

Searching for Gravitational Waves from Periodic Sources

John T. Whelan john.whelan@astro.rit.edu

Center for Computational Relativity & Gravitation & School of Mathematical Sciences Rochester Institute of Technology

> RIT Astro Lunch Seminar 2012 April 11 LIGO-G1200584-v1

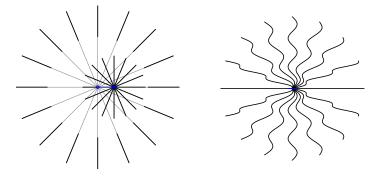
Outline

- Periodic Gravitational Waves
 - Physical Picture
 - Mathematical Description
- Signals and Signal Processing
 - Signal Model & Parameters
 - Coherent Search Methods
 - Semicoherent Methods
- Astrophysical Searches w/LIGO & Virgo
 - Targeted Searches for GWs from Known Pulsars
 - All-Sky Searches for Unknown Neutron Stars
 - Directed Searches for GWs from Known Sky Positions

Outline

- Periodic Gravitational Waves
 - Physical Picture
 - Mathematical Description
- - Signal Model & Parameters
 - Coherent Search Methods
 - Semicoherent Methods
- - Targeted Searches for GWs from Known Pulsars
 - All-Sky Searches for Unknown Neutron Stars
 - Directed Searches for GWs from Known Sky Positions

Gravity + Causality = Gravitational Waves



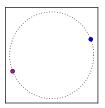
- In Newtonian gravity, force dep on distance btwn objects
- If massive object suddenly moved, grav field at a distance would change instantaneously
- In relativity, no signal can travel faster than light
 - \longrightarrow time-dep grav fields must propagate like light waves

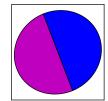
Generation of Gravitational Waves

- EM waves generated by moving/oscillating charges
- GW generated by moving/oscillating masses
- Lowest multipole is quadrupole
- Different types of signals:
 - Burst (transient, unmodelled)
 - Stochastic (long-lived, unmodelled)
 - Binary coalescence (transient, modelled)
 - Periodic (long-lived, modelled)
- Periodic sources have simpler waveforms, but interaction w/detector complicated by signal modulation

Sources of Periodic Gravitational Waves

- System w/quadrupole moment oscillating at frequency Ω emits periodic GWs w/frequency $f_{\text{gw}} = 2\frac{\Omega}{2\pi}$
- Hulse-Taylor binary pulsar 1913+16 (slowly inspiralling) $P_{\rm orb} \approx 7.75\,{\rm hr} \longrightarrow f_{\rm ow} \approx 72\,\mu{\rm Hz}$ (too low)
- White-dwarf binary $f_{\rm cw} \sim 1-10\,{\rm mHz}$ (LISA/NGO source) e.g., AM CVn $P_{\rm orb} \approx 10^3 \, {\rm s} \longrightarrow f_{\rm aw} \approx 2 \, {\rm mHz}$
- Triaxial neutron star (pulsar or LMXB) $f_{\rm qw} \sim 1-10^3\,{\rm Hz}$ (LIGO/Virgo source) e.g., Crab $f_{\rm rot} \approx 30 \, {\rm Hz} \longrightarrow f_{\rm gw} \approx 60 \, {\rm Hz}$





Gravity as Geometry

• Minkowski Spacetime:

$$ds^{2} = -c^{2}(dt)^{2} + (dx)^{2} + (dy)^{2} + (dz)^{2}$$

$$= \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix}^{tr} \begin{pmatrix} -c^{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} dt \\ dx \\ dy \\ dz \end{pmatrix} = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

General Spacetime:

$$ds^2 = egin{pmatrix} dx^0 \ dx^1 \ dx^2 \ dx^3 \end{pmatrix}^{
m tr} egin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \ g_{10} & g_{11} & g_{12} & g_{13} \ g_{20} & g_{21} & g_{22} & g_{23} \ g_{30} & g_{31} & g_{32} & g_{33} \end{pmatrix} egin{pmatrix} dx^0 \ dx^1 \ dx^2 \ dx^3 \end{pmatrix} = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

Gravitational Wave as Metric Perturbation

• For GW propagation & detection, work to 1st order in $h_{\mu\nu} \equiv$ difference btwn actual metric $g_{\mu\nu}$ & flat metric $\eta_{\mu\nu}$:

$$g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}$$

 $(h_{\mu\nu}$ "small" in weak-field regime, e.g. for GW detection)

