LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1200508

LIGO

Jan 23rd, 2014

aLIGO HAM-ISI, Installation Test Report, Phase II

Chamber-Side Testing & Initial Chamber Testing

LHO HAM5-ISI (unit #7)

E1200508-V5

Hugo Paris, Fabrice Matichard Hugh Radkins, Jim Warner, Greg Grabeel, Corey Gray, Mitchell Robinson, Eric Allwine

> Distribution of this document: Advanced LIGO Project

This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

LIGO Hanford Observatory P.O. Box 1970 Mail Stop S9-02 Richland WA 99352 Phone 509-372-8106 Fax 509-372-8137 Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

LIGO Livingston Observatory P.O. Box 940 Livingston, LA 70754 Phone 225-686-3100 Fax 225-686-7189

Table of contents:

INITIAL IN CHAMBER TESTING	7
Step 1: Cables Inventory	
Step 2: Electronics Inventory	
1.Step 3: Level of Stage 1	
Step 4: Mass Budget	
2.Step 5: Shim Thickness	
3.Step 6: Blade Spring Profile	
4.Step 7: Lockers Adjustment	
5.Step 8: CPS Gap	
Step 9: CPS and GS13 Spectra - ISI Unlocked	16
6.Step 10: GS13 ASD - Tabled Tilted	
7.Step 11: GS13 pressure readout	
	17
8.Step 12: Actuators Sign and range of motion (Local drive)	
Step 13: Static Testing (Tests in the local basis)	
9.Step 14: Linearity test	21
10.Step 15: Frequency response	23
11.Step 15.1: Local to local measurements	23
12.Step 15.2: Local to local measurements V.S. LLO	24

HAM5-ISI - PHASE II TESTING LIGO-E1200508

PHASE II Testing

The phase II of HAM-ISI testing corresponds to the tests performed after the *Assembly Validation*, and before the *Control and Commissioning* of the Units. It is divided in two parts. The present document is divided in two sections: One for each part of the Phase II testing:

Part.1 Chamber-Side testing **Part.2** Initial Chamber Testing

Chamber-Side Testing is a basic sensor check with a spectrum analyzer. Units can be inserted in their chamber of destination once they pass.

Initial Chamber Testing takes place in open chamber, with the optics off, and HEPI locked. The ISI is then connected to the electronic rack with the final in-field cables. Models are installed and running. Tests are performed with Matlab® scripts.

Optics and Suspensions can be installed right after the end of this phase of testing. No test is performed during their installation.

Final Chamber Testing starts once Optics and Suspensions are installed. The lockers and the CPSs usually need to be reset at this point.

Part 1

Introduction

Chamber-Side Testing

Not performed.

Conclusion

Chamber-Side Testing

HAM-ISI Unit #6 was intended to populate HAM5 chamber. No chamber-side testing was performed.

Part 2

Introduction

Initial Chamber Testing

This part of the Phase II testing takes place in open chamber, with the optics off, and HEPI unlocked, with no acuators. The ISI is then connected to the electronic rack with the final in-field cables. Models are installed and running. Tests are performed with Matlab® scripts.

Optics and Suspensions can be installed right after the end of this phase of testing. No test is performed during their installation.

Final Chamber Testing starts once Optics and Suspensions are installed. The lockers and the CPSs usually need to be reset at this point.

INITIAL IN CHAMBER TESTING

HAM5-ISI was installed in in its chamber on May 21st 2013. This initial in chamber testing was conducted after Jan 22nd 2014.

Step 1: Cables Inventory

Actuator cables were replaced in chamber to reach the feedthrough. S/N were recorded.

Cable Con- nects	Cable S/N				
Part Name	Configura- tion	Corner 1	Corner 2	Corner 3	
GS13	Horizontal				
_	Vertical		-		
L4C	Horizontal				
L4C	Vertical				
Actuator	Horizontal				
Actuator	Vertical				

Table – Cables inventory

Acceptance Criteria:

Inventory is complete

Test result:

Failed: ____

Step 2: Electronics Inventory

Hardware	LIGO refer- ence	S/N
Coil driver	D0902744	
Anti Image filter	D1100202	
Anti aliasing fil- ter	D1000269	
Interface chassis	D1000067	

Acceptance Criteria:

Inventory is complete

Test result:

Passed: <u>X</u> Failed: ____

1. Step 3: Level of Stage 1

The optical table is level within a ⁺/_0.1mm tolerance.

