LIGO Laboratory / LIGO Scientific Collaboration

LIGO- E1200508

LIGO

Jan 23rd, 2014

aLIGO HAM-ISI, Installation Test Report, Phase II Chamber-Side Testing & Initial Chamber Testing LHO HAM4-ISI (unit #7)

E1200508-V5

Hugo Paris, Fabrice Matichard Hugh Radkins, Jim Warner, Greg Grabeel, Corey Gray, Mitchell Robinson, Eric Allwine

Distribution of this document: Advanced LIGO Project

This is an internal working note of the LIGO Laboratory

California Institute of Technology LIGO Project – MS 18-34 1200 E. California Blvd. Pasadena, CA 91125 Phone (626) 395-2129 Fax (626) 304-9834 E-mail: info@ligo.caltech.edu

P.O. Box 1970
Mail Stop S9-02
Richland WA 99352
Phone 509-372-8106
Fax 509-372-8137

Massachusetts Institute of Technology LIGO Project – NW22-295 185 Albany St Cambridge, MA 02139 Phone (617) 253-4824 Fax (617) 253-7014 E-mail: info@ligo.mit.edu

Phone 225-686-7189

Table of contents:

II	NITIAL IN CHAMBER TESTING	6
	Step 1: Cables Inventory	
	Step 2: Electronics Inventory	
	1.Step 3: Level of Stage 1	
	Step 4: Mass Budget	
		9
	2.Step 5: Shim Thickness	
	3.Step 6: Blade Spring Profile	
	4.Step 7: Lockers Adjustment	
	5.Step 8: CPS Gap	
	Step 9: CPS and GS13 Spectra - ISI Unlocked	
	6.Step 10: GS13 ASD - Tabled Tilted	16
	7.Step 11: GS13 pressure readout	
		16
	8.Step 12: Actuators Sign and range of motion (Local drive)	
	Step 13: Static Testing (Tests in the local basis)	
	9.Step 14: Linearity test	
	10.Step 15: Frequency response	
	11.Step 15.1: Local to local measurements	
	12.Step 15.2: Local to local measurements V.S. LLO	
	z=10 tep z0.=1 = 0 cuz to z0 cuz medouremento 1101 == 0 miniminiminiminiminiminiminiminiminimin	

PHASE II Testing

The phase II of HAM-ISI testing corresponds to the tests performed after the *Assembly Validation*, and before the *Control and Commissioning* of the Units. It is divided in two parts. The present document is divided in two sections: One for each part of the Phase II testing:

Part.1 Chamber-Side testing **Part.2** Initial Chamber Testing

Chamber-Side Testing is a basic sensor check with a spectrum analyzer. Units can be inserted in their chamber of destination once they pass.

Initial Chamber Testing takes place in open chamber, with the optics off, and HEPI locked. The ISI is then connected to the electronic rack with the final in-field cables. Models are installed and running. Tests are performed with Matlab® scripts.

Optics and Suspensions can be installed right after the end of this phase of testing. No test is performed during their installation.

Final Chamber Testing starts once Optics and Suspensions are installed. The lockers and the CPSs usually need to be reset at this point.

Introduction

Chamber-Side Testing

HAM-ISI Unit #7 was intended to populate HAM4 chamber.

Conclusion

Chamber-Side Testing

HAM-ISI Unit #7 was intended to populate HAM4 chamber. No chamber-side testing was performed.

Introduction

Initial Chamber Testing

This part of the Phase II testing takes place in open chamber, with the optics off, and HEPI locked. The ISI is then connected to the electronic rack with the final in-field cables. Models are installed and running. Tests are performed with Matlab® scripts.

Optics and Suspensions can be installed right after the end of this phase of testing. No test is performed during their installation.

Final Chamber Testing starts once Optics and Suspensions are installed. The lockers and the CPSs usually need to be reset at this point.

INITIAL IN CHAMBER TESTING

HAM4-ISI was installed in in its chamber on May 21st 2013. This initial in chamber testing was conducted after Jan 22nd 2014.