Convenient choice of gauge is transverse-traceless:

$$h_{0\mu} = h_{\mu 0} = 0$$
 $\eta^{\nu \lambda} \frac{\partial h_{\mu \nu}}{\partial x^{\lambda}} = 0$ $\eta^{\mu \nu} h_{\mu \nu} = \delta^{ij} h_{ij} = 0$

In this gauge:

- Test particles w/constant coörds are freely falling
- Vacuum Einstein eqns \Longrightarrow wave equation for $\{h_{ij}\}$:

$$\left(-\frac{1}{c^2}\frac{\partial^2}{\partial t^2} + \nabla^2\right)\frac{h_{ij}}{\partial t^2} = 0$$

Gravitational Wave Polarization States

• Far from source, GW looks like plane wave prop along kTT conditions mean, in convenient basis.

$$\{k_i\} \equiv \mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \qquad \{h_{ij}\} \equiv \mathbf{h} = \begin{pmatrix} h_+ & h_\times & 0 \\ h_\times & -h_+ & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

where $h_+\left(t-\frac{x^3}{c}\right)$ and $h_\times\left(t-\frac{x^3}{c}\right)$ are components in "plus" and "cross" polarization states

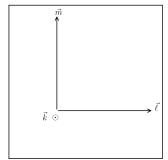
More generally

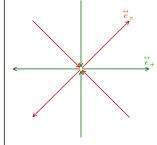
$$\stackrel{\leftrightarrow}{h} = h_+ \left(t - rac{ec{k} \cdot ec{r}}{c}
ight) \stackrel{\leftrightarrow}{e}_+ + h_ imes \left(t - rac{ec{k} \cdot ec{r}}{c}
ight) \stackrel{\leftrightarrow}{e}_ imes$$

The Polarization Basis

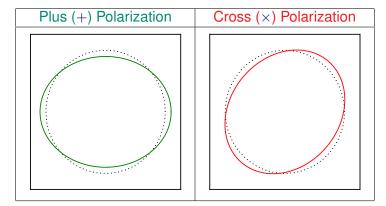
 wave propagating along k; construct \overrightarrow{e}_{+} from \perp unit vectors $\vec{\ell}$ & \vec{m} :

$$\stackrel{\boldsymbol{\leftrightarrow}}{\mathbf{e}}_{+} = \vec{\ell} \otimes \vec{\ell} - \vec{m} \otimes \vec{m} \qquad \stackrel{\boldsymbol{\leftrightarrow}}{\mathbf{e}}_{\times} = \vec{\ell} \otimes \vec{m} + \vec{m} \otimes \vec{\ell}$$



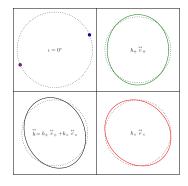


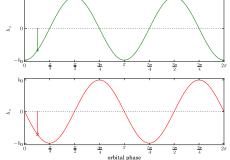
Fluctuating geom changes distances btwn particles in free-fall:



"Face-on"; inclination $\iota = 0^{\circ}$

$$h_+ = A\cos\Phi(t)$$
 $h_\times = A\sin\Phi(t)$

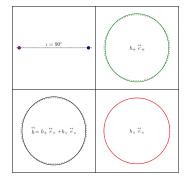


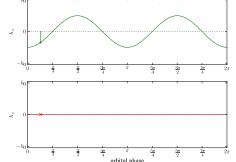


Example: Linear polarization

"Edge-on"; inclination $\iota = 90^{\circ}$

$$h_+ = A\cos\Phi(t)$$
 $h_\times = 0$

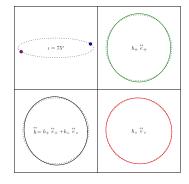


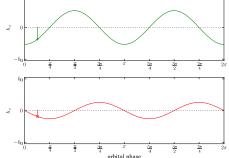


Example: Elliptical polarization

General situation w/inclination ι : $A_+ \propto \frac{1+\cos^2\iota}{2}$; $A_\times \propto \cos\iota$

$$h_+ = A_+ \cos \Phi(t)$$
 $h_\times = A_\times \sin \Phi(t)$

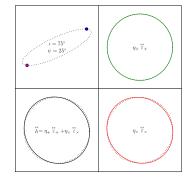


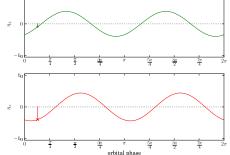


Elliptical Polarization Resolved in Arbitrary Basis

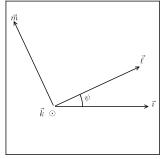
If + & \times basis tensors chosen arbitrarily, not 90° out of phase

