The Study of Evanescent-Wave Heat Transfer in a Parallel Plane Geometry

Richard S. Ottens*, V. Quetschke†, G. Mueller*, D.H. Reitze*, D.B. Tanner*

*University of Florida, †University of Texas at Brownville

NSF PHY-0555453 DCC# LIGO-G1200547

Outline

- Theory
- Experimental setup
- Results
- Application in LIGO
- Current standing

What is Evanescent-Wave Heat Transfer?

- Exponentially decaying EM field outside a material medium
 - Produced by total internal reflection inside a medium.
- For a propagating wave in the transmitted medium
 - k_{tx} and k_{tz} can be found by using Snell's Law.
 - In the case of total internal reflection (sinθ_i > n_t/n_i)
- Thus resulting in,

$$\vec{E}_t = \vec{E}_{t0} e^{ik_t x \frac{n_i}{n_t} \sin \theta_i} e^{-k_t z \sqrt{\frac{n_i^2}{n_t^2} \sin^2 \theta_i - 1}} e^{-i\omega t}$$

E_{tz} is exponentially decaying

What is it Good For?

If another medium is brought near the interface, then some of the energy emitted in the z direction can propagate into the new material.

This condition known as frustrated total internal reflection (photon tunneling).

Theory

- Heat transfer coefficient w is the sum of two parts $w_{
 m sin}$ and $w_{
 m exp}$
- $w_{
 m sin}$ is for propagating fields (far-field)
- $^{ullet} w_{\scriptscriptstyle \mathsf{exp}}$ is for the near-field

Theory

Heat Transfer Measurements

To measure the heat transfer we take the ratio of power going to the heater to the area times the difference in temperature of the two plates

$$\boldsymbol{w} = \frac{P}{A \cdot \Delta T}$$

By moving the two plates closer together we should see an increase of the power going to the heater

Experiment

Results

- Four data runs at four different temperature differences (offset by 2 W/m²K from each other)
- Model prediction is in solid black
- Correction for bend in sapphire plate is in dashed black

Cooling LIGO

- Future versions of LIGO may be cryogenic
 - To reduce thermal noise
 - A need arises to remove absorbed laser power from the test masses ~3W
- Methods of Heat Transfer
 - Convection <<1μW
 - Conduction ~60mW
 - Radiation ~700mW (far field)

Evanescent waves and LIGO

Implementing near field cooling

- Back
 - Only have to deal with one surface
 - Have to deal with noise coupling due to electrostatics and Casimir force
- Sides
 - Have to deal with multiple surfaces
 - Noise coupling has minimal impact
- Back and Sides

Conduction through the fibers: 4.4x10⁻⁶ W/K (<< far field radiation)

Modifications

- Modified to work in cryogenic conditions
- Thicker Sapphire plates
- Both sapphire plates will be thermally controlled

Capacitance Measurements

- The new sapphire plates have a bigger bevel.
- This adds a stray capacitance to the total which causes our distance measurements to be less accurate
- A work in progress

Capacitance Measurements

Originally we fit to the equation

$$C = \frac{\gamma}{d + d_0} + \delta$$

- Where γ , δ , and d_0 are fitted values.
- Once these values were determined we could easily find d(C).

$$d(C) = \frac{\gamma}{C - \delta} - d_0$$

Capacitance Measurements

- Depending on which case we use and if we approximate we can get different values for the fits
- These fits can be about 5 μm off from one another

Cleaning

- With thicker sapphire plates
 - Less bend
 - Dirt becomes a bigger problem
- Even in the UF LIGO clean room there is still dust from wipes and sticky sediment from unknown origin (likely from the clean solutions).
- We are working on a method for cleaning to clean the sapphire plates.
 - Drag wipe with acetone
 - Drag wipe with methanol
 - Coat with first contact (but not on capacitor plates)

Conclusion

- Measured evanescentwave heat transfer across a small gap and it agrees with theory
- Can potentially be used to take excess heat from mirrors in LIGO
- Working on important issue to ensure proper measurements