Step 1: Cables Inventory

Actuator cables were replaced in chamber to reach the feedthrough. S/N were recorded.

Cable Con- nects	Cable S/N			
Part Name	Configura- tion	Corner 1	Corner 2	Corner 3
GS13	Horizontal			
	Vertical		_	
L4C	Horizontal			
L4C	Vertical			
Actuator	Horizontal			
Actuator	Vertical			

Table - Cables inventory

Acceptance Criteria:

Inventory is complete

Test result: Failed:				Passed: _	X
Step 2: Electronics Inven	tory				
	Hardware	LIGO refer- ence	S/N		
	Coil driver	D0902744			
	Anti Image filter	D1100202			
	Anti aliasing fil- ter	D1000269			
	Interface chassis	D1000067			
Acceptance Criteria:					
Inventory is complete					
Test result:	Pass	sed: <u>X</u>	Failed:		
1. Step 3: Level of	Stage 1				
The optical table is level withi	n a ⁺ /.0.1mm tole	rance.			
	Max angle =	0.008" / 86" =	93µrad		
Acceptance Criteria					
- The maximum angle of	f the table with th	e horizontal m	ustn't exceed ~1	.00μrad	
Test result: Failed:				Passed: _	X

Step 4: Mass Budget

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
w9			1	1	1		1	41.8	19
w1				2	1			16.9	7.7
w2	1	3	2	1			1	37.8	17.1
w3							1	27.2	12.3
w4									
w5	1		1	1			1	34.5	15.6
w6							1	27.2	12.3
w7		1					1	28.3	12.8
w8		1					1	28.3	12.8
Side Masses Total	2	5	4	5	2	0	7	242	109.7

Table – Wall masses distribution

	00	01	02	03	04	05	06		
	0.6	1.1	2.2	4.5	7.9	15.6	27.2	lbs	kgs
k1					1		1	35.1	15.92
k2						2		31.2	14.15
k3					1		1	35.1	15.92
k4						2		31.2	14.15
k5					1		1	35.1	15.92
k6						2		31.2	14.15
Keel Masses Total	0	0	0	0	3	6	3	198.9	90.22

Table – Keel masses distribution

50lbs	597lbs	10kg	Total (kg)
4	1	0	361.4

Table – Optic table masses distribution

	Side	Keel	Тор	Total
Weigh (kg)	109.7	90.22	361.4	561.3

Table – Mass budget sum up

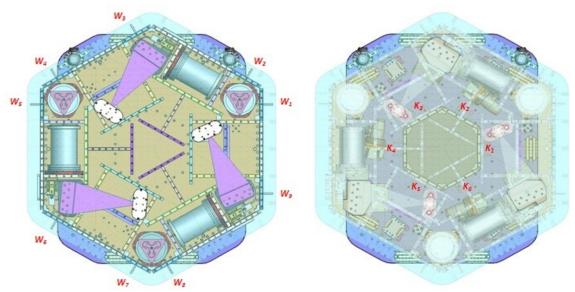


Figure – Wall Masses (W) and Keel masses (K) location. South of picture = corner 1

<u>Issues/difficulties/comments regarding this test:</u>

The mass budget was reported to be 576.22kgs during Assembly Validation. It is now 15kg lighter.

- The ISI was roughly balanced for the Initial In Chamber Testing.

Acceptance Criteria

The Mass budget must be

- 579.1 Kg (cf. E1100427)+/-25Kg (5%)

Test result:	Passed:X	<u> </u>
Failed:		

2. Step 5: Shim Thickness

<u>Issues/difficulties/comments regarding this test:</u>

- The shims for locker D needed to be changed in-chamber, from .123" to .127".