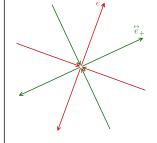
$$\overset{\leftarrow}{h} = \eta_{+} \overset{\leftrightarrow}{\varepsilon}_{+} + \frac{\eta_{\times}}{\varepsilon} \overset{\leftrightarrow}{\varepsilon}_{\times} = h_{+} \overset{\leftrightarrow}{e}_{+} + \frac{h_{\times}}{\varepsilon} \overset{\leftrightarrow}{e}_{\times}$$





- Free to choose $\vec{\ell}$ within plane $\perp \vec{k}$ (fixes $\vec{m} = \vec{k} \times \vec{\ell}$)
- Choose it in orbital plane (binary) or equatorial plane (NS) $\longrightarrow h_+ \& h_\times$ are 90° out of phase
- Pol angle ψ relates $\vec{\ell}$ to some reference direction $\vec{\imath}$ (e.g., "West on the sky")

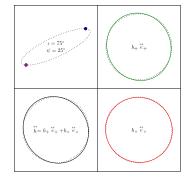


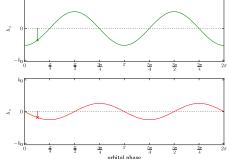


Elliptical Polarization Resolved in Preferred Basis

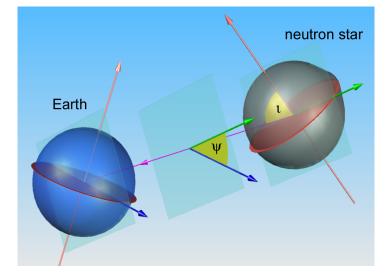
 h_{+} & h_{\times} are 90° out of phase (ι & ψ give alignment of system)

$$h_+ = A_+ \cos \Phi(t)$$
 $h_\times = A_\times \sin \Phi(t)$





Inclination & Polarization Angles for Neutron Star



Outline

- - Physical Picture
 - **Mathematical Description**
- Signals and Signal Processing
 - Signal Model & Parameters
 - Coherent Search Methods
 - Semicoherent Methods
- - Targeted Searches for GWs from Known Pulsars
 - All-Sky Searches for Unknown Neutron Stars
 - Directed Searches for GWs from Known Sky Positions

GW Signal from Periodic Source

GW signal arriving time τ at Solar System Barycenter

$$\stackrel{\leftrightarrow}{h}(\tau) = h_0 \left[\frac{1 + \cos^2 \iota}{2} \cos \Phi(\tau) \stackrel{\leftrightarrow}{e}_+ + \cos \iota \sin \Phi(\tau) \stackrel{\leftrightarrow}{e}_\times \right]$$

- Amplitude h_0 depends on distance, frequency, ellipticity
- Pol basis $\{ \overrightarrow{e}_+, \overrightarrow{e}_\times \}$ depends on sky position $\{ \alpha, \delta \}$ and polarization angle ψ
- Phase evolution e.g., $\Phi(\tau) = \phi_0 + 2\pi \left(f_0 \tau + \frac{f_1 \tau^2}{2} + \cdots \right)$ (+Doppler mod if NS in binary; note constant Doppler shift OK)
- Signal $h(t) = \stackrel{\leftrightarrow}{h}(\tau(t)) : \stackrel{\leftrightarrow}{d}$ received in detector has $\{\alpha, \delta\}$ -dep Doppler shift $\tau(t)$ due to daily & yearly motion of detector
- Divide signal parameters into
 - amplitude params: $\{h_0, \iota, \psi, \phi_0\}$
 - phase params: $\{\alpha, \delta, f_0, f_1, \ldots\}$ + orbital params for LMXB

- Divide signal parameters into • amplitude params: $\{h_0, \iota, \psi, \phi_0\}$

