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The big picture 

• Significant progress in the experimental effort for the first direct detection of  GWs. 

• Great breakthroughs in analytical & numerical relativity.
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Coalescence of compact binaries: The most promising sources
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Binary-black-hole parameter space 
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Constructing inspiral-merger-ringdown waveforms 
for binary black holes 
Numerical-relativity (NR) simulations are computationally expensive. Practically impossible to 
generate sufficient number of NR simulations finely covering the entire parameter space.

Solution: Analytical waveforms calibrated against NR simulations 

Effective-one-body-based approaches

Phenomenological approaches 



The effective one-body approach 

• Map the two-body dynamics into one-body 
dynamics in the presence of  an effective 
metric. 
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where Θ() is the Heaviside step function.
The inspiral-plunge EOB waveform at leading-order ampli-

tude in a PN expansion is determined from the trajectory r(t),
φ(t) as [98]

hinsp-plunge(t)≡ 4GMη
DLc2

(
GM
c3

dφ
dt

)2/3
cos[2φ(t)] , (II.2)

where DL is the luminosity distance. We now summarize the
fundamentals of the EOB calculation of the trajectory; more
details can be found in [79–86, 97–100]. As usual, m1 and m2
are the black hole masses, M = m1 +m2 is the total mass of
the binary, µ = m1 m2/M is the reduced mass, and η = µ/M
is the symmetric mass ratio.

For a binary with negligible spin effects, the motion is con-
fined to a plane and can be described in the center of mass by
polar coordinates (r,φ). The conservative dynamics is then
captured by a Hamiltonian HEOB(r, pr, pφ ). The trajectory is
evolved according to Hamilton’s equations [98]

dr
dt

=
∂HEOB

∂ pr
(r, pr, pφ ) , (II.3a)

dφ
dt

=
∂HEOB

∂ pφ
(r, pr, pφ ) , (II.3b)

d pr

dt
=−∂HEOB

∂ r
(r, pr, pφ ) , (II.3c)

d pφ
dt

= Fφ (r, pr, pφ ) , (II.3d)

The inspiral of the binary comes about due to the addition of
non-conservative dynamics in the last of Hamilton’s equations
via the tangential radiation-reaction force Fφ arising from the
basic PN expression of the energy flux. Here we use a Ke-
plerian Padé resummation [101] of the energy flux as given
by Eq. (15) of [81]. More recent models have used more so-
phisticated fluxes, such as the ρ-resummation [102] and non-
Keplerian flux models which describe non-quasi-circular ef-
fects [82, 83, 85, 86].

The form of the EOB (resummed) Hamiltonian is [97]

HEOB(r, pr, pφ ) = Mc2

√

1+2η
(

Heff

µc2 −1
)
, (II.4)

where Heff is the effective Hamiltonian [97, 99]

Heff = µc2

(
A(r)

[
1+

A(r)
D(r)

p2
r

M2c2 +
p2

φ
M2c2r2

+2(4−3η)η G2 p4
r

M2c8r2

])1/2

.

(II.5)

and where the radial potential functions A(r) and D(r) appear
in the effective metric [97]

ds2
eff =−A(r)c2 dt2 +

D(r)
A(r)

dr2 + r2
(

dθ 2 + sin2 θ dφ 2
)
.

(II.6)

The Taylor-approximants to the coefficients A(r) and D(r) can
be written as

Ak(r) =
k+1

∑
i=0

ai(η)

(
GM
rc2

)i

, (II.7a)

Dk(r) =
k

∑
i=0

di(η)

(
GM
rc2

)i

. (II.7b)

The functions A(r), D(r), Ak(r) and Dk(r) all depend on
the symmetric mass ratio η through the η–dependent coef-
ficients ai(η) and di(η). [When η → 0, A(r)→ 1− 2GM

rc2 and
D(r) → 1 and the metric (II.6) reduces to the Schwarzschild
metric.] These coefficients are currently known through 3PN
order (i.e., up to k = 3) and can be found in [81]. Dur-
ing the last stages of inspiral and plunge, the EOB dynam-
ics can be adjusted closer to the numerical simulations by in-
cluding in the radial potential A(r) a pseudo 4PN coefficient
a5(η)= a5 η , with a5 a constant. Here, we follow [81] and fix
a5 = 60. We refer to this model, the first NR-adjusted EOB
model implemented for a search of GW data, as EOBNRv1.
Since [81] was published, more accurate numerical simu-
lations became available and more sophisticated EOB mod-
els have been calibrated. This includes a different value of
a5 [82–84, 86] and also the introduction of a pseudo 5PN co-
efficient a6(η) = a6 η [85], with a6 a constant. We refer to
the second NR-adjusted EOB model implemented for a search
of GW data, as EOBNRv2. This most recent EOB template
family has been developed in [103]; it includes the latest im-
provements [82–84, 86] to the EOB model and also other re-
finements which are necessary to match highly-accurate NR
waveforms for a broad range of mass ratios.

In order to assure the presence of a horizon in the effective
metric (II.6), a zero needs to be factored out from A(r). This
is obtained by applying a Padé resummation [99]. The Padé
resummations of A(r) and D(r) at pseudo 4PN order are de-
noted A1

4(r) and D0
4(r) [122], and the explicit form used in this

paper can be read from [81].
The merger-ringdown waveform in the EOB approach is

built as a superposition of quasi-normal modes, [79, 98, 104]

hmerger-RD(t) =
N−1

∑
n=0

An e−iσn(t−tmatch), (II.8)

where n is the overtone number of the Kerr quasi-normal
mode, N is the number of overtones included in our model,
and An are complex amplitudes to be determined by a match-
ing procedure described below. We define σn ≡ ωn − iαn,
where the oscillation frequencies ωn > 0 and the inverse
decay-times αn > 0, are numbers associated with each quasi-
normal mode. The complex frequencies are known functions,
uniquely determined by the final black-hole mass and spin.
They can be found in [105]. The final black-hole masses and
spins are obtained from the fitting to numerical results worked
out in [81].

The complex amplitudes An in Eq. (II.8) are determined by
matching the EOB merger-ringdown waveform with the EOB
inspiral-plunge waveform close to the EOB light ring. In par-
ticular, here we use the matching point which is provided an-
alytically by Eq. (37) of [81]. In order to do this, we need N

“deformed” Schwarzschild metric

[Buonanno & Damour]



The effective one-body approach 

• Map the two-body dynamics into one-body 
dynamics in the presence of  an effective 
metric. 

• Introduce adjustable parameters. Propose 
some ansatz for the mass-ratio (and spin) 
dependence of  these parameters. Tune 
them against NR. 
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ds2
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resummations of A(r) and D(r) at pseudo 4PN order are de-
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4(r) and D0
4(r) [122], and the explicit form used in this

paper can be read from [81].
The merger-ringdown waveform in the EOB approach is

built as a superposition of quasi-normal modes, [79, 98, 104]

hmerger-RD(t) =
N−1

∑
n=0

An e−iσn(t−tmatch), (II.8)

where n is the overtone number of the Kerr quasi-normal
mode, N is the number of overtones included in our model,
and An are complex amplitudes to be determined by a match-
ing procedure described below. We define σn ≡ ωn − iαn,
where the oscillation frequencies ωn > 0 and the inverse
decay-times αn > 0, are numbers associated with each quasi-
normal mode. The complex frequencies are known functions,
uniquely determined by the final black-hole mass and spin.
They can be found in [105]. The final black-hole masses and
spins are obtained from the fitting to numerical results worked
out in [81].

The complex amplitudes An in Eq. (II.8) are determined by
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inspiral-plunge waveform close to the EOB light ring. In par-
ticular, here we use the matching point which is provided an-
alytically by Eq. (37) of [81]. In order to do this, we need N

Up to k=3, known from PN; 
terms linear in ν known at 

all orders from perturbation 
theory

dr!
dr

¼
ffiffiffiffiffiffiffiffiffiffi
DðrÞ

p

AðrÞ ; (2)

we obtain the EOB effective Hamiltonian [13,14,46]

Heffðr;pr! ;p!Þ%!Ĥrealðr;pr! ;p!Þ

¼!

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
r! þAðrÞ

"
1þp2

!

r2
þ2ð4'3"Þ"p

4
r!

r2

#
;

s

(3)

where we have neglected the factorDðrÞ2=AðrÞ4 in front of
the term p4

r! which would introduce PN terms higher than
3PN order, but more importantly would cause the EOB
gravitational frequency to grow too quickly near merger.

The real EOB Hamiltonian reads [13]

Hrealðr; pr! ; p!Þ % !Ĥrealðr; pr! ; p!Þ

¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2"

$
Heff '!

!

%s
'M: (4)

The Taylor approximants to the coefficients AðrÞ and DðrÞ
can be written as [13,14]

AkðrÞ ¼
Xkþ1

i¼0

aið"Þ
ri

; DkðrÞ ¼
Xk

i¼0

dið"Þ
ri

: (5)

The functions AðrÞ,DðrÞ, AkðrÞ andDkðrÞ all depend on the
symmetric mass ratio " through the "-dependent coeffi-
cients aið"Þ and dið"Þ [see Eqs. (47) and (48) in Ref. [22]].
The functions AkðrÞ andDkðrÞ are currently known through
3PN order, i.e., k ¼ 3. During the last stages of inspiral and
plunge, the EOB dynamics can be adjusted closer to the
numerical simulations by including in the radial potential
AðrÞ a few adjustable parameters of the EOB dynamics.
Notably, the 4PN coefficient a5ð"Þ [20,22,23,27–29,44]
and even the 5PN coefficient a6ð"Þ [31].1

To enforce the presence of the EOB innermost stable
circular orbit (ISCO), Ref. [14] suggested using the Padé
expansion of the function AðrÞ. For AðrÞ we employ the

Padé expression A1
5ðrÞ at 5PN order, while for DðrÞ we use

the Padé expression D0
3ðrÞ at 3PN order. We could also

introduce EOB adjustable parameters at 4PN and 5PN
order in DðrÞ, say d4ð"Þ and d5ð"Þ. However, this modifi-
cation would affect mainly the radial motion [see Eq. (10a)
below] which becomes important only at the very end of
the evolution. For the EOB model developed in this paper
we find that these other adjustable parameters are not
needed. The quantity D0

3ðrÞ reads

D0
3ðrÞ ¼

r3

ð52"' 6"2Þ þ 6"rþ r3
; (6)

while A1
5ðrÞ reads

A1
5ðrÞ ¼

NumðA1
5Þ

DenðA1
5Þ

; (7)

with

NumðA1
5Þ ¼ r4½'64þ 12a4 þ 4a5 þ a6 þ 64"' 4"2)

þ r5½32' 4a4 ' a5 ' 24"); (8)

and

DenðA1
5Þ ¼ 4a24þ4a4a5þa25'a4a6þ16a6þð32a4þ16a5'8a6Þ"þ4a4"

2þ32"3

þ r½4a24þa4a5þ16a5þ8a6þð32a4'2a6Þ"þ32"2þ8"3)þ r2½16a4þ8a5þ4a6þð8a4þ2a5Þ"þ32"2)
þ r3½8a4þ4a5þ2a6þ32"'8"2)þ r4½4a4þ 2a5þa6þ16"'4"2)þ r5½32'4a4'a5'24"); (9)

where a4 ¼ ½94=3' ð41=32Þ#2)" and to ease the notation we have omitted the " dependence of a5 and a6 in the
expressions above. The quantities a5 and a6 are the adjustable parameters of the EOB dynamics [23] (see Table I). They
will be determined below when calibrating the EOB to numerical-relativity waveforms. Their explicit expressions are
given in Eq. (36).