_

Lockers	Shim thickness (mils)
A	124
В	127
С	125
D	127

Table – Shims Thickness

3. Step 6: Blade Spring Profile

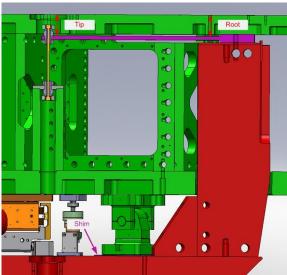


figure – Blade spring profile measurement points

Blade #	Root (Mils)	Tip(Mils)	Flatness (mils)
1	380	375	5
2	393	376	17
3	391	394	3

Table – Blade Spring Profile

<u>Issues/difficulties/comments regarding this test:</u>

Blade #2 is slightly out of the preferred range. The measurement was performed on a locked ISI. The locked position is not optimal, as lockers need to be reset.

Acceptance Criteria:

- Recorded for traceability.
- Flatness preferred within 0.015" inches.

Test result:	Passed: X
Failed:	

4. Step 7: Lockers Adjustment

The maximum difference recorded on the CPSs between the unlocked and the locked positions is about 1V which roughly corresponds to 3280cts

<u>Issues/difficulties/comments regarding this test:</u>

- The maximum difference recorded on the CPSs between the unlocked and the locked positions is out of the preferred ⁺/.1600cts range.
- Lockers should be set up with CPS Gaps, after this phase of testing.
- Lockers are reset after the installation of suspensions.

Acceptance criteria:

- Recorded for traceability
- Preferred within */.1600cts

Test result:		Passed:
Failed: _	<u>X</u>	

5. Step 8: CPS Gap

H1 readout (count)	1794
H2 readout (count)	2222
H3 readout (count)	-3023
V1 readout (count)	1341
V2 readout (count)	42
V3 readout (count)	-1088

Table - CPS sensor readouts - ISI Unlocked, no drive

<u>Issues/difficulties/comments regarding this test:</u>

- CPS mean readouts are out of the preferred ⁺/₋400cts range.
- CPS Gap should not be set up during this phase of testing.
- CPSs are reset after the installation of suspensions.

Acceptance criteria:

- Recorded for traceability
- Preferred within +/-400cts

Test result:	Passed: X
Failed:	

Step 9: CPS and GS13 Spectra - ISI Unlocked

Data files in SVN at:

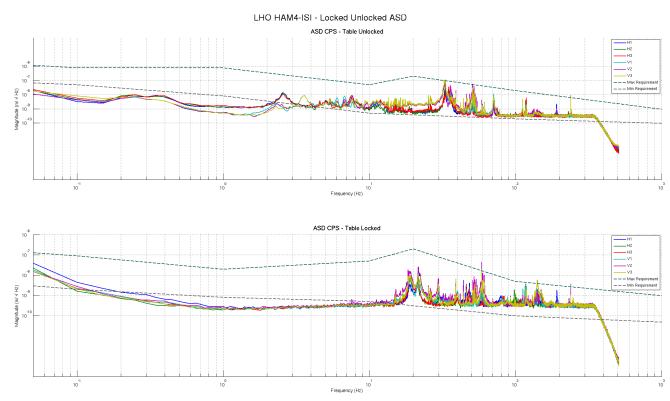
/seismic/HAM-ISI/H1/HAM4/Data/Spectra/Undamped/

- LHO_ISI_HAM4_ASD_m_CPS_T240_L4C_GS13_Locked_vs_Unlocked_2014_01_23.mat

Scripts files for taking and processing the data, and plotting it in SVN at:

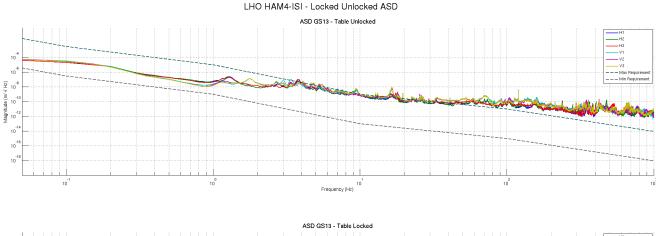
seismic/HAM-ISI/Common/Testing_Functions_HAM_ISI/