 - phase params: $\lambda \equiv \{\alpha, \delta, f_0, f_1, ...\}$ + orb params for LMXB
- Jaranowski, Królak, Schutz PRD 58, 063001 (1998) showed signal linear in $\{A^{\mu}\}$, fcns of amplitude params

$$h(t) = \mathcal{A}^{\mu} h_{\mu}(t)$$
 (assume $\sum_{\mu=1}^{4}$)

template waveforms $h_{\mu}(t)$ depend on phase params λ

• Mismatch of obs data w/signal model quadratic in $\{A^{\mu}\}$:

$$\chi^{2}(\mathcal{A}, \boldsymbol{\lambda}) = \mathcal{A}^{\mu} \mathcal{M}_{\mu\nu}(\boldsymbol{\lambda}) \mathcal{A}^{\nu} - 2 \mathcal{A}^{\mu} \boldsymbol{x}_{\mu}(\boldsymbol{\lambda}) + \chi^{2}(0, \boldsymbol{\lambda})$$

• \mathcal{F} -stat method uses best-fit amp params $\widehat{\mathcal{A}}^{\mu} = \mathcal{M}^{\mu\nu}(\lambda) x_{\nu}(\lambda)$ $(\mathcal{M}^{\mu\nu})$ is inv of $\mathcal{M}_{\mu\nu}$; detection statistic is max log-likelihood

$$\mathcal{F} = -\frac{\chi^2(\widehat{\mathcal{A}}, \frac{\lambda}{\lambda}) - \chi^2(0, \frac{\lambda}{\lambda})}{2} = \frac{1}{2} x_{\mu}(\lambda) \mathcal{M}^{\mu\nu}(\lambda) x_{\nu}(\frac{\lambda}{\lambda})$$

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \, \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But H_1 is composite hypoth. $P(x|H_1) = \int P(x|A)P(A|H_1)dA$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{\mathcal{A}^{\mu}\}$, $\mathcal{B} = e^{\mathcal{F}}$ Unphysical; implies $P(h_0, \cos \iota, \psi, \phi_0 | \mathcal{H}_1) \propto h_0^3 (1 \cos^2 \iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \, \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But H_1 is composite hypoth. $P(x|H_1) = \int P(x|A)P(A|H_1)dA$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{\mathcal{A}^{\mu}\}$, $\mathcal{B}=e^{\mathcal{F}}$ Unphysical; implies $P(h_0,\cos\iota,\psi,\phi_0|\mathcal{H}_1)\propto h_0^3(1-\cos^2\iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \, \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But \mathcal{H}_1 is composite hypoth. $P(x|\mathcal{H}_1) = \int P(x|\mathcal{A})P(\mathcal{A}|\mathcal{H}_1)d^4\mathcal{A}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{\mathcal{A}^{\mu}\}$, $\mathcal{B}=e^{\mathcal{F}}$ Unphysical; implies $P(h_0,\cos\iota,\psi,\phi_0|\mathcal{H}_1)\propto h_0^3(1-\cos^2\iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|\mathcal{A})} = e^{\mathcal{F}}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): \mathcal{B} =
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{A^{\mu}\}$, $\mathcal{B} = e^{\mathcal{F}}$
- Prix & JTW working on approximations for evaluating

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But \mathcal{H}_1 is composite hypoth. $P(x|\mathcal{H}_1) = \int P(x|\mathcal{A})P(\mathcal{A}|\mathcal{H}_1)d^2\mathcal{A}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{A^{\mu}\}$, $\mathcal{B} = e^{\mathcal{F}}$ Unphysical; implies $P(h_0, \cos \iota, \psi, \phi_0|\mathcal{H}_1) \propto h_0^3 (1 \cos^2 \iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But \mathcal{H}_1 is composite hypoth. $P(x|\mathcal{H}_1) = \int P(x|\mathcal{A})P(\mathcal{A}|\mathcal{H}_1)d^4\mathcal{A}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{A^{\mu}\}$, $\mathcal{B} = e^{\mathcal{F}}$ Unphysical; implies $P(h_0, \cos \iota, \psi, \phi_0|\mathcal{H}_1) \propto h_0^3 (1 \cos^2 \iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But \mathcal{H}_1 is composite hypoth. $P(x|\mathcal{H}_1) = \int P(x|\mathcal{A})P(\mathcal{A}|\mathcal{H}_1)d^4\mathcal{A}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{A^{\mu}\}$, $\mathcal{B} = e^{\mathcal{F}}$ Unphysical; implies $P(h_0, \cos \iota, \psi, \phi_0|\mathcal{H}_1) \propto h_0^3 (1 \cos^2 \iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But \mathcal{H}_1 is composite hypoth. $P(x|\mathcal{H}_1) = \int P(x|\mathcal{A})P(\mathcal{A}|\mathcal{H}_1)d^4\mathcal{A}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{A^{\mu}\}$, $\mathcal{B} = e^{\mathcal{F}}$ Unphysical; implies $P(h_0, \cos \iota, \psi, \phi_0 | \mathcal{H}_1) \propto h_0^3 (1 \cos^2 \iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

