacetime:

ds2= −c2(dt)2 + (dx)2 + (dy)2 + (dz)2

=


dt
dx
dy
dz


tr
−c2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1




dt
dx
dy
dz

 = ηµνdxµdxν

General Spacetime:

ds2 =


dx0

dx1

dx2

dx3


tr

g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33




dx0

dx1

dx2

dx3

 = gµνdxµdxν
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Gravitational Wave as Metric Perturbation

For GW propagation & detection, work to 1st order in
hµν ≡ difference btwn actual metric gµν & flat metric ηµν :

gµν=ηµν+hµν

(hµν “small” in weak-field regime, e.g. for GW detection)
Convenient choice of gauge is transverse-traceless:

h0µ = hµ0 = 0 ηνλ
∂hµν
∂xλ

= 0 ηµνhµν = δijhij = 0

In this gauge:
Test particles w/constant coörds are freely falling
Vacuum Einstein eqns =⇒ wave equation for {hij}:(

− 1
c2

∂2

∂t2 +∇2
)

hij = 0
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Gravitational Wave Polarization States

Far from source, GW looks like plane wave prop along ~k
TT conditions mean, in convenient basis,

{ki} ≡ k =

0
0
1

 {hij} ≡ h =

h+ h× 0
h× −h+ 0
0 0 0


where h+

(
t − x3

c

)
and h×

(
t − x3

c

)
are components

in “plus” and “cross” polarization states
More generally

h
↔

= h+

(
t −

~k ·~r
c

)
e↔+ + h×

(
t −

~k ·~r
c

)
e↔×
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The Polarization Basis

wave propagating along ~k ;
construct e↔+,× from ⊥ unit vectors ~̀ & ~m:

e↔+ = ~̀⊗ ~̀− ~m ⊗ ~m e↔× = ~̀⊗ ~m + ~m ⊗ ~̀
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Effects of Gravitational Wave

Fluctuating geom changes distances btwn particles in free-fall:

Plus (+) Polarization Cross (×) Polarization
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Example: Circular polarization

“Face-on”; inclination ι = 0◦

h+ = A cos Φ(t) h× = A sin Φ(t)
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Example: Linear polarization

“Edge-on”; inclination ι = 90◦

h+ = A cos Φ(t) h× = 0
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Example: Elliptical polarization

General situation w/inclination ι: A+ ∝ 1+cos2 ι
2 ; A× ∝ cos ι

h+ = A+ cos Φ(t) h× = A× sin Φ(t)
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Elliptical Polarization Resolved in Arbitrary Basis

If + & × basis tensors chosen arbitrarily, not 90◦ out of phase

h
↔

= η+ ε
↔

+ + η× ε
↔
× = h+e↔+ + h×e↔×
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Natural Polarization Basis

Free to choose ~̀within plane ⊥ ~k (fixes ~m = ~k × ~̀)
Choose it in orbital plane (binary) or equatorial plane (NS)
−→ h+ & h× are 90◦ out of phase
Pol angle ψ relates ~̀ to some reference direction~ı
(e.g., “West on the sky”)
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Elliptical Polarization Resolved in Preferred Basis

h+ & h× are 90◦ out of phase (ι & ψ give alignment of system)

h+ = A+ cos Φ(t) h× = A× sin Φ(t)
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Inclination & Polarization Angles for Neutron Star
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GW Signal from Periodic Source

GW signal arriving time τ at Solar System Barycenter

h
↔

(τ) = h0

[
1 + cos2 ι

2
cos Φ(τ)e↔+ + cos ι sin Φ(τ)e↔×

]
Amplitude h0 depends on distance, frequency, ellipticity
Pol basis {e↔+, e

↔
×} depends on sky position {α, δ}

and polarization angle ψ

Phase evolution e.g., Φ(τ) = φ0 + 2π
(

f0τ + f1τ2

2 + · · ·
)

(+Doppler mod if NS in binary; note constant Doppler shift OK)

Signal h(t) = h
↔

(τ(t)) : d
↔

received in detector has {α, δ}-dep
Doppler shift τ(t) due to daily & yearly motion of detector
Divide signal parameters into

amplitude params: {h0, ι, ψ, φ0}
phase params: {α, δ, f0, f1, . . .} + orbital params for LMXB
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Coherent Maximum-Likelihood Search (F-statistic)

Divide signal parameters into
amplitude params: {h0, ι, ψ, φ0}
phase params: λ ≡ {α, δ, f0, f1, . . .} + orb params for LMXB

Jaranowski, Królak, Schutz PRD 58, 063001 (1998)
showed signal linear in {Aµ}, fcns of amplitude params

h(t) = Aµhµ(t) (assume
∑4

µ=1)

template waveforms hµ(t) depend on phase params λ
Mismatch of obs data w/signal model quadratic in {Aµ}:

χ2(A, λ) = AµMµν(λ)Aν − 2Aµxµ(λ) + χ2(0, λ)