The EOB Hamilton equations are written in terms of the reduced, i.e., dimensionless quantities Ĥreal [defined in
Eq. (4)] [12]. They read2

TABLE I. Summary of adjustable parameters of the EOB
model considered in this paper. We notice that to calibrate the
EOB (2, 2) mode, we only need a5, a6 and "t22match. To calibrate
each subleading mode (2, 1), (3, 3), (4, 4), and (5, 5), we need
four adjustable parameters. The values of the adjustable param-
eters used in this paper are given in Eqs. (36) to (39) and (41).

EOB dynamics
adjustable parameters

EOB waveform
adjustable parameters

a5, a6 "t‘mmatch

$ðpÞ
‘m

%ðqÞ
‘m

!pQNM
‘m

1The radial potential AðrÞ may contain logarithmic terms at 4PN and 5PN orders [47,48] which we do not try to model here.
2We notice that the second term on the right-hand side of Eq. (10c) is generated when taking the nonspinning limit of the spinning

EOB model of Ref. [16]
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• Map the two-body dynamics into one-body 
dynamics in the presence of  an effective 
metric. 

• Introduce adjustable parameters. Propose 
some ansatz for the mass-ratio (and spin) 
dependence of  these parameters. Tune 
them against NR. 

• Compute the EOB Hamiltonian. During 
inspiral-plunge, evolve the trajectories 
using Hamilton’s equations. 

• Match the calibrated EOB inspiral-plunge 
waveforms with several QNM modes. 

specific values a5 ¼ 0, a6 ¼ "20 (to which correspond,
when ! ¼ 1=4, a1 ¼ "0:036 347, a2 ¼ 1:2468). We
henceforth use M as a time unit.

Figure 1 compares (the real part of) our analyticalmetric
quadrupolar waveform !EOB

22 =! to the corresponding
(Caltech-Cornell) NR metric waveform !NR

22 =! (obtained
by a double time-integration, à la [20], from the original
NR curvature waveform c 22

4 ). [We used the ‘‘two-
frequency pinching technique’’ of [19] with !1 ¼ 0:047
and !2 ¼ 0:31.] The agreement between the analytical
prediction and the NR result is striking, even around the
merger (see the close-up on the right). The phasing agree-
ment is excellent over the full time span of the simulation
(which covers 32 cycles of inspiral and about 6 cycles of
ringdown), while the modulus agreement is excellent over
the full span, apart from two cycles after merger where one
can notice a difference. A more quantitative assessment of
the phase agreement is given in Fig. 2, which plots the
(!1-!2-pinched) phase difference"" ¼ "EOB

metric ""NR
metric.

"" remains remarkably small (#$0:02 radians) during
the entire inspiral and plunge (!2 ¼ 0:31 being quite near
the merger, see inset). By comparison, the root-sum of the
various numerical errors on the phase (numerical trunca-
tion, outer boundary, extrapolation to infinity) is about
0.023 radians during the inspiral [6]. At the merger, and
during the ringdown, "" takes somewhat larger values
(#$0:1 radians), but it oscillates around zero, so that, on
average, it stays very well in phase with the NR waveform
(as is clear on Fig. 1). By comparison, we note that [6]
mentions that the phase error linked to the extrapolation to
infinity doubles during ringdown. We also found that the
NR signal after merger is contaminated by unphysical
oscillations. We then note that the total ‘‘two-sigma’’ NR
error level estimated in [6] rises to 0.05 radians during
ringdown, which is comparable to the EOB-NR phase
disagreement. Figure 3 compares the analytical and nu-
merical metric moduli, j!22j=!. Again our (Padé-re-
summed, NQC-corrected) analytical waveform yields a
remarkably accurate description of the inspiral NR wave-
form. During the early inspiral the fractional agreement

between the moduli is at the 3% 10"3 level; as late as time
t ¼ 3900, which corresponds to 1.5 GW cycles before
merger, the agreement is better than 1% 10"3. The dis-
crepancy between the two moduli starts being visible only
just before and just after merger (where it remains at the
2:5% 10"2 level). This very nice agreement should be
compared with the previously considered EOB waveforms
(which had a more primitive NQC factor, with a2 ¼ 0
[19,20]) which led to large moduli disagreements
(# 20%, see Fig. 9 in [20]) at merger. By contrast, the
present moduli disagreement is comparable to the esti-
mated NR modulus fractional error (whose two-sigma
level is 2:2% 10"2 after merger [6]).
We also explored another aspect of the physical sound-

ness of our analytical formalism: the triple comparison
between (i) the NR GW energy flux at infinity (which
was computed in [21]); (ii) the corresponding analytically
predicted GW energy flux at infinity (computed by sum-
ming j _h‘mj2 over (‘, m)); and (iii) (minus) the mechanical
energy loss of the system, as predicted by the general EOB

FIG. 1 (color online). Equal-mass case: agreement between NR (black online) and EOB-based (red online) ‘ ¼ m ¼ 2 metric
waveforms.

FIG. 2 (color online). Phase difference between the analytical
and numerical (metric) waveforms of Fig. 1.
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present moduli disagreement is comparable to the esti-
mated NR modulus fractional error (whose two-sigma
level is 2:2% 10"2 after merger [6]).
We also explored another aspect of the physical sound-

ness of our analytical formalism: the triple comparison
between (i) the NR GW energy flux at infinity (which
was computed in [21]); (ii) the corresponding analytically
predicted GW energy flux at infinity (computed by sum-
ming j _h‘mj2 over (‘, m)); and (iii) (minus) the mechanical
energy loss of the system, as predicted by the general EOB
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t ¼ 3900, which corresponds to 1.5 GW cycles before
merger, the agreement is better than 1% 10"3. The dis-
crepancy between the two moduli starts being visible only
just before and just after merger (where it remains at the
2:5% 10"2 level). This very nice agreement should be
compared with the previously considered EOB waveforms
(which had a more primitive NQC factor, with a2 ¼ 0
[19,20]) which led to large moduli disagreements
(# 20%, see Fig. 9 in [20]) at merger. By contrast, the
present moduli disagreement is comparable to the esti-
mated NR modulus fractional error (whose two-sigma
level is 2:2% 10"2 after merger [6]).
We also explored another aspect of the physical sound-

ness of our analytical formalism: the triple comparison
between (i) the NR GW energy flux at infinity (which
was computed in [21]); (ii) the corresponding analytically
predicted GW energy flux at infinity (computed by sum-
ming j _h‘mj2 over (‘, m)); and (iii) (minus) the mechanical
energy loss of the system, as predicted by the general EOB

FIG. 1 (color online). Equal-mass case: agreement between NR (black online) and EOB-based (red online) ‘ ¼ m ¼ 2 metric
waveforms.

FIG. 2 (color online). Phase difference between the analytical
and numerical (metric) waveforms of Fig. 1.

IMPROVED ANALYTICAL DESCRIPTION OF . . . PHYSICAL REVIEW D 79, 081503(R) (2009)

RAPID COMMUNICATIONS

081503-3

[Damour & Nagar 2009]
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section, we always choose ! ¼ "=3 and # ¼ "=3, and
assume a relative binary-detector configuration such that
the detector is only sensitive to hþ (i.e., an antenna pattern
Fþ ¼ 1, F# ¼ 0). A comprehensive study of arbitrary
gravitational polarizations for all sky directions !, # is
left to future work.

Figure 12 shows the resulting waveforms
hþð"=3;"=3; tÞ for the mass-ratios q ¼ 1 and q ¼ 6.
This figure clearly shows that for q ¼ 6, subdominant
modes are more important, and one immediately expects
that disregarding subdominant modes will have a larger
effect for the q ¼ 6 case. Let us now quantify these
expectations.

B. Effectualness

The effectualness can be described by the mismatch
(M) between two time-domain waveforms h1 and
h2ðt0;#0;!Þ. Here, we consider all waveforms to be the
þ polarization evaluated in the direction ! ¼ # ¼ "=3
[see Eq. (43)]. We take h1 to be the numerical-relativity
waveform at one of the simulated mass ratios for some
given total massM. The second waveform h2 is taken to be
our calibrated EOB model, where we have explicitly dis-
played the dependence of this waveform on some reference
time t0 and reference phase #0, as well as the masses m1

and m2 represented in the vector ! of the parameters of the
binary.

The mismatch is given explicitly by [21]

M & 1'max
hh1; h2ðt0;#0;!Þi
kh1kkh2ðt0;#0;!Þk

(44)

where

khik ¼h hi; hii1=2 (45)

denotes the norm induced by Eq. (42). When searching for
the signal waveform h1 with the template h2ðt0;#0;!Þ, the
horizon distance is reduced by a factor M relative to
searching with the perfect template h1, and the reduction
in event rate is given by 1' ð1'MÞ3 ( 3M. Ideally, the
maximization in Eq. (44) is over ft0;#0;!g; however,
sometimes we choose to neglect maximization over !, as
detailed below.
Figure 13 presents several mismatch calculations for the

equal-mass case. The solid lines compare the numerical-
relativity data to the leading (2, 2) mode of our EOB
model. For these two curves, maximization of M is per-
formed over ft0;#0;!g. If the numerical waveform is
represented only by its (2, 2) mode, then the mismatches
are very small, reaching )10'4. However, if the 7-mode
numerical waveform is used with all modes shown in
Fig. 1, then the mismatch increases by about an order of
magnitude, showing that subdominant modes are notice-
able even for the q ¼ 1 case.
The two dashed curves in Fig. 13 use the calibrated EOB

model with all five calibrated modes included. For these
two curves, we maximize the mismatch only over ft0;#0g,
for technical convenience and to save computational
cost. Therefore the obtained mismatches are only upper
bounds. We see that the 5-mode EOB model agrees sig-
nificantly better with the 7-mode NR waveform than
an EOB model utilizing only the (2, 2) mode. The line
‘‘5-mode NR vs 5-mode EOB’’ compares NR with EOB
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0.08
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EOB

q=6,  h+ at θ=φ=π/3

q=1,  h+ at θ=φ=π/3

FIG. 12 (color online). The polarization waveform hþð!;#; tÞ
as emitted into sky direction ! ¼ # ¼ "=3. Top panel: mass
ratio q ¼ 1; bottom panel: mass ratio q ¼ 6. The solid blue
curve represents the numerical data, the red dashed curve the
EOB model, and only late inspiral, merger and ringdown are
shown.
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FIG. 13 (color online). The mismatch versus binary total mass
for q ¼ 1 using Advanced LIGO noise curve. Mismatches with
the (2, 2) mode of the EOB waveform are optimized over
ft0;#0;!g whereas mismatches with the 5-mode EOB model
are optimized over ft0;#0g only and represent an upper bound.
The vertical line represents the maximum total mass for stellar-
mass black-hole binaries, assuming a maximum black-hole mass
of 50M*. The range of total masses on the right of the vertical
line refer to intermediate-mass black-hole binaries.