- Assume λ known; likelihood $P(x|A) \propto e^{-\chi^2(A)/2}$
- Bayes's theorem says $P(\mathcal{H}|x) = \frac{P(x|\mathcal{H})P(\mathcal{H})}{P(x)}$
- Odds ratio $\frac{P(\mathcal{H}_1|x)}{P(\mathcal{H}_0|x)} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)} \frac{P(\mathcal{H}_1)}{P(\mathcal{H}_0)}$; Bayes Factor $\mathcal{B}_{10} = \frac{P(x|\mathcal{H}_1)}{P(x|\mathcal{H}_0)}$
- $\mathcal{H}_1 \equiv \text{noise} + \text{signal w/some } \mathcal{A}; \mathcal{H}_0 \equiv \text{noise only}$
- \mathcal{F} -stat is maximized log-likelihood: $\max_{\mathcal{A}} \frac{P(x|\mathcal{A})}{P(x|0)} = e^{\mathcal{F}}$
- But \mathcal{H}_1 is composite hypoth. $P(x|\mathcal{H}_1) = \int P(x|\mathcal{A})P(\mathcal{A}|\mathcal{H}_1)d^4\mathcal{A}$
- Don't maximize; marginalize! \mathcal{B} -statistic (Prix): $\mathcal{B} = \int \frac{P(x|\mathcal{A})}{P(x|0)} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A} = \int e^{-\frac{1}{2}\mathcal{A}^{\mu}\mathcal{M}_{\mu\nu}\mathcal{A}^{\nu} + \mathcal{A}^{\mu}x_{\mu}} P(\mathcal{A}|\mathcal{H}_1) d^4 \mathcal{A}$
- Prix & Krishnan *CQG* **26**, 204013 (2009): If $P(A|\mathcal{H}_1)$ uniform in $\{A^{\mu}\}$, $\mathcal{B} = e^{\mathcal{F}}$ Unphysical; implies $P(h_0, \cos \iota, \psi, \phi_0 | \mathcal{H}_1) \propto h_0^3 (1 \cos^2 \iota)^3$
- Prix & JTW working on approximations for evaluating B-stat integral w/physical priors

Computational Costs & Phase Parameter Resolution

- If λ = {freq, sky pos etc} known, can do most sensitive fully coherent search (correlate all data)
- If some params unknown, have to search over them
- Long coherent observation → fine resolution in freq etc
 → need too many templates → computationally impossible

e.g.
$$N_{\text{tmplts}} \sim \frac{1}{\Delta f} \frac{1}{\Delta \dot{f}} \frac{1}{\Delta \text{sky}} \sim T \cdot T^2 \cdot (fT)^2$$

 Most CW searches semi-coherent: deliberately limit coherent integration time & param space resolution to keep number of templates manageable

One Semicoherent Method: Cross-Correlation

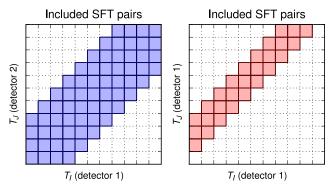
Dhurandhar, Krishnan, Mukhopadhyay & JTW *PRD* **77**, 082001 (2008) Chung, Melatos, Krishnan & JTW *MNRAS* **414**, 2650 (2011)

(Currently being applied by JTW, Peiris, Krishnan, et al)