F-stat method uses best-fit amp params Âµ =Mµν(λ)xν(λ)
(Mµν is inv ofMµν); detection statistic is max log-likelihood

F = −χ
2(Â, λ)− χ2(0, λ)

2
=

1
2

xµ(λ)Mµν(λ)xν(λ)
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Bayesian Interpretation (B-statistic)

Assume λ known; likelihood P(x |A) ∝ e−χ
2(A)/2

Bayes’s theorem says P(H|x) = P(x |H)P(H)
P(x)

Odds ratio P(H1|x)
P(H0|x) = P(x |H1)

P(x |H0)
P(H1)
P(H0) ; Bayes Factor B10 = P(x|H1)

P(x|H0)

H1 ≡ noise + signal w/some A; H0 ≡ noise only

F-stat is maximized log-likelihood: maxA
P(x |A)
P(x |0) = eF

But H1 is composite hypoth. P(x |H1) =
∫

P(x |A)P(A|H1)d4A
Don’t maximize; marginalize! B-statistic (Prix): B =∫ P(x |A)

P(x |0) P(A|H1)d4A =
∫

e−
1
2A

µMµνAν+AµxµP(A|H1)d4A
Prix & Krishnan CQG 26, 204013 (2009): If P(A|H1) uniform in {Aµ}, B = eF

Unphysical; implies P(h0, cos ι, ψ, φ0|H1) ∝ h3
0(1− cos2 ι)3

Prix & JTW working on approximations for evaluating
B-stat integral w/physical priors
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Bayesian Interpretation (B-statistic)

Assume λ known; likelihood P(x |A) ∝ e−χ
2(A)/2

Bayes’s theorem says P(H|x) = P(x |H)P(H)
P(x)

Odds ratio P(H1|x)
P(H0|x) = P(x |H1)

P(x |H0)
P(H1)
P(H0) ; Bayes Factor B10 = P(x|H1)

P(x|H0)

H1 ≡ noise + signal w/some A; H0 ≡ noise only

F-stat is maximized log-likelihood: maxA
P(x |A)
P(x |0) = eF

But H1 is composite hypoth. P(x |H1) =
∫

P(x |A)P(A|H1)d4A
Don’t maximize; marginalize! B-statistic (Prix): B =∫ P(x |A)

P(x |0) P(A|H1)d4A =
∫

e−
1
2A

µMµνAν+AµxµP(A|H1)d4A
Prix & Krishnan CQG 26, 204013 (2009): If P(A|H1) uniform in {Aµ}, B = eF

Unphysical; implies P(h0, cos ι, ψ, φ0|H1) ∝ h3
0(1− cos2 ι)3

Prix & JTW working on approximations for evaluating
B-stat integral w/physical priors
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Computational Costs & Phase Parameter Resolution

If λ ≡ {freq, sky pos etc} known, can do most sensitive
fully coherent search (correlate all data)
If some params unknown, have to search over them
Long coherent observation→ fine resolution in freq etc
→ need too many templates→ computationally impossible

e.g. Ntmplts ∼
1

∆f
1

∆ḟ
1

∆sky
∼ T · T 2 · (fT )2

Most CW searches semi-coherent: deliberately limit
coherent integration time & param space resolution
to keep number of templates manageable
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One Semicoherent Method: Cross-Correlation

Dhurandhar, Krishnan, Mukhopadhyay & JTW PRD 77, 082001 (2008)
Chung, Melatos, Krishnan & JTW MNRAS 414, 2650 (2011)
(Currently being applied by JTW, Peiris, Krishnan, et al)

Divide data into segments of length Tsft
& take “short Fourier transform” (SFT) x̃I(f )

Label SFTs by I, J, . . . and pairs by α, β, . . .
+ I & J can be same or different times or detectors

Construct cross-correlation YIJ =
x̃∗I (fk̃I

)x̃J (fk̃J
)

(Tsft)2

+ fk̃I
≈ signal freq @ time TI Doppler shifted for detector I

Use CW signal model to determine expected cross-correlation
btwn SFTs & combine pairs into optimal statistic
ρ =

∑
α(uαYα + u∗αY∗α)
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Tuning the Cross-Correlation Search

Computational considerations limit coherent integration time
Can make tunable semi-coherent search by restricting
which SFT pairs α are included in ρ =

∑
α(uαYα + u∗αY∗α)

E.g., only include pairs where |TI − TJ | ≡ |Tα| ≤ Tmax
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Computing Cost Motivates Search Strategies

All-sky coherent search of full phase param space infeasible:
# of templates skyrockets w/increasing integration time
E.g, for all-sky search with one spindown,

Ntmplts ∼
1

∆f
1

∆ḟ
1

∆sky
∼ T · T 2 · (fT )2 ∝ T 5

Different strategies depending on knowledge of object:
Known pulsars: all phase parameters known,
can do fully coherent Targeted Search
Note fgw = 2frot for triaxial ellipsoid rotating about principal axis