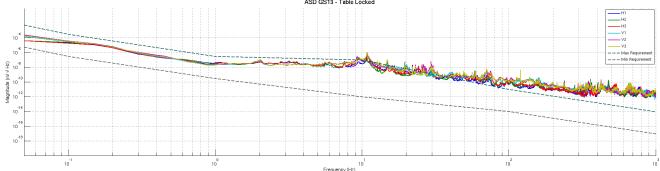
- Plot_ASD_Unlocked_Locked_HAM_ISI.m
- Plot_ASD_Unlocked_Locked_Group_HAM_ISI.m


Figures in SVN at:

seismic/HAM-ISI/H1/HAM4/Data/Figures/Spectra/Undamped/

- LHO_ISI_HAM4_ASD_m_GS13_Requirements_Locked_vs_Unlocked_2014_01_23.fig
- LHO_ISI_HAM4_ASD_m_CPS_Requirements_Locked_vs_Unlocked_2012_01_23.fig


CPS calibration:


The CPS power spectrums are calibrated by using a sensitivity of 30.2 nm/count.

Measurement length: 1010s - Sample window: 20s - Overlap: 50% - Frequency resolution: 50mHz - Averages: 100 - Measurement start (GPS): 1074586413

Figure - Calibrated CPS power spectrum - ISI Unlocked/Locked

vleasurement length: 1010s - Sample window: 20s - Overlap: 50% - Frequency resolution: 50mHz - Averages: 100 - Measurement start (GPS): 1074586413

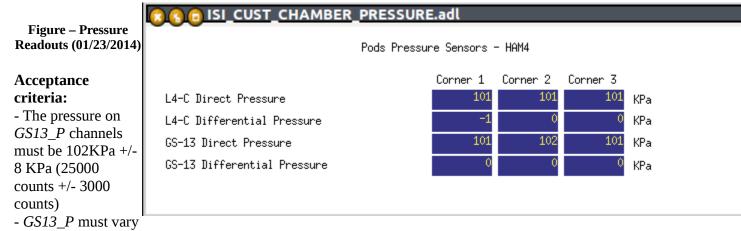
Figure - Power spectrum Calibrated GS13 - ISI Unlocked/Locked

Issues/difficulties/comments regarding this test:

- Locked data was recorded during the weekend, after the optical table payload was removed (421.51kg).

Acceptance criteria:

Test result:


- No cross talk (peaks at low frequencies + harmonics on measurements)

Waived X Passed: Failed: ____

- Magnitudes of power spectra must be between requirement curves such as in the following figures (dashed lines)

Test result: Failed:	Passed: X
Comment: GS13 requirement curves need to be updated. 6. Step 10: GS13 ASD - Tabled Tilted	
Not performed.	

7. Step 11: GS13 pressure readout

the same way in each corner and *GS13_DIFF* must be constant (channels follow comparable trend)

Test result:	Passed: _	X
Failed:		

8. Step 12: Actuators Sign and range of motion (Local drive)

	Negative drive	No Drive	Positive drive
H1 readout (count)	-23313	1793	24345
H2 readout (count)	-23516	2209	23745
H3 readout (count)	-26077	-3049	23196
V1 readout (count)	-17968	1361	21018
V2 readout (count)	-23484	26	26979
V3 readout (count)	-23434	-1084	21278

Table - Range of motion - Local drive

Acceptance criteria:

- Main couplings sensors readout must be at least 16000 counts (~0.02")
- A positive offset drive on one actuator must give positive sensor readout on the collocated sensor. Signs will also be tested when measuring local-to-local transfer functions.

Test result:	Passed: X
Failed:	
Step 13: Static Testina (Tests in the local basis)	

Sensors (counts)

	H1	H2	НЗ	V1	V2	V3
H1	1880	1177	1170	-6	2	-2
H2	1175	1873	1167	-10	-2	-1
НЗ	1199	1196	1909	-16	-11	15
V1	178	173	-349	1339	-33	-586
V2	-343	184	172	-593	1344	-32
V3	180	-359	185	-40	-602	1425

Table - Main couplings and cross couplings

<u>Issues/difficulties/comments regarding this test:</u>

Acceptance criteria:

- Vertical

For a +1000 count offset drive on vertical actuators

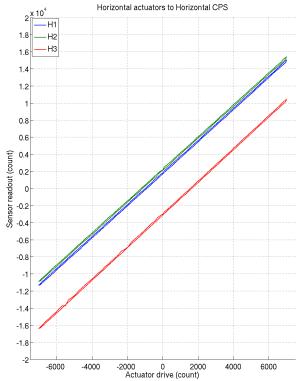
O Collocated sensors must be 1400 counts +/- 10%

- Horizontal

For a +1000 count offset drive on horizontal actuators

- O Collocated sensors must be 2000 counts +/- 10%
- O Non-collocated horizontal sensors must be 1250 counts +/-10%

Test result:	Passed: X	
Failed:		


9. Step 14: Linearity test

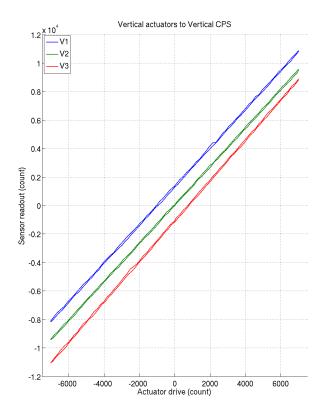

	Slope	Offset	Average slope	Variation from average(%)
H1	1.88	1800		5
H2	1.87	2220	1.89	7
НЗ	1.91	-3000		1.3
V1	1.35	1350		-1.6
V2	1.35	43	1.37	-1.7
V3	1.42	-1086		3.3

Table - Slopes and offset of the triplet Actuators - HAM-ISI - Sensors

Scripts files for taking data in SVN at:

seismic/HAM-ISI/Common/Testing_Functions_HAM_ISI/

- Linearity_Test_Awgstream_HAM_ISI.m

Data files in SVN at: seismic/HAM-ISI/L1/HAM4/Data/Linearity_Test/

- LHO_ISI_HAM4_Linearity_test_20140123.mat

Figures in SVN at:

seismic/HAM-ISI/H1/HAM4/Data/Figures/Linearity_Test/

- LHO_ISI_HAM4_Linearity_test_20140123.fig

<u>Issues/difficulties/comments regarding this test:</u>

V3 actuator is out of spec.

Α.		•. •	
Accen	tance	criteri	a·
Accep	tuilee	CIICLI	u.

-	Horizontal and vertical slopes of the triplet actuators x HAM-ISI x sensors = Average	slope
	+/- 1.5%	

Test result:	Passed: X
Failed:	

10.Step 15: Frequency response

All input/output filters are ON. HEPI is locked. The chamber is closed with sheets on.

11. Step 15.1: Local to local measurements

Data files in SVN at:

seismic/HAM-ISI/H1/HAM4/Data/Transfer Functions/Measurements/Undamped/

- H1 HAM4 ISI Data TF L2L 5Hz 200Hz 20140124-174341.mat
- H1_HAM4_ISI_Data_TF_L2L_10mHz_100mHz_20140124-231906.mat
- H1_HAM4_ISI_Data_TF_L2L_100mHz_500mHz_20140124-223721.mat
- H1_HAM4_ISI_Data_TF_L2L_200Hz_800Hz_20140124-141943.mat
- H1 HAM4 ISI Data TF L2L 500mHz 5Hz 20140125-101949.mat

Data collection script files:

seismic/HAM-ISI/H1/HAM4/Scripts/Data Collection/

- Run_Exc_Batch_H1_HAM4.m

Scripts files for processing and plotting in SVN at:

seismic/HAM-ISI/H1/HAM4/Scripts/Control_Scripts/Version_2/

- Step_1_TF_Loc_to_Loc_H1_ISI_HAM4.m

Figures in SVN at:

seismic/HAM-ISI/H1/HAM4/Data/Figures/Transfer_Functions/Measurements/Undamped/

- H1_ISI_HAM4_TF_L2L_Raw_from_ACT_to_CPS_2014_01_24 .fig
- H1_ISI_HAM4_TF_L2L_Raw_from_ACT_to_GS13_2014_01_24 .fig

Storage of measured transfer functions in the SVN at:

seismic/HAM-ISI/H1/HAM4/Data/Transfer Functions/Simulations/Undamped/

- H1_ISI_HAM4_TF_L2L_Raw_2014_01_24.mat

The local to local transfer functions and presented below.