YI PAN et al. PHYSICAL REVIEW D 84, 124052 (2011)

124052-16

[Pan et al (2011)]

Modeling errors are comparable  to NR 
numerical errors at calibration points. 
With no further calibration, compare 
well with Teukolsky/RWZ waveforms in 
the EMR (q→∞) limit. [Bernuzzi et al (2011), 
Pan et al (2011)]

•Non-spinning EOB Calibrated 5 dominant 
modes to 5 SpEC NR simulations (q = 
1,2,3,4,6). [Damour & Nagar 2009, Barausse et al. 
(2011), Pan et al (2011)]
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Reasonable waveforms when extrapolated to 
any mass ratio with spins -1 < χ < 0.7

[Taracchini et al. (2012)]
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of the EOB model. This expectation is confirmed by the
calibration of the χ1 = χ2 = −0.43757 run, for which we
find that very good performances can be achieved in large
regions of the EOB adjustable parameter space. Fig. 5
shows that in this case the dephasing is well within the
NR error at the merger time. For these spinning wave-
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FIG. 5: Same as in Fig. 3 but for q = 1, χ1 = χ2 = −0.43655.
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FIG. 6: Same as in Fig. 3 but for q = 1, χ1 = χ2 = +0.43756.

forms, we obtain that the MM, maximizing only over the
initial phase and time, is always smaller than 0.003 when
the binary total mass varies between 20M! and 200M!.

D. Performance for nearly extremal spin
waveforms

Here we compare the EOB waveforms of the prototype
model developed in Sec. IVA, against two equal-mass

NR waveforms with nearly extremal spins: χ1 = χ2 =
−0.94905 and χ1 = χ2 = +0.9695 [47, 48]. We stress that
these NR waveforms were not used when calibrating the
spin EOB adjustable parameters dSO and dSS in Eq. (39).
The only information that we used from these two nearly
extremal spin waveforms was their NR-input values when
building the fits fNR(ν,χ).
As already discussed, when the spins are anti-aligned,

the EOB ISCO moves towards larger radial separations,
so that the binary is less relativistic throughout its or-
bital evolution as compared to the aligned configura-
tions. Therefore, we expect that in this case the EOB
model is more effective. The results in Fig. 7 for the case
χ1 = χ2 = −0.94905 confirm this expectation. The de-
phasing grows up to about 2 rads during the ringdown,
while the relative amplitude difference grows up to about
40%. Despite the large phase difference at merger, we
find that, even without maximizing over the binary pa-
rameters but only the initial phase and time, the MM
is always smaller than 0.005 for systems with total mass
between 20M! and 200M!.
For the case χ1 = χ2 = +0.9695, which is outside the

domain of validity of our prototype EOB model, we can-
not successfully run the NQC iterations, since the NQC
corrections are so large that they cause a divergent se-
quence of NQC coefficients. Nonetheless, we deem it
interesting to generate the EOB inspiral-plunge wave-
form where only the non-spinning NQC coefficients ah22

i

(i = 1, 2, 3) and bh22

i (i = 1, 2) are used and compare it to
the NR waveform. In Fig. 8 we show how our waveform
performs. We notice that the NR waveform is very long,
almost 50 GW cycles. The phase difference between the
EOB and NR waveforms is smaller than 0.04 rads over
the first 20 GW cycles, and then grows up to 0.18 rads
during the subsequent 10 GW cycles and it becomes 0.9
rads when 10 GW cycles are left before merger. The
fractional amplitude difference is only 3% when 10 GW
cycles are left before merger.
It is worth emphasizing that although our prototype

model is not yet able to generate merger-ringdown wave-
forms for spins larger than +0.7, nevertheless, as the com-
parison with the nearly extremal case χ1 = χ2 = +0.9695
has proven, the Hamiltonian of Refs. [34, 35] and the
resummed flux of Refs. [38, 39] can evolve the EOB dy-
namics in this highly relativistic case beyond the orbital-
frequency’s peak, until r ≈ 1.9M , without encountering
unphysical features. This suggests that relevant strong-
field effects are well grasped by the EOB dynamics and
waveforms [34, 35, 38, 39], at least as far as the NR runs
used in this paper are concerned. Moreover, the large
amplitude difference causing the NQC iteration to break
down for large, positive spins was already observed in
Refs. [28, 39] where it was pointed out that it is im-
portant to improve the modeling of spin effects in the
EOB waveform amplitude. Finally, as observed above,
the breaking down of the NQC procedure in this highly
relativistic case, although not a problem in principle if
higher-order spin-orbit terms were known in the factor-

•Non-spinning EOB Calibrated 5 dominant 
modes to 5 SpEC NR simulations (q = 
1,2,3,4,6). [Damour & Nagar 2009, Barausse et al. 
(2011), Pan et al (2011)]

•Aligned-spins Calibrated the dominant 22 
mode to 7 SpEC NR simulations (5 non-spinning 
+ 2 equal-mass, equal, non-precessing spins ~ 
0.44) [Taracchini et al. (2012), Barausse et al. (2011)]
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•Non-spinning EOB Calibrated 5 dominant 
modes to 5 SpEC NR simulations (q = 
1,2,3,4,6). [Damour & Nagar 2009, Barausse et al. 
(2011), Pan et al (2011)]

•Aligned-spins Calibrated the dominant 22 
mode to 7 SpEC NR simulations (5 non-spinning 
+ 2 equal-mass, equal, non-precessing spins ~ 
0.44) [Taracchini et al. (2012), Barausse et al. (2011)]

• Tidal effects Progress in incorporating 
neutron-star tidal effects in EOB dynamics & 
waveforms.[Damour & Nagar (2010), Baiotti et al. 
(2010)]
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Comparison of BNS NR simulations and 
EOB phasing (with and without tidal effects)

[Baiotti et al. (2010)] 3

FIG. 2. Comparison between NR and EOB phasing for the M2.9C.12 (left panels) and M3.2C.14 (right panels) binaries. The top panels

show the real parts of the h22 waveforms, while the bottom panels show the corresponding phase differences. Note the excellent agreement

almost up to the time of merger (vertical dashed and dot-dashed lines) and the very large errors when tidal effects are neglected (dotted line).

derivatives in ω̇ ≡ d2φ/dt2 (more details will be presented
in [14])]. The first thing to note is that both the tidal-free

EOB model (EOBTF, dotted line) and the EOB model includ-

ing only LO tidal corrections (EOBLO, dot-dashed line) are

clearly unable, both for the M2.9C.12 (upper panel) and the

M3.2C.14 binaries (lower panel), to match the correspond-

ing NR curves (dashed line with open circles). The dephas-

ing accumulated over the frequency interval I ∆IφEOBNR ≡
∫

I(Q
EOB
ω − QNR

ω )d lnω , by the EOBLO model relative to

the C = 0.12 (0.14) NR data is about 5.5 (2.0) rad. This
is much larger than the NR phasing error, related to a finite-

radius extraction and EOS dependence, estimated to be∆φ =
±0.24 [14].
The inclusion of the NLO 1PN tidal effect (ᾱ1 = 1.25 [9])

only slightly reduces these dephasings to about 4.9 (1.8) rad
(EOBNLO curves in Fig. 1). This clearly indicates the need

for NNLO (2PN and higher) tidal effects. We then found

that choosing ᾱ2 ≈ 130, yields a good match between the
Qω curves (solid line, EOB

NNLO) and the NR data (dashed

line with open circles) for both binaries, with a corresponding

phase difference∆IφEOBNR ≈ 0.1 rad. The value ᾱ2 ≈ 130
is probably only an effective description of higher-order rel-

ativistic tidal effects. Moreover, the precise value of ᾱ2, or

more generally of the amplification factor Âtidal
" (u), is sen-

sitive to the numerical truncation error. When considering

resolution-extrapolated GWs [14], we found a smaller value

of ᾱ2, which is compatible with the estimate obtained using

the binding energy of circular BNSs [10].

Figure 1 also reports the Qω diagnostics obtained when

using two versions of the Taylor-T4 approximant: the tidal-

free model (T4TF, magenta, upper solid line), and the Taylor-

T4LO one (thick-dashed line). The latter model includes

only the LO tidal effects [6], i.e. the LO tidal contribution

atidal(x) ∝ κT
2 x

5 to dx/dt [where x ≡ (Mω/2)2/3; see [8]
and Eqs. (86)–(88) of [9]]. Note that the tidal-free Taylor-T4

Qω curve nearly coincides with the tidal-free EOB one, with a

dephasing∆IφT4EOB = 0.013 rad. On the other hand, the I-
integrated dephasings between the T4LO description and the

NR results are rather large, namely ∆IφT4NR = 6.96 (2.53)
rad for C = 0.12 (0.14). We have investigated whether a suit-
able PN-amplification factor âtidal(x) = 1 + aT4

1 x + aT4
2 x2

of atidal(x) might accurately reproduce the NR data, but

we found that this was not possible with a single choice of

âtidal(x) for the two simulations [14]. The latter result sug-
gests that the EOB modelling of tidal effects may be more

robust than the corresponding Taylor-T4 one

We next consider the comparison of the waveforms in the

time domain and over the full inspiral up to the merger. This

is shown in Fig. 2, whose left panels refer to the M2.9C.12

binary and the right ones to M3.2C.14. The top parts com-

pare the (real part) of the EOBNNLO (with ᾱ1 = 1.25, ᾱ2 =
130) and NR metric h22 waveforms, while the bottom panels

show the corresponding phase differences, ∆φEOBNR(t) ≡
φEOB(t) − φNR(t) (suitably shifted in time and phase à
la [16]). The two vertical lines indicate two possible markers

of the “time of the merger”; more specifically, the dashed lines

refer to the NR merger, defined as the time at which the mod-

ulus of the metric NR waveform reaches its first maximum,

while the vertical dash-dotted line represents the EOB esti-

mate of the “formal” contact [9]. Figure 2 clearly shows that

the agreement in the time domain between the analytic EOB

description and the numerical one is extremely good essen-
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good agreement 
between PN and NR

hybrid waveforms (which are closer to the actual signals)
to verify our results.

The former family of hybrid waveforms is shown in
Fig. 2. The NR waveforms from three different simulations
(! ¼ 0:25, 0.22, 0.19) done by AEI and Jena groups are
matched with 3.5PN inspiral waveforms over the matching
region "750 # t=M # "550. The hybrid waveforms are
constructed by combining the above as per Eq. (4.10) and
(4.11).

The robustness of the matching procedure can be tested
by computing the overlaps between hybrid waveforms
constructed with different matching regions. If the overlaps
are very high, this can be taken as an indication of the
robustness of the matching procedure. A preliminary illus-
tration of this can be found in Ref. [92], and a more
detailed discussion will be presented in [93].