Unknown objects: need to use semi-coherent methods for
All-Sky Search

Known objects not seen as pulsars
(e.g., SN remnants, LMXBs): can do Directed Search
but need to cope w/uncertain remaining phase parameters
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Searching for Known Pulsars

Phase params (rotation, sky pos [& binary params]) known
Pulsar ephemerides (timing) detail phase evolution
Can search over amplitude params (h0, ι, ψ, φ0);
search cost NOT driven by observing time
Different options for amplitude parameters:

Maximize likelihood analytically (F-statistic)
Marginalize likelihood numerically (B-statistic)
Get posterior prob distribution w/Markov-Chain Monte Carlo
Use astro observations to constrain spin orientation (ι & ψ)

Spindown produces indirect upper limit
GW emission above limit −→ more spindown than seen
Pulsars w/rapid spindown have “more room” for GW
LIGO/Virgo have surpassed spindown limit for Crab & Vela
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LSC/Virgo Crab Pulsar Upper Limit

Pulsar in Crab Nebula
Created by SN 1054
∼ 2 kpc away
frot = 29.7 Hz
fgw = 59.4 Hz

Image credit: Hubble/Chandra

Initial LIGO (S5) upper limit beats spindown limit
Abbott et al (LSC) ApJL 683, L45 (2008)
Abbott et al (LSC & Virgo) + Bégin et al ApJ 713, 671 (2010)

No more than 2% of spindown energy loss can be in GW
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Initial Virgo Targets the Vela Pulsar
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LSC/Virgo Vela Pulsar Upper Limit

Pulsar in Vela SN remnant
Created ∼ 12,000 years ago

∼ 300 pc away
frot = 11.2 Hz
fgw = 22.4 Hz

Image credit: Chandra

GW frequency below initial LIGO “seismic wall”
Virgo has better low-frequency sensitivity
VSR2 upper limit beats spindown limit
No more than 10% of spindown energy loss can be in GW

Abadie et al (LSC & Virgo) + Buchner et al ApJ 737, 93 (2011)
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Einstein@Home

Semicoherent methods needed to handle phase param space;
Increase computing resources by enlisting volunteers
Distributed using BOINC & run as screensaver

http://www.einsteinathome.org/
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Directed Searches for NS at Known Sky Positions

Known or suspected neutron stars not seen as pulsars
Knowledge of sky position reduces parameter space
Can do fully coherent search on short stretch of data
using F-statistic method
(Jaranowski, Królak, Schutz PRD 58, 063001 (1998)):

Search over remaining phase params (freq & orbit)
Analytically maximize likelihood ratio over amp params
Use maximized likelihood as detection statistic

To use all available data instead,
need to combine coherent sub-searches incoherently
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LSC/Virgo Cassiopeia A Upper Limit

Cas A SN remnant
∼ 2 kpc away
∼ 300 yr old
central compact object
seen in x-rays;
spin period unknown

Image: Spitzer/Hubble/Chandra

Indirect limit on GW emission from age of neutron star
Sky position known, can search over f , ḟ , f̈ param space
using F-stat on 12 days of LIGO S5 Data
upper limit surpasses indirect limit below 300 Hz

Abadie et al (LSC & Virgo) ApJ 722, 1504 (2010)
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Gravitational Waves from Low-Mass X-Ray Binaries

LMXB: compact object (neutron star or black hole)
in binary orbit w/companion star
If NS, accretion from companion provides “hot spot”;
rotating non-axisymmetric NS emits gravitational waves
Bildsten ApJL 501, L89 (1998)
suggested GW spindown may balance accretion spinup;
GW strength can be estimated from X-ray flux
Torque balance would give ≈ constant GW freq
Signal at solar system modulated by binary orbit
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Brightest LMXB: Scorpius X-1

Scorpius X-1
1.4M� NS w/0.4M� companion
unknown params are f0, a sin i , orbital phase

LSC/Virgo searches for Sco X-1:
Coherent F-stat search w/6 hr of S2 data
Abbott et al (LSC) PRD 76, 082001 (2007)
Directed stochastic (“radiometer”) search (unmodelled)
Abbott et al (LSC) PRD 76, 082003 (2007)
Abbott et al (LSC) arXiv:1109.1809

Proposed directed search methods:
Look for comb of lines produced by orbital modulation
Messenger & Woan, CQG 24, 469 (2007)
Cross-correlation specialized to periodic signal
Dhurandhar, Krishnan, Mukhopadhyay & JTW PRD 77, 082001 (2008)
Prabath Peiris working w/JTW on implementing this search

Promising source for Advanced Detectors
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Summary

Periodic signals generated by orbiting binaries or spinning
neutron stars targeted by space- and ground-based
detectors, respectively
Signal depends on amplitude (extrinsic) & phase (intrinsic)
parameters
Search methods can maximize or marginalize over
unknown parameters
Coherent searches possible when phase params known
(targeted); semicoherent methods used for directed (sky
position known) or all-sky searches
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