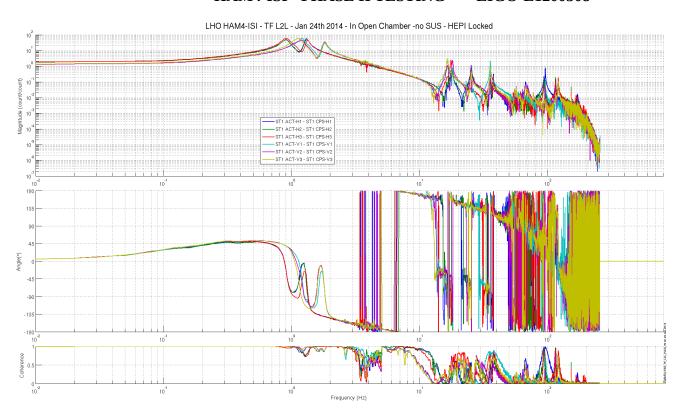


Figure - Local to Local Measurements - Capacitive Position Sensors

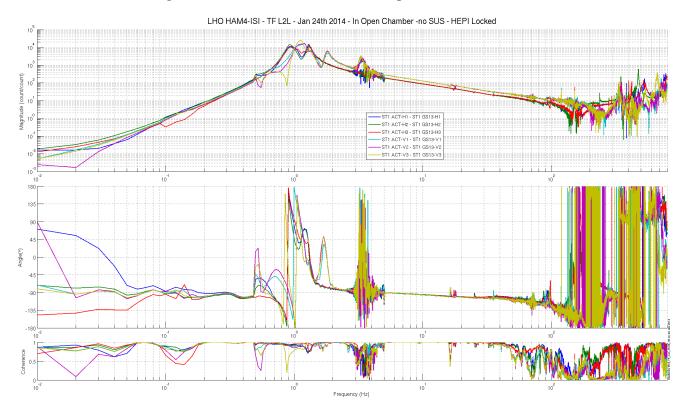


Figure - Local to Local Measurements - Inertial sensors

12.Step 15.2: Local to local measurements V.S. LLO

Data files in SVN at:

LHO:

seismic/HAM-ISI/H1/HAM4/Data/Transfer_Functions/Measurements/Undamped/

- H1_HAM4_ISI_Data_TF_L2L_5Hz_200Hz_20140124-174341.mat
- H1_HAM4_ISI_Data_TF_L2L_10mHz_100mHz_20140124-231906.mat
- H1 HAM4 ISI Data TF L2L 100mHz 500mHz 20140124-223721.mat
- H1_HAM4_ISI_Data_TF_L2L_500mHz_5Hz 20140124-194728.mat
- H1 HAM4 ISI Data TF L2L 200Hz 800Hz 20140124-141943.mat

Scripts files for processing and plotting in SVN at:

seismic/HAM-ISI/H1/HAM4/Scripts/Control_Scripts/Version_2/

- Step_1_TF_Loc_to_Loc_H1_ISI_HAM4.m
- Plot TF L2L HAM with LLO.m

Figure – TF L2L – Horizontal CPS

Figure - TF L2L - Vertical CPS

Figure - TF L2L - Horizontal GS13

Figure – TF L2L – Vertical GS13

Acceptance criteria:

- Good concordance with TF measured under the same conditions at LLO.
- Local to local measurements
 - On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC
 - O Identical shape in each corner
- Cartesian to Cartesian measurements
 - On CPS, the phase must be 0° at DC
 - On Geophones, the phase must be -90° at DC
 - o Identical shape X/Y and RX/RY

Test result:	Passed: _	X
Failed:		

Conclusion

Initial In-Chamber testing

The ISI was tested between Tuesday January 22nd and Saturday January 28th 2014. All the tests presented here were performed during that period. Other tasks were also performed then:

- Models were installed
- In-field cables were installed

_

A few major issues were found, as well as a number of normal minor issues. Minor:

- CPSs and lockers will need to be reset after SUS install, as expected
- Several model errors were uncovered during testing. They have now been resolved. HAM5 had similar issues that have also been corrected.