Figure 3 shows the hybrid waveforms of different mass-
ratios in the Fourier domain. In particular, the panel on the
left shows the amplitude of the waveforms in the Fourier
domain, while the panel on the right shows the phase.
These waveforms are constructed by matching 3.5PN
waveforms with the long NR waveforms produced by the
Jena group. In the next section, we will try to parametrize
these Fourier domain waveforms in terms of a set of
phenomenological parameters.

C. Parametrizing the hybrid waveforms

We propose a phenomenological parametrization to
the hybrid waveforms in the Fourier domain. Template
waveforms in the Fourier domain are of particular
preference because (i) a search employing Fourier do-
main templates is computationally inexpensive compared
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FIG. 2 (color online). NR waveforms (thick lines), the best-matched 3.5PN waveforms (dashed lines), and the hybrid waveforms
(thin lines) from three binary systems. The top panel corresponds to ! ¼ 0:25 NR waveform produced by the AEI-CCT group. The
second, third, and fourth panels, respectively, correspond to ! ¼ 0:25, 0.22, and 0.19 NR waveforms produced by the Jena group. In
each case, the matching region is "750 # t=M # "550 and we plot the real part of the complex strain (the ‘‘ þ’’ polarization).

TEMPLATE BANK FOR GRAVITATIONAL WAVEFORMS . . . PHYSICAL REVIEW D 77, 104017 (2008)

104017-9

t1 t2matching 
region

PN
NR
Hybrid

Time [M]

[Ajith et al (2008)]

• Match PN and NR waveforms in a region where 
both calculations are expected to be valid. 
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• Match PN and NR waveforms in a region where 
both calculations are expected to be valid. 

• Construct NR+PN hybrid waveforms in a small 
number of  discrete points in the parameter 
space. 

[Ajith et al (2011)]
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• Match PN and NR waveforms in a region where 
both calculations are expected to be valid. 

• Construct NR+PN hybrid waveforms in a small 
number of  discrete points in the parameter 
space. 

• Interpolate hybrid waveforms over the 
parameter space using interpolation functions 
motivated from perturbative approaches. 

given by PN

2

(0.15, 0, 0), (0, 0, 0). (7) Precessing q = 3 binary with spins
(0.75, 0, 0), (0, 0, 0) [24]. Simulation sets (1)–(4) and (7) were
performed with BAM, set (5) with CCATIE, and set (6) with
LLAMA. The analytical waveform family is constructed em-
ploying only the equal-spin simulation sets (1)–(3); sets (4)–
(7) were used to test the efficacy of our model against more
general spin/mass configurations. Two additional waveforms
were used in these tests: the Caltech-Cornell equal-mass, non-
spinning simulation [25], and the RIT q = 1.25 precessing
binary simulation with |χ1| = 0.6, |χ2| = 0.4 [26].

Constructing hybrid waveforms.— We produce a set of
“hybrid waveforms” [5] by matching PN and numerical-
relativity (NR) waveforms in an overlapping time interval
[t1, t2]. These hybrids are assumed to be the target signals
that we want to detect. For the PN waveforms we choose the
“TaylorT1” waveforms at 3.5PN [27] phase accuracy, with
spin terms up to 2.5PN [28, 29]. This is motivated by PN-
NR comparisons of equal-mass spinning binaries, in which
the accuracy of the TaylorT1 approximant was found to be
the most robust [22, 23]. We include the 3PN amplitude cor-
rections to the dominant quadrupole mode [30] and the 2PN
spin-dependent corrections [29], which greatly improved the
agreement between PN and NR waveforms. For precessing
waveforms, spin and angular momenta are evolved according
to [28, 31].

We match the PN and NR waveforms by doing a least-
square fit over time- and phase shifts between the waveforms,
and a scale factor a that reduces the PN-NR amplitude differ-
ence [5]. The NR waveforms are combined with the “best-
matched” PN waveforms in the following way: hhyb(t) ≡
aτ(t) hNR(t) + (1 − τ(t)) hPN(t), where h(t) = h+(t) − ih×(t)
and τ ranges linearly from zero to one for t ∈ [t1, t2].

Waveform templates for non-precessing binaries.— The
analytical waveforms that we construct are written in the
Fourier domain as h( f ) ≡ A( f ) e−iΨ( f ), where

A( f ) ∝



f ′−7/6 (1 +
∑3

i=2 αi vi) : inspiral
wm f ′−2/3 (1 +

∑2
i=1 εi v

i) : merger
wr L( f , f2,σ) : ringdown

Ψ( f ) ≡ 2π f t0 + ϕ0 +
3

128 η v5
(
1 +

7∑

k=2

vk ψk
)
. (1)

Above, f ′ ≡ f / f1, v ≡ (πM f )1/3, ε1 = 1.4547 χ− 1.8897, ε2 =
−1.8153 χ+1.6557 (estimated from hybrid waveforms), C is a
numerical constant whose value depends on the sky-location,
orientation and the masses, α2 = −323/224 + 451 η/168 and
α3 = (27/8 − 11 η/6)χ are the PN corrections to the Fourier
domain amplitude of the (* = 2,m = ±2 mode) PN wave-
form [29], t0 is the time of arrival of the signal at the detec-
tor and ϕ0 the corresponding phase, L( f , f2,σ) a Lorentzian
function with width σ centered around the frequency f2, wm
and wr are normalization constants chosen so as to make A( f )
continuous across the “transition” frequencies f2 and f1, and
f3 is a convenient cutoff frequency such that the signal power
above f3 is negligible. The phenomenological parameters ψk
and µk ≡ { f1, f2,σ, f3} are written in terms of the physical

parameters of the binary as:

ψk = ψ
0
k +

3∑
i=1

N∑
j=0

x(i j)
k η

iχ j, πMµk = µ
0
k +

3∑
i=1

N∑
j=0
y(i j)

k η
iχ j , (2)

where N ≡ min(3 − i, 2) while x(i j)
k and y(i j)

k are tabulated in
Table I.

We match these waveforms to 2PN accurate adiabatic in-
spiral waveforms in the test-mass (η → 0) limit, where the
phenomenological parameters reduce to:

f1 → f 0
LSO, f2 → f 0

QNM, σ→ f 0
QNM/Q

0, ψk → ψ0
k . (3)

Above, f 0
LSO and f 0

QNM are the frequencies of the last stable
orbit [32] and the dominant quasi-normal mode, and Q0 is the
ring-down quality factor [33] of a Kerr BH with mass M and
spin χ, while ψ0

k are the (2PN) Fourier domain phasing coeffi-
cients of a test-particle inspiralling into the Kerr BH [29].

The test-mass-limit waveforms suffer from two limitations:
1) we assume that the evolution of the GW phase at the merger
and ringdown is a continuation of the adiabatic inspiral phase,
and 2) in the absence of a reliable plunge model, we approx-
imate the amplitude of the plunge with f ′−2/3 (1 +

∑2
i=1 εi v

i).
Nevertheless, in the test-mass limit, the signal is expected to
be dominated by the inspiral, which is guaranteed to be well-
modelled by our waveforms. More importantly, the imposi-
tion of the appropriate test-mass limit in our fitting procedure
ensures that the waveforms are well behaved even outside the
parameter range where current NR data are available. Because
of this, and the inclusion of the PN amplitude corrections,
these waveforms are expected to be closer to the actual sig-
nals than the templates proposed in [1, 6] in the non-spinning
limit. However, since the parameter space covered by the NR
simulations is limited, we recommend that these waveforms
be used only in the regime q ! 10 and −0.85 ! χ ! 0.85.
Also, these are meant to model only the late-inspiral, merger
and ring down (M fGW > 10−3), i.e., binaries in the mass-
range where merger-ringdown also contribute to the SNR,
apart from inspiral.

We have examined the “faithfulness” [34] of the new tem-
plates in reproducing the hybrid waveforms by computing the
match (noise-weighted inner product) with the hybrids. Loss
of the SNR due to the “mismatch” between the template and
the true signal is determined by the match maximized over
the whole template bank – called fitting factor (FF). The stan-
dard criteria for templates used in searches is that FF > 0.965,
which corresponds to a loss of no more than 10% of signals.

Match and FF of the analytical waveforms with the equal-
(unequal-) spin hybrid waveforms are plotted in Fig. 1 (Fig. 2),
using the Initial LIGO design noise spectrum [35]. Note that
the analytical waveform family is constructed employing only
the equal-spin hybrid waveforms (Fig. 1). The PN–NR match-
ing region used to construct the unequal-spin hybrids (Fig. 2)
are also different from that used for equal-spin hybrids. These
figures demonstrate the efficacy of the analytical templates
in reproducing the target waveforms – templates are “faith-
ful” (match > 0.965) either when the masses or the spins are
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• Match PN and NR waveforms in a region where 
both calculations are expected to be valid. 

• Construct NR+PN hybrid waveforms in a small 
number of  discrete points in the parameter 
space. 

• Interpolate hybrid waveforms over the 
parameter space using interpolation functions 
motivated from perturbative approaches. 

• Test the interpolated (analytical) waveform 
family against different sets of  hybrid 
waveforms.

Fitting factor and match of the 
phenomenological IMR templates with the  
hybrid waveforms (Ini LIGO).
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• PN-NR matching can be done in frequency 
domain also (provided “long-enough” NR 
waveforms are available so that FFTs of  NR 
waveforms can be calculated). 
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remains valid; we should search over not only f!; t0;"0g
but now also over the spins f#1;#2g. We would not expect
the results to be better than shown here for nonspinning
waveforms because (i) we are adding two more parameters
and (ii) the waveforms #1–4 are expected to have more
wave-extraction systematic errors than the LLAMA results
considered here. Most importantly, as we have just seen,
the intrinsic errors in PN are more significant whereas the
numerical accuracy is not the bottleneck. The intrinsic
parameter biases in PN also show up when different PN
models are compared with each other. An extensive com-
parison of different PN models is made in [87]; this paper
quantifies the mutual effectualness and faithfulness of the
different PN models and shows that errors of!20% are not
uncommon for Advanced LIGO. The less than 10% dis-
crepancy in ! shown in Fig. 5 is thus entirely consistent
with the differences between different PN models. To
address this, one needs either improved PN models or a
greater variety of longer NR waveforms such as the long
SPEC simulation.

As a simplification, in what follows below we will
choose the matching window based on maximizing over
the extrinsic parameters ðt0;"0Þmotivated by Fig. 3. In that
figure, we observe the best-fit region extending diagonally
from M!f $ 0:013 on the y axis to the bottom right
corner. It turns out that for this diagonal, the upper fre-
quency of the window does not vary much, 0:020 &
MfL þM!f & 0:024, and we shall use this fact below
for constructing hybrid waveforms for aligned spinning
systems.