- Divide data into segments of length $T_{\rm sft}$ & take "short Fourier transform" (SFT) $\tilde{x}_l(f)$
- Label SFTs by I, J, ... and pairs by α, β, ...
 I & J can be same or different times or detectors
- Construct cross-correlation $\mathcal{Y}_{IJ} = \frac{\tilde{x}_I^*(f_{\tilde{k}_I})\tilde{x}_J(f_{\tilde{k}_J})}{(T_{\mathrm{sft}})^2}$ Signal freq @ time T_I Doppler shifted for detector I
- Use CW signal model to determine expected cross-correlation btwn SFTs & combine pairs into optimal statistic $\rho = \sum_{\alpha} (u_{\alpha} \mathcal{Y}_{\alpha} + u_{\alpha}^* \mathcal{Y}_{\alpha}^*)$

Tuning the Cross-Correlation Search

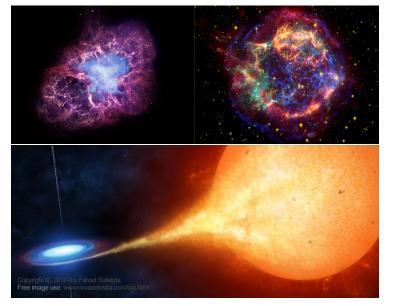
- Computational considerations limit coherent integration time
- Can make tunable semi-coherent search by restricting which SFT pairs α are included in $\rho = \sum_{\alpha} (u_{\alpha} \mathcal{Y}_{\alpha} + u_{\alpha}^{*} \mathcal{Y}_{\alpha}^{*})$
- ullet E.g., only include pairs where $|T_I T_J| \equiv |T_{lpha}| \leq T_{ ext{max}}$



Outline

- - Physical Picture
 - Mathematical Description
- - Signal Model & Parameters
 - Coherent Search Methods
 - Semicoherent Methods
- Astrophysical Searches w/LIGO & Virgo
 - Targeted Searches for GWs from Known Pulsars
 - All-Sky Searches for Unknown Neutron Stars
 - Directed Searches for GWs from Known Sky Positions

Periodic Gravitational Waves Astrophysical Searches



Computing Cost Motivates Search Strategies

All-sky coherent search of full phase param space infeasible: # of templates skyrockets w/increasing integration time E.g., for all-sky search with one spindown,

$$N_{\text{tmplts}} \sim \frac{1}{\Delta f} \frac{1}{\Delta \dot{f}} \frac{1}{\Delta \text{sky}} \sim T \cdot T^2 \cdot (fT)^2 \propto T^5$$

Different strategies depending on knowledge of object:

- Known pulsars: all phase parameters known, can do fully coherent Targeted Search Note $f_{qw} = 2f_{rot}$ for triaxial ellipsoid rotating about principal axis
- Unknown objects: need to use semi-coherent methods for All-Sky Search
- Known objects not seen as pulsars (e.g., SN remnants, LMXBs): can do **Directed Search** but need to cope w/uncertain remaining phase parameters

- Phase params (rotation, sky pos [& binary params]) known Pulsar ephemerides (timing) detail phase evolution
- Can search over amplitude params $(h_0, \iota, \psi, \phi_0)$; search cost NOT driven by observing time
- Different options for amplitude parameters:
 - Maximize likelihood analytically (F-statistic)
 - Marginalize likelihood numerically (*B*-statistic)
 - Get posterior prob distribution w/Markov-Chain Monte Carlo
 - Use astro observations to constrain spin orientation ($\iota \& \psi$)
- Spindown produces indirect upper limit
 - GW emission above limit → more spindown than seen
 - Pulsars w/rapid spindown have "more room" for GW
 - LIGO/Virgo have surpassed spindown limit for Crab & Vela

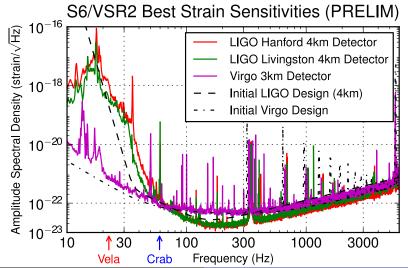
LSC/Virgo Crab Pulsar Upper Limit

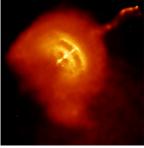
- Pulsar in Crab Nebula
- Created by SN 1054
- $f_{\rm rot} = 29.7 \, \text{Hz}$
- $f_{\text{ow}} = 59.4 \,\text{Hz}$