Max angle = 0.008" / 86" = 93µrad

Acceptance Criteria

The maximum angle of the table with the horizontal mustn't exceed ~100µrad -

Test result:

Failed: ____

Passed: X

Step 4: Mass Budget **To be updataed**

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
w9			1	1	1		1	41.8	19
w1				2	1			16.9	7.7
w2	1	3	2	1			1	37.8	17.1
w3							1	27.2	12.3
w4									
w5	1		1	1			1	34.5	15.6
w6							1	27.2	12.3
w7		1					1	28.3	12.8
w8		1					1	28.3	12.8
Side Masses Total	2	5	4	5	2	0	7	242	109.7

Table – Wall masses distribution

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
k1					1		1	35.1	15.92
k2						2		31.2	14.15
k3					1		1	35.1	15.92
k4						2		31.2	14.15
k5					1		1	35.1	15.92
k6						2		31.2	14.15
Keel Masses Total	0	0	0	0	3	6	3	198.9	90.22

Table – Keel masses distribution

50lbs	597lbs	10kg	Total (kg)
4	1	0	361.4

Table – Optic table masses distribution

	Side	Keel	Тор	Total
Weigh (kg)	109.7	90.22	361.4	561.3

Table – Mass budget sum up

******To be updataed**

Figure – Wall Masses (W) and Keel masses (K) location. South of picture = corner 1

Issues/difficulties/comments regarding this test:

The mass budget was reported to be 576.22kgs during Assembly Validation. It is now 15kg lighter.

- The ISI was roughly balanced for the Initial In Chamber Testing.

Acceptance Criteria

The Mass budget must be

- 579.1 Kg (cf. E1100427)+/-25Kg (5%)

Test result:

Failed: ____

Passed: <u>X</u>

2. Step 5: Shim Thickness

<u>Issues/difficulties/comments regarding this test:</u>

- The shims for locker D needed to be changed in-chamber, from .123" to .127".

-		

Shim thickness (mils)
125
124
122
126

Table – Shims Thickness

Test result:

Failed: ____

3. Step 6: Blade Spring Profile

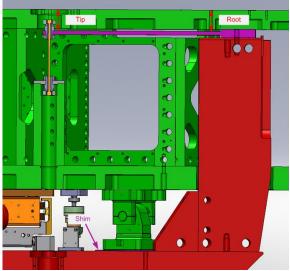


figure – Blade spring profile measurement points

Blade #	Root (Mils)	Tip(Mils)	Flatness (mils)
1			10
2			5
3			7

Table – Blade Spring Profile

<u>Issues/difficulties/comments regarding this test:</u>

Blade #2 is slightly out of the preferred range. The measurement was performed on a locked ISI. The locked position is not optimal, as lockers need to be reset.

Acceptance Criteria:

- Recorded for traceability.
- Flatness preferred within 0.015" inches.

Test result:

Failed: ____

4. Step 7: Lockers Adjustment

The maximum difference recorded on the CPSs between the unlocked and the locked positions is about 1V which roughly corresponds to 3280cts

Issues/difficulties/comments regarding this test:

HAM5-ISI - PHASE II TESTING LIGO-E1200508

- The maximum difference recorded on the CPSs between the unlocked and the locked positions is out of the preferred ⁺/.1600cts range.
- Lockers should be set up with CPS Gaps, after this phase of testing.
- Lockers are reset after the installation of suspensions.

Acceptance criteria:

- Recorded for traceability
- Preferred within ⁺/₋1600cts

Test result:

Failed: X

5. Step 8: CPS Gap

H1 readout (count)	-2112
H2 readout (count)	-1118
H3 readout (count)	-156
V1 readout (count)	971
V2 readout (count)	82
V3 readout (count)	2507

Table – CPS sensor readouts – ISI Unlocked, no drive

Issues/difficulties/comments regarding this test:

- CPS mean readouts are out of the preferred ⁺/₋400cts range.
- CPS Gap should not be set up during this phase of testing.
- CPSs are reset after the installation of suspensions.