D. Construction of hybrid waveforms
for aligned spinning systems

Let us now proceed to the construction of a hybrid
waveform model for nonprecessing, spinning systems
with comparable mass. Again, the waveforms described

in Sec. III will be the basis for our model at low frequencies
corresponding to the inspiral stage. On the other hand, the
NR simulations described as data sets #1–3 in Table I
contain physical information for frequencies above
Mf $ 0:009. We will refer to Fig. 3 to justify our choice
of an overlapping window at Mf 2 ð0:01; 0:02Þ.
Once this interval is fixed, we now carry out the follow-

ing matching procedure for all NR simulations of data sets
#1–3: PN and NR phases are aligned by fitting the free
parameters t0 and "0 in Eq. (3.13); with a standard root-
finding algorithm (starting at the mid point of the fitting
interval) we find a frequency f" where PN and NR phase
coincide and construct the hybrid phase consisting of
TaylorF2 at f & f" and NR data at f > f". An analogous
procedure is applied to the amplitude, but in this case there
is no freedom for adjusting any parameters. Hence, we use
an educated guess for the matching frequency (compatible
with that for the phase) and find the root fA where the
difference of PN and NR amplitude vanishes. The hybrid
amplitude consists of PN data before and NR data after fA.
Small wiggles in the NR amplitude, due to the Fourier
transform, do not affect the phenomenological fit signifi-
cantly. The most important ingredient for arriving at an
effectual model is the phase.
Figure 7 illustrates the above-described hybrid-

construction method for matching PN and NR data in the
frequency domain. The procedure does not require any
resizing the PN or NR data and allows for the construction
of waveforms containing all the information from the
TaylorF2 approximant at low frequencies and input from
the NR simulations for the late inspiral, merger, and ring-
down. The resulting hybrid PN-NR data cover a part of the
parameter space corresponding to equal-valued, (anti-)
aligned spins for 0:16 & ! & 0:25 and constitute the ‘‘tar-
get’’ waveforms to be fitted by the analytical phenomeno-
logical model described in Sec. V.
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FIG. 7 (color online). Illustration of the method for constructing PN-NR hybrid waveforms in the frequency domain. The data
corresponds to an equal-mass binary with aligned spins #1 ¼ #2 ¼ (0:25. The left panel shows the amplitude and the right panel
displays the phase of the dominant ‘ ¼ 2,m ¼ 2mode of the GW complex strain ~hðfÞ. The dotted lines correspond to the TaylorF2 PN
approximant and the dot-dashed curve is the NR data. The hybrid waveform is depicted in solid black and the matching points for
amplitude and phase are indicated with a dashed line.
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domain also (provided “long-enough” NR 
waveforms are available so that FFTs of  NR 
waveforms can be calculated).

• Phenomenological fits to the amplitude and 
phase ensuring that the PN waveforms are 
retrieved in the low-mass limit. 
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approximated with an error ! 2:5% in the range
a 2 ½0; 0:99# by the following fit [114]

fRDða;MÞ ¼ 1

2!

c3

GM
½k1 þ k2ð1( aÞk3#; (5.5)

QðaÞ ¼ q1 þ q2ð1( aÞq3 ; (5.6)

where ki ¼ f1:5251;(1:1568; 0:1292g and qi ¼
f0:7000; 1:4187;(0:4990g, i ¼ 1, 2, 3 as given in
Table VIII of [114] for the ðl; m; nÞ ¼ ð220Þ mode. The
review [115] presents a full description of quasinormal
modes. The quantity aM2 is the spin magnitude of the final
black hole after the binary has merged, which can be
inferred from the spins of the two black holes. In our
case, we use the fit presented in [53], which maps the
mass ratio and spins of the binary to the total spin a of
the final black hole.

The analytical treatment of the ringdown (5.4) motivates
a linear ansatz for the post-merger phase c 22

RDðfÞ of the
form

c 22
RDðfÞ ¼ "1 þ "2f: (5.7)

The "1;2 parameters are not fitted but obtained from the
premerger ansatz (5.3) by taking the value and slope of the
phase at the transition point fRD. The transition between
the different regimes is smoothened by means of tanh-
window functions

w)
f0
¼ 1

2

!
1) tanh

"
4ðf( f0Þ

d

#$
(5.8)

to produce the final phenomenological phase

!phenðfÞ ¼ c 22
SPAw

(
f1
þ c 22

PMw
þ
f1
w(

f2
þ c 22

RDw
þ
f2
; (5.9)

with f1 ¼ 0:1fRD, f2 ¼ fRD; here we have used d ¼ 0:005
in the window functions w). Roughly, these two transition
points, respectively, signal the frequencies at which our NR
simulations start and the point at which the binary merges
and have been found to provide the best match between the
hybrids and the phenomenological model.

B. Amplitude model

In a similar manner to the phase, we approach the
problem of fitting the amplitude of the GW by noting
that the PN amplitude obtained from the SPA expression
could be formally reexpanded as

~A exp
PN ðfÞ ¼ C"(7=6

"
1þ

X5

k¼2

#k"
k=3

#
; (5.10)

where " ¼ !Mf. We introduce a higher-order term to
model the premerger amplitude ~APMðfÞ

~A PMðfÞ ¼ ~APNðfÞ þ #1f
5=6; (5.11)

where the #1 coefficient is introduced to model the ampli-
tude in the premerger regime and ~APN is the amplitude
constructed in Sec. III (see Fig. 2).
The ansatz for the amplitude during the ringdown is

~A RDðfÞ ¼ $1Lðf; fRDða;MÞ;$2QðaÞÞf(7=6; (5.12)

where only the width and overall magnitude of the
Lorentzian function Lðf; f0;%Þ * %2=ððf( f0Þ2 þ
%2=4Þ are fitted to the hybrid data. The factor f(7=6 is
introduced to correct the Lorentzian at high frequencies,
since the hybrid data shows a faster falloff, and $1 accounts
for the overall amplitude scale of the ringdown. In princi-
ple, the phenomenological parameter $2 should not be
necessary because the width of the Lorentzian for the
ringdown should be given by the quality factor Q which
depends only on the spin of the final black hole. However,
recall that here we estimate the final spin from the initial
configuration using the fit given in [53]; $2 accounts for the
errors in this fit.
The phenomenological amplitude is constructed from

these two pieces in a manner analogous to the phase

~A phenðfÞ ¼ ~APMðfÞw(
f0
þ ~ARDðfÞwþ

f0
; (5.13)

with f0 ¼ 0:98fRD and d ¼ 0:015. Figure 8 demonstrates
how this phenomenological ansatz fits the hybrid ampli-
tude in a smooth manner through the late inspiral, merger,
and ringdown.

C. Mapping the phenomenological coefficients

Our models for the amplitude and phase involve 9
phenomenological parameters f&1; . . . ;&6;#1;$1;$2g de-
fined in Eqs. (5.3), (5.11), and (5.12). The coefficients "1;2

from (5.7) can be trivially derived from the set of &k. We
now need to find the mappingM ! ~M from the physical
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FIG. 8 (color online). Fitting procedure for the amplitude,
applied to the equal-mass, nonspinning case. The #1 term of
Eq. (5.11) is introduced to follow the behavior of the amplitude
in the premerger regime; whereas the Lorentzian curve correctly
describes the post-merger. The two pieces are glued together in a
smooth manner using tanh-windows.
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Table VIII of [114] for the ðl; m; nÞ ¼ ð220Þ mode. The
review [115] presents a full description of quasinormal
modes. The quantity aM2 is the spin magnitude of the final
black hole after the binary has merged, which can be
inferred from the spins of the two black holes. In our
case, we use the fit presented in [53], which maps the
mass ratio and spins of the binary to the total spin a of
the final black hole.

The analytical treatment of the ringdown (5.4) motivates
a linear ansatz for the post-merger phase c 22

RDðfÞ of the
form
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RDðfÞ ¼ "1 þ "2f: (5.7)

The "1;2 parameters are not fitted but obtained from the
premerger ansatz (5.3) by taking the value and slope of the
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with f1 ¼ 0:1fRD, f2 ¼ fRD; here we have used d ¼ 0:005
in the window functions w). Roughly, these two transition
points, respectively, signal the frequencies at which our NR
simulations start and the point at which the binary merges
and have been found to provide the best match between the
hybrids and the phenomenological model.

B. Amplitude model

In a similar manner to the phase, we approach the
problem of fitting the amplitude of the GW by noting
that the PN amplitude obtained from the SPA expression
could be formally reexpanded as

~A exp
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where " ¼ !Mf. We introduce a higher-order term to
model the premerger amplitude ~APMðfÞ

~A PMðfÞ ¼ ~APNðfÞ þ #1f
5=6; (5.11)

where the #1 coefficient is introduced to model the ampli-
tude in the premerger regime and ~APN is the amplitude
constructed in Sec. III (see Fig. 2).
The ansatz for the amplitude during the ringdown is

~A RDðfÞ ¼ $1Lðf; fRDða;MÞ;$2QðaÞÞf(7=6; (5.12)

where only the width and overall magnitude of the
Lorentzian function Lðf; f0;%Þ * %2=ððf( f0Þ2 þ
%2=4Þ are fitted to the hybrid data. The factor f(7=6 is
introduced to correct the Lorentzian at high frequencies,
since the hybrid data shows a faster falloff, and $1 accounts
for the overall amplitude scale of the ringdown. In princi-
ple, the phenomenological parameter $2 should not be
necessary because the width of the Lorentzian for the
ringdown should be given by the quality factor Q which
depends only on the spin of the final black hole. However,
recall that here we estimate the final spin from the initial
configuration using the fit given in [53]; $2 accounts for the
errors in this fit.
The phenomenological amplitude is constructed from

these two pieces in a manner analogous to the phase

~A phenðfÞ ¼ ~APMðfÞw(
f0
þ ~ARDðfÞwþ

f0
; (5.13)

with f0 ¼ 0:98fRD and d ¼ 0:015. Figure 8 demonstrates
how this phenomenological ansatz fits the hybrid ampli-
tude in a smooth manner through the late inspiral, merger,
and ringdown.

C. Mapping the phenomenological coefficients

Our models for the amplitude and phase involve 9
phenomenological parameters f&1; . . . ;&6;#1;$1;$2g de-
fined in Eqs. (5.3), (5.11), and (5.12). The coefficients "1;2

from (5.7) can be trivially derived from the set of &k. We
now need to find the mappingM ! ~M from the physical
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FIG. 8 (color online). Fitting procedure for the amplitude,
applied to the equal-mass, nonspinning case. The #1 term of
Eq. (5.11) is introduced to follow the behavior of the amplitude
in the premerger regime; whereas the Lorentzian curve correctly
describes the post-merger. The two pieces are glued together in a
smooth manner using tanh-windows.
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robustness of our model, we compute the maximized over-
lap between the phenomenological waveforms and the NR
data sets #4–7 that were not used in the construction of the
model. At low masses, there is no contribution of these
short NR waveforms in the frequency band of interest for
Advanced LIGO, and it turns out that the overlaps can be
computed only for M * 100M!.