Image credit: Hubble/Chandra

- Initial LIGO (S5) upper limit beats spindown limit
- Abbott et al (LSC) ApJL 683, L45 (2008)
- Abbott et al (LSC & Virgo) + Bégin et al ApJ 713, 671 (2010)
- No more than 2% of spindown energy loss can be in GW

Initial Virgo Targets the Vela Pulsar





- Pulsar in Vela SN remnant
- Created ~ 12,000 years ago
- $\bullet \sim 300\,\mathrm{pc}$ away
- $f_{\text{rot}} = 11.2 \,\text{Hz}$
- $f_{gw} = 22.4 \, Hz$

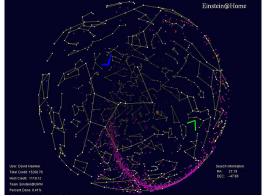
Image credit: Chandra

- GW frequency below initial LIGO "seismic wall"
- Virgo has better low-frequency sensitivity
- VSR2 upper limit beats spindown limit
- No more than 10% of spindown energy loss can be in GW

Abadie et al (LSC & Virgo) + Buchner et al ApJ 737, 93 (2011)

Einstein@Home

Semicoherent methods needed to handle phase param space; Increase computing resources by enlisting volunteers Distributed using BOINC & run as screensaver



http://www.einsteinathome.org/

Directed Searches for NS at Known Sky Positions

- Known or suspected neutron stars not seen as pulsars
- Knowledge of sky position reduces parameter space
- Can do fully coherent search on short stretch of data using F-statistic method (Jaranowski, Królak, Schutz PRD 58, 063001 (1998)):
 - Search over remaining phase params (freq & orbit)
 - Analytically maximize likelihood ratio over amp params
 - Use maximized likelihood as detection statistic
- To use all available data instead, need to combine coherent sub-searches incoherently

LSC/Virgo Cassiopeia A Upper Limit

- Cas A SN remnant
- $\bullet \sim 300 \, \mathrm{yr} \, \mathrm{old}$
- central compact object seen in x-rays: spin period unknown

Image: Spitzer/Hubble/Chandra

- Indirect limit on GW emission from age of neutron star
- Sky position known, can search over f, f, f param space using \mathcal{F} -stat on 12 days of LIGO S5 Data upper limit surpasses indirect limit below 300 Hz

Abadie et al (LSC & Virgo) *ApJ* **722**, 1504 (2010)

Gravitational Waves from Low-Mass X-Ray Binaries

- LMXB: compact object (neutron star or black hole) in binary orbit w/companion star
- If NS, accretion from companion provides "hot spot"; rotating non-axisymmetric NS emits gravitational waves
- Bildsten ApJL 501, L89 (1998)
 suggested GW spindown may balance accretion spinup;
 GW strength can be estimated from X-ray flux
- Torque balance would give ≈ constant GW freq
- Signal at solar system modulated by binary orbit

Brightest LMXB: Scorpius X-1

- Scorpius X-1
 - $1.4M_{\odot}$ NS w/0.4 M_{\odot} companion
 - unknown params are f_0 , $a \sin i$, orbital phase
- LSC/Virgo searches for Sco X-1:
 - Coherent F-stat search w/6 hr of S2 data Abbott et al (LSC) PRD 76, 082001 (2007)
 - Directed stochastic ("radiometer") search (unmodelled)
 Abbott et al (LSC) PRD 76, 082003 (2007)
 Abbott et al (LSC) arXiv:1109.1809
- Proposed directed search methods:
 - Look for comb of lines produced by orbital modulation
 Messenger & Woan, CQG 24, 469 (2007)
 - Cross-correlation specialized to periodic signal Dhurandhar, Krishnan, Mukhopadhyay & JTW PRD 77, 082001 (2008)
 Prabath Peiris working w/JTW on implementing this search
- Promising source for Advanced Detectors

Summary

- Periodic signals generated by orbiting binaries or spinning neutron stars targeted by space- and ground-based detectors, respectively
- Signal depends on amplitude (extrinsic) & phase (intrinsic) parameters
- Search methods can maximize or marginalize over unknown parameters
- Coherent searches possible when phase params known (targeted); semicoherent methods used for directed (sky position known) or all-sky searches