Acceptance criteria:

- Recorded for traceability
- Preferred within ⁺/₋400cts

Test result:

Failed: ____

Passed: <u>X</u>

Passed: _____

Step 9: CPS and GS13 Spectra - ISI Unlocked

Data files in SVN at:

/seismic/HAM-ISI/H1/HAM5/Data/Spectra/Undamped/

- LHO_ISI_HAM5_ASD_m_CPS_GS13_2020_04_09_4 4:1:.mat

*** -LHO_ISI_HAM4_ASD_m_CPS_T240_L4C_GS13_Locked_vs_Unlocked_2014_01_23.mat

Scripts files for taking and processing the data, and plotting it in SVN at:

- seismic/HAM-ISI/Common/Testing_Functions_HAM_ISI/
 - Plot_ASD_Unlocked_Locked_HAM_ISI.m
 - Plot_ASD_Unlocked_Locked_Group_HAM_ISI.m

Figures in SVN at:

seismic/HAM-ISI/H1/HAM5/Data/Figures/Spectra/Undamped/ -LHO_ISI_HAM5_ASD_m_CPS_GS13_2020_04_09_4 4:1:.fig

-LHO_ISI_HAM4_ASD_m_GS13_Requirements_Locked_vs_Unlocked_2014_01_23.fig *- LHO_ISI_HAM4_ASD_m_CPS_Requirements_Locked_vs_Unlocked_2012_01_23.fig

CPS calibration:

The CPS power spectrums are calibrated by using a sensitivity of 30.2 nm/count.

Locked/Unlocked spectra not performed yet.

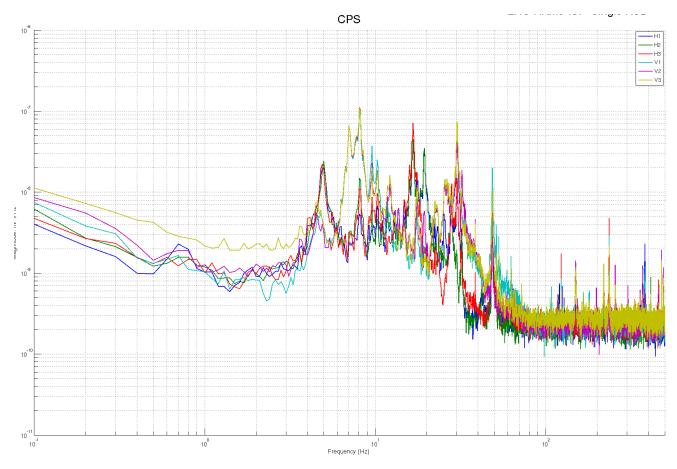


Figure - Calibrated CPS power spectrum – ISI Unlocked

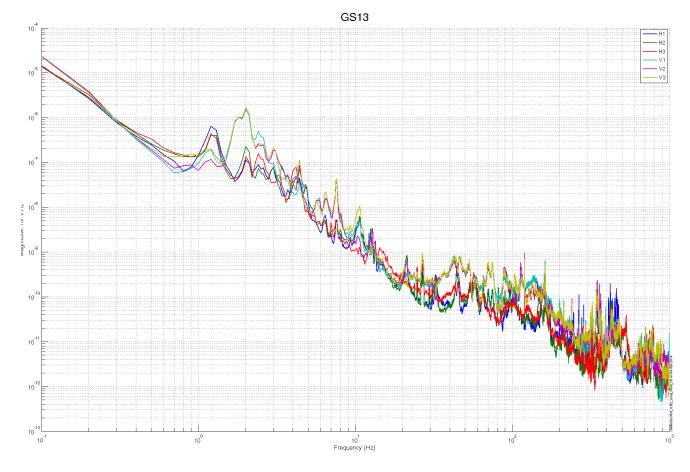


Figure – Power spectrum Calibrated GS13 – ISI Unlocked

Issues/difficulties/comments regarding this test:

- Locked data was recorded during the weekend, after the optical table payload was removed (421.51kg).

Acceptance criteria:

- No cross talk (peaks at low frequencies + harmonics on measurements)
- Magnitudes of power spectra must be between requirement curves such as in the following figures (dashed lines)

Test result:

Failed: ____

Comment:

GS13 requirement curves need to be updated.

6. Step 10: GS13 ASD - Tabled Tilted

Not performed.

Test result: Waived <u>X</u> Passed: ____Failed: ____

7. Step 11: GS13 pressure readout

Pods	Pressure	Sensors	_	HAM4
1000	110000000	3011301 3		1 11 11 1-4

Figure – Pressure Readouts (04/09/2014)

Acceptance criteria:

- The pressure on *GS13_P* channels must be 102KPa +/-8 KPa (25000 counts +/- 3000 counts) - *GS13_P* must vary the same way in each corner and *GS13_DIFF* must be constant (channels follow comparable trend)

Test result:

Failed: ____

Passed: X

8. Step 12: Actuators Sign and range of motion (Local drive)

	Negative drive	No Drive	Positive drive
H1 readout (count)	-28918	-2112	18554
H2 readout (count)	-24416	-1118	23210
H3 readout (count)	-24392	-156	24474
V1 readout (count)	-18040	971	20967
V2 readout (count)	-26245	-81	23720
V3 readout (count)	-22571	2507	21072

Table - Range of motion - Local drive

Acceptance criteria:

- Main couplings sensors readout must be at least 16000 counts (~0.02")
- A positive offset drive on one actuator must give positive sensor readout on the collocated sensor. Signs will also be tested when measuring local-to-local transfer functions.