In Fig. 11 we see that the maximization of the overlaps
with respect to ! and " shows values >0:97 for all
configurations; in this case the maximum bias in the pa-
rameters is !! " 6# 10$3, !" " 5# 10$2. This is
roughly consistent with Fig. 10 which shows the overlap
and fitting factor of the model with the original set of
hybrid waveforms. These results prove that our model is
effectual and, thus, sufficient for detection. We shall study

its effectualness and faithfulness in greater detail in a
forthcoming paper.

VI. SUMMARYAND FUTURE WORK

The aim of this paper has been to construct an analytical
model for the inspiral and coalescence of binary black hole
systems with aligned spins and comparable masses in
circular orbits. Since this requires merging post-
Newtonian and numerical relativity waveforms, one of
the main themes has been to quantify the internal consis-
tency of hybrid waveforms. This is important because even
if one succeeds in finding a useful fit for a family of hybrid
waveforms, one still needs to show that the hybrid one
started with is a sufficiently good approximation to the true
physical waveforms. We investigated the systematics of
constructing hybrid waveforms for accurate nonspinning
waveforms based on the LLAMA code, and we saw that
neither the numerical errors nor the hybrid-construction
errors are significant. This suggests that in order to improve
the accuracy of hybrid waveforms, we require either longer
NR waveforms so that the matching with PN can be done
earlier in the inspiral phase, or improved PN models that
are more accurate at frequencies closer to the binary
merger.
With the hybrid waveforms for nonprecessing systems

in hand, we constructed an analytical model for the wave-
form which has an overlap and fitting factor of better than
97% for Advanced LIGO with the hybrid waveforms for
systems with a total mass ranging up to %350M!. Since
these overlaps are comparable to those achieved with the
alternative phenomenological waveform construction pre-
sented in [40], we conclude that this process is robust, and,
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FIG. 10 (color online). Overlaps and fitting factors between
the hybrid waveform constructed according to the procedure
described in Sec. IVD and the proposed phenomenological fit,
using the design sensitivity curve of Advanced LIGO. The labels
indicate the values of !, " for some configurations. In the upper
panel we plot Oð#Þ ¼ Að#;#Þ, i.e. we compute the ambiguity
function (4.10) without maximizing over the parameters of the
model waveform; this is a lower bound on the effectualness. The
bottom panel shows the maximized overlaps, i.e. Að#;#0Þ; the
maximum bias of the optimized #0 parameters is !! ¼ 5#
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Phenomenological waveforms with generic spins: first efforts

• Waveforms are computed using time-domain 
adiabatic PN evolution (TaylorT4) until the 
onset of  “merger”. 
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2

phenomenological waveforms [13] describing non-precessing systems are used here together with the same set of fully
precessing numerical waveforms used in [25] to tune this new version of PhenSpin waveforms.

The PhenSpin waveforms have been constructed by joining the perturbative PN description of the inspiral to the
ring-down phase by a phenomenological phase which plausibly describes the evolution of the waveform in between.
With respect to the previous work introducing these waveforms, here we give a slightly modified (improved) version,
identical in spirit but better tuned in some technical aspects, and produce new results assessing their faithfulness
to numerical simulation in presence of detector noise. The improved details allow to obtain a slightly better match
between the PhenSpin waveforms and the set of test waveforms they have been compared with.

Waveforms describing generically spinning coalescing binaries are not suitable for searches employing match-filtering,
as the size of a template bank increases exponentially with the number of template parameters: since spinning
waveforms depend on several parameters (masses, spin components of the binary constituents, angles defining the
orientation of the source with respect to the observer) it is not practical to construct one template bank to cover the
entire spin parameter space. Non spinning, or at least non-precessing waveforms, are usually preferred for template
bank construction, with the exception of the so-called Physical Template Family, representing a single spin family
waveform [26], which however can effectively describe also doubly spinning physical systems [27].

The availability of generically spinning waveforms is however badly needed to assess the efficiency of experimental
searches based on banks of non-spinning templates, like [19]. Moreover fully spinning waveforms can be used as
templates in connection with parameter estimation via Bayesian inference methods, which can be used as follow-up
analysis to perform searches in the parameter space with full dimensionality, but restricted to a small subset of the
entire space, as determined by lower level triggers.

The paper is organized similarly to [25] and the exposition has been kept here as self-contained as possible. In sec. II
the analytical waveform construction and the waveforms used for calibration are revisited. Differences with respect
to the old version of PhenSpin are described. In sec. III the results are presented, in the form of comparison between
analytically and numerically generated waveforms, which reproduce the dominant quadrupolar mode l = m = 2. In
sec. IV the conclusions that can be drawn from the present work are reported.

II. THE METHOD

Following the original introduction of PhenSpin waveforms given in [25], the present work revisits the construction
of analytical gravitational waveforms generated by the coalescence of spinning binary systems. The waveforms used to
construct and calibrate our analytical model include the numerical waveforms used in the previous paper, describing
equal mass binary systems (m ≡ m1 = m2), with spin magnitudes |S1| = |S2| = 0.6m2 and starting with S2
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Ṡ1,2 = Ω1,2 × S1,2 ,
˙̂L = −ν

v

(
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3

where F (v) and E(v) are respectively the flux emitted and the energy of a circular orbit with angular frequency ωorb,
related to the main gravitational wave frequency fGW via fGW = ωorb/π.
By parametrizing the orbital angular momentum unit vector L̂ as

L̂ = (sin ι cosα, sin ι sinα, cos ι) (4)

it is convenient to introduce the carrier phase Ψ given by

dΨ

dt
= ωorb − cos ι

dα

dt
. (5)

Numerically generated waveforms are usually decomposed in spherical harmonics, in particular the five quadrupolar
modes (l = 2) are the only non-vanishing at the lowest order in v, and the l = 2,m = ±2 mode are the dominant

ones. As determined by the PN analysis, the l = 2,m = 2 mode in the inspiral phase h(insp)
2,2 (the only one which

will be used here for comparison with test waveforms, which can be expressed in terms of the usual plus and cross

polarizations as h(insp)
2,2 = h+ − ih×) is given by formulae which can be found e.g. in [31], which here we re-write in

the following form
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(6)

where spin-dependent terms in the amplitude have been neglected as well as terms of order higher than v4, t-
dependence is understood in Ψ and α and the z−axis used for defining l,m modes is parallel to the initial total
angular momentum.

Note that differently from [31] and the previous version of the PhenSpin waveforms, the v4 terms have been added
weighting them by a phenomenological function c(v) defined as

c(v) =

{
exp

[
−(1− 0.05/ωorb)2/2

]
ωorb ≤ 0.05

1 ωorb > 0.05

which has the role of turning v4 corrections on at values of the orbital frequency Mωorb ! 0.05, as otherwise poor
matching with numerical simulations would be obtained.

The m = −2 mode can be obtained via h2,−2(Ψ) = h∗
2,2(Ψ+ π) and in the equal mass case h2,−2 = h∗

2,2 holds: we
thus focus the calibration of our phenomenological model on the h2,2 mode.
The functions F (v) and E(v) are necessary to determine the orbital phase and they are known up to 3.5PN order
as far as orbital effects are concerned, and up to 3PN and 2PN level for respectively S1,2L and S1S2, S1S1, S2S2

interactions, see [32–34] for recent derivations of spin-orbit and spin-spin interaction effects.
According to studies in the non-spinning case [21, 35, 36], the TaylorT4 appears to be a very good approximant up

to a frequency ω̄ = πf̄GW # 0.1/M for the equal mass case, even though its faithfulness seems to worsen for different
mass-ratios (which however are not considered in this work). [45]

The PN evolution (6) is halted at t = tm, when ωorb reaches the value ωm that is determined by comparison with
the test waveforms. For ωorb > ωm (ωorb is monotonically increasing) the angular frequency is evolved according to

ωorb(t) =
ω1

1− t/TA
+ ω0, ωm < ωorb < z ωrd and tm < t < trac , (7)

where the three unknown parameters ω0,1 and TA are determined by requiring continuity of ωorb and its first and
second derivatives at the matching point defined by ωm.
The damped exponentials describing the ring-down phase are attached at the instant of time trac when ωorb reaches a
fraction z of the ωrd value, the specific value of z has been determined like ωm by comparison with the numerical rela-
tivity waveforms, as described below, and differently with respect to the previous version of the PhenSpin waveforms,
where z has not been fit to numerical simulations but kept constant to a convenient value.

Differently from the first PhenSpin version [25], where it has been kept constant at their value at t = tm, the
angular variable α is evolved with a similar phenomenological formula

dα

dt
=

α̇1

1− t/TA
+ α̇0 , (8)
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4

where the parameters α̇1,0 are determined by requiring the continuity of α up to its second derivative, and TA is the
same as determined in eq.(7).

Finally the usual ring-down description of the waveform is used

h(rd)
2,2 (t) =

∑

n

e−t/τnAne
iωrdnt t > trac , (9)

where it is used that the ring-down phase is described by adding damped exponentials of increasing inverse damping
time, the overtones, with complex constants An’s. Here we assume that given the moderate spin values we are
considering, the direction of the final spin of the black hole is parallel to the initial total angular momentum. We
have checked that during the PN-inspiral phase (t < tm) this is indeed the case to very accurate precision (better
than 10−4) for all spin configurations considered here. In [42] the same numerical simulations used here are analyzed
and a maximum misalignment angle θ between the final spin and the initial total angular momentum is found to be
around θ ! 0.24rad ! 13o (see fig.3 of [42]). Further investigations are necessary to assess the importance of this
effect on the actual waveform shape.

Allowing more overtones requires to fix more coefficients, which can be done by admitting continuity of the waveform
to the appropriate level: using n overtones requires matching the waveform up to its 2× (n− 1)-th derivative, as each
overtone involve the determination of a complex (or two real) constant parameter(s). The construction that inspired
our work is the EOB matched to numerical relativity waveforms (usually referred to as EOBNR), introduced in [21]
where the waveform is assumed circularly polarized (i.e. h×(Ψ + π/4) = ±h+(Ψ)), so that the real and imaginary
part of An for the l = 2,m = 2 are not independent parameters. Here however we do not assume circular polarization,
as in general terms of order v3 in eq.(6) (for unequal mass systems) will spoil this property and the stitching of the
ring-down modes is performed independently on the real and imaginary part of each multipolar mode. For any such
mode defined by a (l,m) pair there is an infinity of overtones with increasing damping factors, but for our practical
purposes retaining only two overtones is enough.

As described in [43] each overtone with given l,m will be in general a superposition of the two modes which are
usually designated by l,m and l,−m. Here we stick to the prescription adopted in [21] where only the m > 0 mode is

stitched to the inspiral waveform. We have verified that adding the l = 2,m = −2 mode to h(rd)
2,2 would not improve

the fit to the numerical waveforms, at the expense of introducing additional constant parameters which have to be
fixed by imposing further continuity requirements.

The values of the ring-down frequencies and damping factors of the three lowest overtones of the l ≤ 4 modes can
be read from [37] as a function of the mass and spin of the final object created by the merger of the binary system.
We estimate the final mass by taking the algebraic sum of the constituents’ masses and the negative binding energy
once ωm is reached, and the final spin according to the phenomenological formula given in eq.(5) of [38].