Major:

- There are problems with the GS13 sections of the transfer functions. In the .5-5hz range the transfer function looks bad. The curves are not smooth up to the first resonance, only on the vertical sensors.
- At ~3 hz there is an additional resonance that may be caused by purge air. Many sensors also show low coherence here.
- The .5-5hz section was repeated with careful tuning in DTT and the issues can not be reproduced. This issue is still being looked into.
- The asci files for the DTT tf's are in the LHO H1 SVN at:
- seismic/HAM-ISI/H1/HAM4/Data/Transfer_Functions/Measurements/Undamped/

DTT_TF_20140128_GS13

DTT_TF_20140128_GS13_coh

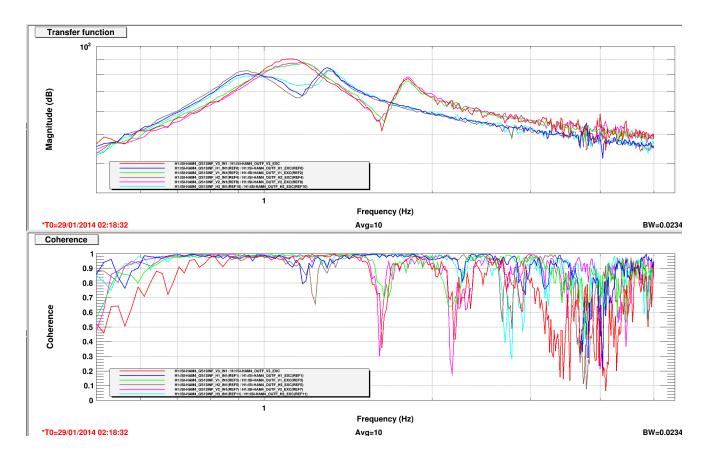


Figure – TF L2L – GS13 in DTT

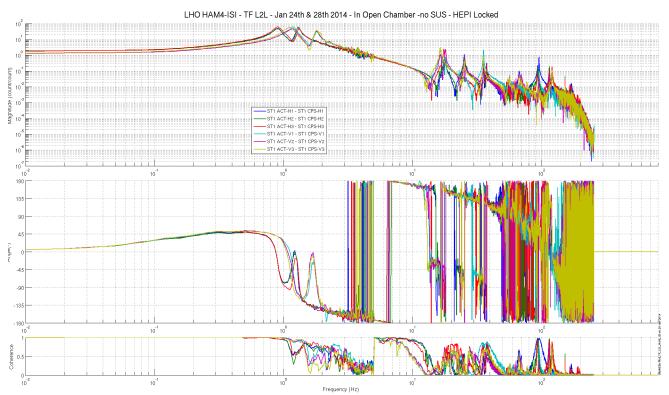


Figure - Local to Local Measurements - Capacitive Position Sensors

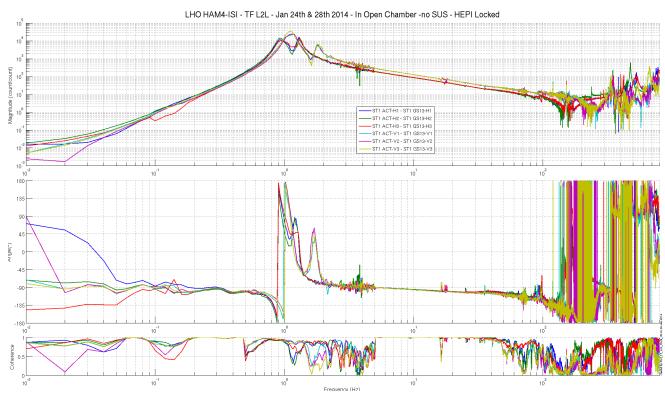


Figure - Local to Local Measurements - Inertial sensors