Test result:

Failed: ____

Passed: X

Step 13: Static Testing (Tests in the local basis)

	Sensors (counts)						
	H1	H2	H3	V1	V2	V3	
H1	1876	1180	1172	30	-39	-30	
H2	1177	1883	1173	-10	-12	27	
НЗ	1172	1176	1869	-7	-6	-20	
V1	174	173	-344	1317	-64	-597	
V2	-351	184	179	-607	1328	-55	
V3	172	-347	181	-24	-589	1315	

Table - Main couplings and cross couplings

Issues/difficulties/comments regarding this test:

Acceptance criteria:

- Vertical

For a +1000 count offset drive on vertical actuators

0 Collocated sensors must be 1400 counts +/- 10%

- Horizontal

For a +1000 count offset drive on horizontal actuators

- 0 Collocated sensors must be 2000 counts +/- 10%
- 0 Non-collocated horizontal sensors must be 1250 counts +/-10%

Test result:

Failed: ____

Passed: X

9. Step 14: Linearity test

	Slope	Offset	Average slope	Variation from average(%)
H1	1.87	-2049		.2
H2	1.88	-1075	1.87	4
НЗ	1.87	93		.2
V1	1.34	901		.6
V2	1.36	-174	1.37	-1.3
V3	1.33	-2439		.7

Table - Slopes and offset of the triplet Actuators - HAM-ISI - Sensors

Figure - Horizontal and vertical actuators x HAM-ISI x sensors

Scripts files for taking data in SVN at:

seismic/HAM-ISI/Common/Testing_Functions_HAM_ISI/

- Linearity_Test_Awgstream_HAM_ISI.m

Data files in SVN at: seismic/HAM-ISI/L1/HAM5/Data/Linearity_Test/

- LHO_ISI_HAM5_Linearity_test_20140327.mat

Figures in SVN at:

seismic/HAM-ISI/H1/HAM5/Data/Figures/Linearity_Test/

- LHO_ISI_HAM5_Linearity_test_20140327.fig

<u>Issues/difficulties/comments regarding this test:</u> V3 actuator is out of spec.

Acceptance criteria:

- Horizontal and vertical slopes of the triplet actuators x HAM-ISI x sensors = Average slope +/- 1.5%

Test result:

Failed: ____

10.Step 15: Frequency response

All input/output filters are ON. HEPI is unlocked with no actuators. The chamber is closed with sheets on.

11. Step 15.1: Local to local measurements

Data files in SVN at:

seismic/HAM-ISI/H1/HAM5/Data/Transfer_Functions/Measurements/Undamped/

H1 HAM5 ISI Data TF L2L 200Hz 800Hz 20140407-201148.mat

H1_HAM5_ISI_Data_TF_L2L_5Hz_200Hz_20140407-224528.mat

H1_HAM5_ISI_Data_TF_L2L_500mHz_5Hz_20140408-001901.mat

H1 HAM5 ISI Data TF L2L 100mHz 500mHz 20140408-042834.mat H1_HAM5_ISI_Data_TF_L2L_10mHz_100mHz_20140408-051007.mat

Data collection script files:

seismic/HAM-ISI/H1/HAM5/Scripts/Data_Collection/

Run_Exc_Batch_H1_HAM5.m

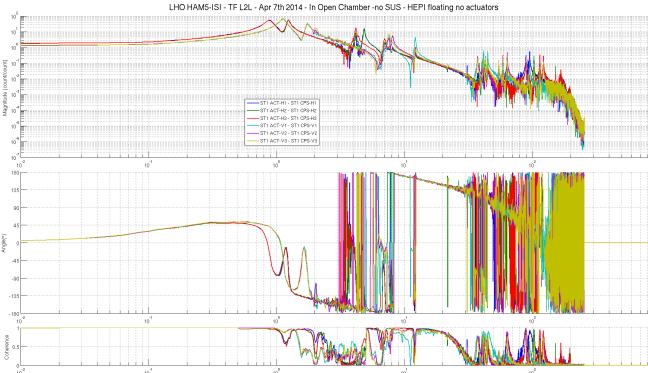
Scripts files for processing and plotting in SVN at:

seismic/HAM-ISI/H1/HAM5/Scripts/Control_Scripts/Version_2/

Step_1_TF_Loc_to_Loc_H1_ISI_HAM5.m

Figures in SVN at:

seismic/HAM-ISI/H1/HAM5/Data/Figures/Transfer Functions/Measurements/Undamped/


- H1 ISI HAM5 TF L2L Raw from ACT to CPS 2014 04 07.fig
- H1_ISI_HAM5_TF_L2L_Raw_from_ACT_to_GS13_2014_04_07.fig

Storage of measured transfer functions in the SVN at:

seismic/HAM-ISI/H1/HAM5/Data/Transfer_Functions/Simulations/Undamped/

H1 ISI HAM5 TF L2L Raw 2014 04 07.mat

The local to local transfer functions and presented below.

HAM5-ISI - PHASE II TESTING LIGO-E1200508

Figure - Local to Local Measurements – Capacitive Position Sensors

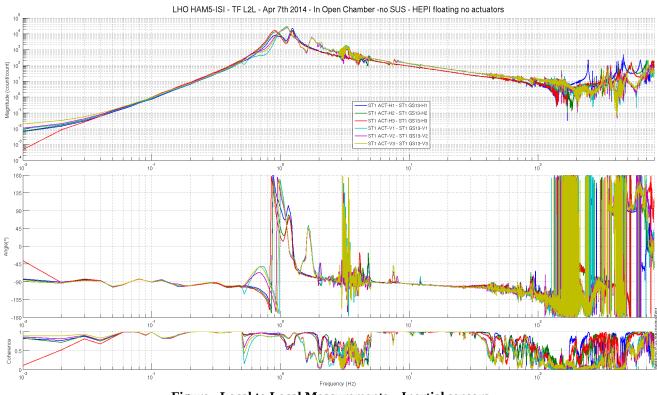


Figure - Local to Local Measurements - Inertial sensors

12. Step 15.2: Local to local measurements V.S. LLO

Data files in SVN at:

LHO:

seismic/HAM-ISI/H1/HAM5/Data/Transfer_Functions/Measurements/Undamped/

- H1_HAM5_ISI_Data_TF_L2L_5Hz_200Hz_20140124-174341.mat
- H1_HAM5_ISI_Data_TF_L2L_10mHz_100mHz_20140124-231906.mat
- H1_HAM5_ISI_Data_TF_L2L_100mHz_500mHz_20140124-223721.mat
- H1_HAM5_ISI_Data_TF_L2L_500mHz_5Hz_20140124-194728.mat
- H1_HAM5_ISI_Data_TF_L2L_200Hz_800Hz_20140124-141943.mat

Scripts files for processing and plotting in SVN at:

seismic/HAM-ISI/H1/HAM5/Scripts/Control_Scripts/Version_2/

- Step_1_TF_Loc_to_Loc_H1_ISI_HAM5.m

Figure – TF L2L – CPS

Figure – TF L2L – GS13

Acceptance criteria:

- Good concordance with TF measured under the same conditions at LLO.
- Local to local measurements
 - O On CPS, the phase must be 0° at DC

- 0 On Geophones, the phase must be -90° at DC
- Identical shape in each corner
- Cartesian to Cartesian measurements
 - 0 On CPS, the phase must be 0° at DC
 - 0 On Geophones, the phase must be -90° at DC
 - 0 Identical shape X/Y and RX/RY

Test result:

Failed: ____

Conclusion

Initial In-Chamber testing

The ISI was tested between Tuesday January 22nd and Saturday January 28th 2014. All the tests presented here were performed during that period. Other tasks were also performed then:

- Models were installed
- In-field cables were installed

-

A few major issues were found, as well as a number of normal minor issues. Minor:

- CPSs and lockers will need to be reset after SUS install, as expected
- Several cabling errors were uncovered during testing. They have now been resolved.

Major:

- There are problems with the GS13 sections of the transfer functions. In the .5-5hz range the transfer function looks bad. The curves are not smooth up to the first resonance, only on the vertical sensors.
- At ~3 hz there is an additional resonance that may be caused by purge air. Many sensors also show low coherence here.
- These issues were seen at HAM4 as well. Install of SUS components will proceed.