The analytical waveforms just described have been quantitatively confronted with the set of test ones by computing
the noise-less overlap integral

Iĥ1,ĥ2
≡ 2

∫ ∞

0

(
ĥ1(f)ĥ

∗
2(f) + ĥ∗

1(f)ĥ2(f)
)
df (10)

maximized over initial phase and time of arrival, where normalized waveforms have been considered

ĥ(f) ≡ h(f)

2

(∫ ∞

0
|h(f)|2

)−1/2

.

The angular frequency ωm and the parameter z have been determined by comparison with a first set of short test
waveforms (4-6 cycles long) by picking the values maximizing the overlap integral (10) (with a precision respectively of
±5 · 10−4/M and 0.01). The set of short waveforms have initial orbital frequency ωorb;ini ∼ 0.05/M (for comparison,
ωrd ∼ 0.3/M). Note that despite ωorb;ini being not too far from the values of ωm obtained through the fit, see tab. I,
it still allows at least one oscillation cycle before the onset of the phenomenological phase for all test waveforms.

The numerical waveforms in the set of test waveforms have been generated with MayaKranc. The grid structure
for each run consisted of 10 levels of refinement provided by CARPET [39], a mesh refinement package for CACTUS
[40]. Sixth-order spatial finite differencing was used with the BSSN equations implemented with Kranc [41]. The
outer boundaries are located at 317M and the finest resolution is M/77. Waveforms were extracted at 75M . A few
waveforms were generated at resolutions of {M/64,M/77,M/90}, and convergence consistent with our fourth order
code is found. The short (long) runs showed a phase error on the order of 5 · 10−3 (5 · 10−2) radians and an amplitude
error of ≈ 2% (≈ 5%).

The numerical waveforms consist of two sets: the first set consisted in 24 few-cycle-long waveforms, representing
mostly the merger and ring-down phases of a coalescence which, together with four phenomenological ones with
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Figure 1: Comparison between the l = 2,m = 2 mode of analytical (black, solid) and numerical (red, dashed) equal mass
simulations: time-domain waveforms are shown in the upper frame, the lower frame shows ωorb (given respectively by its PN
value, by eq.(4) and by ωrd in the three different phases) vs. the instantaneous frequency of the numerical waveform (computed
as Im(ḣ++ iḣ×)/|h++ ih×|, being h+ (h×) the plus (cross) polarization of the numerical waveform). Initial spin configuration:
S1/m

2
1 = (0, 0, 0.6), S2/m

2
2 = (−0.6, 0, 0). Vertical dashed lines mark the onset of the phenomenological phase parametrized

by eq. (4) and the ring down phase parametrized by eq. (6). The resulting overlap integral is 0.986.

acos(S1L̂)[
o] Overlap Mωm × 102 Mωrd × 102

0 0.986 5.29 30.0

15 0.991 5.37 29.5

30 0.991 5.44 28.8

45 0.986 5.49 29.0

60 0.977 5.55 28.0

75 0.975 5.58 28.0

90 0.983 6.07 26.9

105 0.980 6.13 26.5

120 0.981 6.18 26.1

135 0.987 6.00 24.7

150 0.983 6.36 26.4

165 0.984 6.59 26.0

180 0.985 6.47 26.3

195 0.980 6.70 27.0

210 0.980 6.34 27.5

225 0.979 6.29 27.5

240 0.978 6.08 29.9

255 0.977 6.03 28.9

270 0.971 5.68 29.4

285 0.977 5.62 29.6

300 0.980 5.48 30.4

315 0.985 5.51 30.3

330 0.988 5.44 30.3

345 0.988 5.36 29.8

Table I: Values of the overlap integral between the analytical and the 24 short numerical waveforms. For reference, the values
of ωm maximizing the overlap and of ωrd are reported.

NR
PhenSpin

[Sturani et al (2010)]

Much harder problem! 
Will require hundreds of generic spinning NR 
waveforms for accurate calibration. 
Currently only a handful is available (and used). 



“Detection templates” for generic spinning binaries 
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• For the purpose of  GW detection, it is possible to reduce the dimensionality of  the problem. For 
comparable-mass binaries, dominant spin effects can be described by one parameter: 
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[Ajith et al (2011), Ajith (2011)]

(dominant term in the 
spin-orbit coupling)χ ≡ 1

m1 + m2

(
S1

m1
+

S2

m2

)

S1

S2
L

S1

S2
L

Sreduced

L

≈ ≈
m1

m2 m2 m2

m1 m1

[Prev. work: Apostolatos et al 1994, Buonanno et al 2004, Pan et al 2004]



Length requirements on NR waveforms 
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• In hybrid PN+NR waveforms, the long PN 
inspiral dominates the error budget, unless 
NR simulations cover hundreds of  orbits. 
[Hannam et al (2010), ]

Analytical meets numerical relativity 2

Inspiral Merger Ringdown
post-Newtonian (PN) theory no analyt. model perturbation theory
Effective-one-body (EOB)

Numerical Relativity (NR)

Figure 1. The dominant spherical harmonic mode of the gravitational wave signal of two
coalescing (nonspinning) BHs as a function of time. The different approximation schemes and
their range of validity are indicated. Wavy lines illustrate the regime close to merger where
analytical methods have to be bridged by NR.

Without further information, however, all these analytical schemes break down at some
point prior to the merger of both BHs, and a second approach has to be used to model the
dynamics from the late inspiral through the merger: numerical relativity (NR). In NR, the
full Einstein equations are usually solved discretely on a finite grid that is adapted to the
movement of the two bodies, and the resolution in space and time is chosen fine enough to
obtain a converging result. The GW content is extracted at finite radii and then extrapolated to
infinity, or it is directly extracted at null infinity via Cauchy-characteristic extraction [14, 15].
For current overviews of the field see for example [16–20].

Both numerical and analytical approaches have their limitations. The PN-based formu-
lations are, by construction, not valid throughout the entire coalescence process; NR relies on
computationally very expensive simulations that become increasingly challenging (and time-
consuming) with larger initial separations, higher spin magnitudes of the BHs and higher
mass-ratios q = m1/m2 (mi are the masses of the individual BHs and we use the convention
m1 ≥ m2). Thus, to build models of the complete inspiral, merger and ringdown signal, one
has to combine information from both analytical and numerical approximations. See Fig. 1
for an illustration of the dominant harmonic mode of a nonspinning binary.

These ‘complete’ waveforms are indispensable to perfect current search strategies. They
constitute our best and most complete approximation of the real signals that we are trying to
detect, which makes them ideal target waveforms in a simulated search to test existing analysis
algorithms. The Numerical INJection Analysis (NINJA) project [21, 22] is dedicated to that
question. The other important application of complete waveforms is to derive an analytical
model from them which leads to an improved template bank in the search. The improvement
manifests itself, e.g., in a wider detection range and a more accurate extraction of the physical
information encoded in the signals. Ongoing searches with such templates in LIGO data are
summarized for instance in [23].

This paper briefly describes the efforts to build complete waveform models by combining
analytical approximants and NR into individual signals and eventually entire waveform fami-
lies. Our focus then turns to the question of how reliable and accurate such final models are.
After all, one expects (and finds) a smooth connection between the two parts of a supposedly
common GW signal, but the use in actual analysis algorithms of GW interferometers requires
a much deeper error analysis with a quantitative understanding of the uncertainty introduced
in the modelling process.

[Ohme (2011)]
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[Ohme et al (2011)]

Mismatch contours (in %) between 
TaylorT1/F2 hybrids (Mωmatch = 0.06).

• In hybrid PN+NR waveforms, the long PN 
inspiral dominates the error budget, unless NR 
simulations cover hundreds of  orbits. [Hannam 
et al (2010), ]

• Pragmatic view: Current NR simulations are 
long enough for detection templates (moderate 
mass ratios & nonprecessing-spins). Systematic 
errors in estimating parameters are ~few % 
(~statistical errors). [Ohme et al (2011)]
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• In hybrid PN+NR waveforms, the long PN 
inspiral dominates the error budget, unless NR 
simulations cover hundreds of  orbits. [Hannam 
et al (2010), ]

• Pragmatic view: Current NR simulations are 
long enough for detection templates (moderate 
mass ratios & nonprecessing-spins). Systematic 
errors in estimating parameters are ~few % 
(~statistical errors). [Ohme et al (2011)]

•Ambitious view: Much longer (>10x) NR 
simulations will be needed for accurate 
parameter estimation (including tests of  GR) in 
advanced detector era. [MacDonald et al (2011); 
Boyle et al (2011)].
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[MacDonald et al (in prep)]

“Inaccuracy” of TaylorT1/T2/T3/T4 
hybrids (Mωmatch = 0.046)

NR LENGTH REQUIREMENTS

• Vary mass ratio, hybridize at 
fixed frequency !m=0.046/M 
(10-15 orbits before merger)

• Error between hybrids with 
different PN approximants 
increases with mass ratio.

• Even longer NR simulations 
are needed
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FIG. 4. Differences between hybrids using different PN ap-
proximants, but matched at the same matching frequency.
Plotted is the value of ‖δh‖/‖h‖ at 20M! as a function of
ωm for a binary black hole system with a mass ration q = 6.
Both plots show the same data, but with different axes. The
bottom panel shows a power law fit to the smallest four data
points. Not sure if this is the plot I want to show.
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FIG. 5. Differences between hybrids using different PN ap-
proximants, but matched at the same matching frequency.
Plotted is the value of ‖δh‖/‖h‖ at 20M! and matched at
ωm = 0.046 as a function of mass ratio, q.

term into the Taylor T4 expression [4]:
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, (2)

where ν is the symmetric mass ratio, γ is Euler’s con-
stant, c is the speed of light, G is the gravitational con-
stant, M is the total mass, t is time, and x is the invariant
velocity parameter.

Changing the A4PN term should have the same effect
as introducing a constant time-shift. The errors due to
changing the A4.5PN term, on the other hand, should be
representative of how accurate 4PN waveforms would be
if the 4PN term were known.

VI. DISCUSSION

In which we discuss the conclusions and implications
of the previously-mentioned results.

MacDonald et al. (in  preparation)

||δh||
||h|| <

1
ρ

Requirement: 
[Talk by I. MacDonald in session C8]
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waveforms? 



Issue of the preferred frame 

• Misaligned spins will cause precession. Waveform 
observed by a fixed detector will contain amplitude & 
phase modulations (changing the multipolar structure of 
the waveform).

• What is the appropriate frame in which the meaningful 
comparisons can be made between different hybrid 
waveforms? 

A frame in which the observer follows the precession 
of  the orbital plane.
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It is clear that the maximization procedure produces
(‘ ¼ 2, jmj ¼ 2) modes that are of a simpler form than
in the original data. However, this is not a guarantee that
we have correctly tracked the direction of the GW emis-
sion; we have not necessarily put the waveform into a
physically meaningful frame of reference. One test of our
method is to calculate the effect on the subdominant
modes. We expect that in the quadrupole-aligned frame
the amplitude of the GW signal will agree to a good
approximation with that from a q ¼ 3 nonspinning binary.
(The spin effect on the rate of inspiral is dominated by S "
L, and this is close to zero throughout our simulation, so
we expect the inspiral to be similar to that for a nonspin-
ning binary with the same mass ratio.)

Figure 12 shows a selection of modes for the
quadrupole-aligned waveform. The left frame shows the

transformed modes for the precessing binary, and the right
frame shows the same modes for the nonspinning q ¼ 3
waveform presented in [37]. Two things are remarkable
about this figure. The first is that the amplitudes of the
modes show extremely good agreement. The other is that
we have found that the magnitude of the (‘ ¼ 2, m ¼ 1)
mode is extremely sensitive to the angle by which the
system is rotated. If, for example, we were to modify !
or " by a fraction of a degree,!4;21 could change by orders
of magnitude. With this fact borne in mind, the oscillations
in j!4;21j are not very large at all. This figure suggests that
we have located an optimal frame from which to study the
GW signal.
Finally, we will discuss the application of our procedure

to the merger and ringdown. We can calculate the final
black hole’s spin magnitude and direction using informa-
tion from the apparent horizon [50]. Ideally our method
would locate the same spin direction. However, as pointed
out in Sec. IVA, the ringdown signal is a superposition of
spheroidal (rather than spherical) harmonics [46,51], and
so we do not expect a maximization of the ‘ ¼ 2, jmj ¼ 2
coefficients of a spherical-harmonic decomposition of the
waveform to necessarily produce meaningful results. And
indeed, we find that our method does not locate the correct
final-spin direction through ringdown. We intend to ex-
plore the use of spheroidal harmonics in future work.

V. DISCUSSION

We have presented a simple method to track the preces-
sion of a binary system, using only information from the
GW signal. Our procedure is to rotate the system such that
the magnitude of the (‘ ¼ 2, jmj ¼ 2) modes is maxi-
mized, based on the physical assumption that this will be
the direction of dominant GWemission. We refer to this as
the ‘‘quadrupole-aligned’’ waveform. Based on evidence
from PN theory, we show that this direction seems to
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FIG. 11 (color online). Frequency of the (‘ ¼ 2, m ¼ 2) mode
after (!4;22) the maximization procedure, compared with the
‘‘total frequency’’ !tot, which is the orbital frequency with a
precession term added according to Eq. (1.1). We also show the
frequency that results from rotating the system according to the
direction of the Newtonian orbital angular momentum, !N , i.e.,
the normal to the orbital plane. The frequencies, in order of
increasing magnitude of oscillation, are !22, !tot and !N .
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FIG. 12 (color online). Left: selected modes of the precessing-binary waveform, after being transformed into the nonprecessing
frame, i.e., after the system has been rotated by the angles that were found from the (2, 2)-maximization procedure. The right-hand plot
shows the same modes for a nonspinning (and therefore nonprecessing) q ¼ 3 waveform. The agreement is remarkable. Note, in
particular, the qualitative agreement of the (‘ ¼ 2,m ¼ 1) mode, which is of comparable magnitude to the (‘ ¼ 2,m ¼ 2) mode in the
raw data (see Fig. 7).
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!22 ¼ _’22, over the same time interval. The frequency
clearly exhibits large oscillations. Based on the discussion
around Eq. (1.1) we expect oscillations in !22 of purely
physical origin, but we also assume that the physical
oscillations will be exaggerated and their frequency modi-
fied in the fixed frame of an inertial observer.

We now apply the maximization procedure to the wave-
form signal from t ¼ 200M, when the junk radiation has
passed, through merger and ringdown (up to t ¼ 1350M).
At each time step the system is rotated such that the (‘ ¼ 2,
jmj ¼ 2) mode amplitudes are maximized.

Having applied our maximization procedure to track the
precession, we first address the question of whether the
GW signal is emitted normal to the orbital plane, or
parallel to the orbital angular momentum. Although we
cannot unambiguously define the direction of orbital an-
gular momentum, we can certainly determine whether the
GW signal is emitted normal to the orbital plane.

Figure 8 shows the Euler angles ð!;"Þ that were found
in the maximization procedure, time shifted by 103M to
approximately compensate for the time lag to the extrac-
tion spheres. It also shows the angles ð#; ’Þ of the direction

orthogonal to the orbital plane as computed from the NR
simulation, and for the orbital angular momentum L as
computed from a PN simulation (as in Fig. 6). The PN
angles are approximately aligned with ð!;"Þ at early
times. If the GW signal were emitted normal to the orbital
plane, we would expect to be able to align ! with$# from
the numerical relativity simulation, and likewise for " and
$’. However, it is clear from Fig. 8 that the orbital-plane
angles contain extra oscillations. Based on the illustration
in Fig. 6, this suggests that the GW signal is emitted in the
direction of the orbital angular momentum. In particular,
we plot in Fig. 8 the direction of the orbital angular
momentum as predicted in PN theory, which shows good
agreement with the angles that define the quadrupole-
aligned frame.
Figure 9 shows the amplitude of the original !0

4;22 and

the quadrupole-aligned signal that results from the max-
imization procedure, !4;22. We see that the maximization
procedure has indeed increased the amplitude at all times,
and also seems to have removed some oscillations.
The frequency of the (‘ ¼ 2, m ¼ 2) mode before and

after the maximization procedure is shown in Fig. 10. This
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FIG. 6 (color online). Comparison of the polar angles # and ’ for the unit directions of r% v (normal to the orbital plane) and r% p
(orbital angular momentum) in a PN calculation. The comparison shows that the direction of r% v exhibits extra oscillations.
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GW modes in Lini frame GW modes in QA frame

ampl.
modulations

“subdominant” 
modes excited

little modulation

“subdominant” 
modes suppressed

•Quadrupole-aligned frame  Determine the 
time-dependent direction that maximizes the l 
= 2, m = ±2 modes. [Schmidt et al (2011)]
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•Quadrupole-aligned frame  Determine the 
time-dependent direction that maximizes the l 
= 2, m = ±2 modes. [Schmidt et al (2011)]

• Corotating frame Efficient algebraic method 
for estimating the instantaneous/average 
emission direction. [O’Shaughnessy et al (2011)]
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[Talk by R. O'Shaughnessy in session Q7]
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FIG. 1: Recovering a synthetic rotation: Starting with a
equal-mass nonspinning (a = 0.0) binary waveform (bottom
panel: ψ4lm for " ≤ 2, extracted at r = 60M), we apply
a rotation taking ẑ to the polar angles (θ,φ), where θ(t) =
θo(1 + 0.1 cos 2πt/P ) and φ(t) = 2πt/P for P = 80M and
θo = π/20. The bottom panel shows ψ4lm after (dashed)
and before (solid) this rotation, for the modes l = 2 and
m = 2 (red), 1 (blue), and 0 (green). Using

〈

L(aLb)

〉

t
, we

recover an orientation Ẑ(t) from the rotated waveform that
agrees with the imposed rotation to within 5× 10−6 deg (top
panel: θ(Z(t)) − θ(t)). Applying this rotation recovers the
unperturbed waveform. A vertical dotted line indicates the
peak l = |m| = 2 emission in both figures.

terms of this rotation, the waveform in the instantaneous
“aligned” frame at each time can be expressed in terms of

the instantaneously “aligned” eigenstates Y (−2)
LM (R−1n)

and the simulation-frame expansion coefficients ψ4LM us-
ing the representation theory of SU(2) [13]:

ψ4(t, n̂) =
∑

LM

ψ4
′
LMY (−2)

LM (R−1n̂) (5)

ψ4
′
LM = e2iχ(R)

∑

M ′

DL
MM ′(R)ψ4LM ′ (6)

The overall phase χ does not enter into any calculation
we perform and will be ignored.
As a concrete example, in Figure 1 we compare the

difference between a generic time-dependent rotation
and the reconstructed orientation, obtained by apply-
ing that rotation to a nonprecessing black hole binary
simulation and reconstructing the optimal direction ver-
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FIG. 2: Aligning a precessing binary: Starting with a
precessing equal mass binary (a1 = 0.6ẑ, a2 = 0.6(x̂+ ẑ)/

√
2;

top panel), we derive the principal axis orientation from
〈

L(aLb)

〉

t
, restricted to l = 2 modes. The bottom panel shows

the transformed harmonics. The orientation transformation
is derived and applied at all times shown. To illustrate this
method’s robustness, in this figure we retain initial transients
and late-time errors.

sus time. The quasicircular orientation is recovered to
δθ ! 10−6 deg (i.e., δθ2 comparable to working machine
precision). As another example, in Figure 2, we compare
the mode amplitudes for a spinning, precessing binary
in an asymptotic inertial frame (top) and in the “coro-
tating” frame implied by this transformation (bottom).
The transformed modes resemble the modes of a spin-
aligned binary (Fig 1, right panel). Note that in going
from the generic-spin to “corotating” frame, the m = 1
and m = 0 modes have been reduced by more than an
order of magnitude during the inspiral.

Schmidt et al. [8] have previously reconstructed opti-
mal orientations from the emitted waveform. By contrast
to their maximization-based method for tuning ψ4, our
algebraic method is fast, accurate, and invariant. This
method can also be applied to any constant-l subspace.
For example, using the GT/PSU equal-mass, generic spin
simulation set summarized by O’Shaughnessy et al. [14]
we have reconstructed
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〉

for all l ≤ 4 modes; for
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FIG. 1: Recovering a synthetic rotation: Starting with a
equal-mass nonspinning (a = 0.0) binary waveform (bottom
panel: ψ4lm for " ≤ 2, extracted at r = 60M), we apply
a rotation taking ẑ to the polar angles (θ,φ), where θ(t) =
θo(1 + 0.1 cos 2πt/P ) and φ(t) = 2πt/P for P = 80M and
θo = π/20. The bottom panel shows ψ4lm after (dashed)
and before (solid) this rotation, for the modes l = 2 and
m = 2 (red), 1 (blue), and 0 (green). Using

〈

L(aLb)

〉

t
, we

recover an orientation Ẑ(t) from the rotated waveform that
agrees with the imposed rotation to within 5× 10−6 deg (top
panel: θ(Z(t)) − θ(t)). Applying this rotation recovers the
unperturbed waveform. A vertical dotted line indicates the
peak l = |m| = 2 emission in both figures.

terms of this rotation, the waveform in the instantaneous
“aligned” frame at each time can be expressed in terms of

the instantaneously “aligned” eigenstates Y (−2)
LM (R−1n)

and the simulation-frame expansion coefficients ψ4LM us-
ing the representation theory of SU(2) [13]:

ψ4(t, n̂) =
∑

LM

ψ4
′
LMY (−2)

LM (R−1n̂) (5)

ψ4
′
LM = e2iχ(R)

∑

M ′

DL
MM ′(R)ψ4LM ′ (6)

The overall phase χ does not enter into any calculation
we perform and will be ignored.
As a concrete example, in Figure 1 we compare the

difference between a generic time-dependent rotation
and the reconstructed orientation, obtained by apply-
ing that rotation to a nonprecessing black hole binary
simulation and reconstructing the optimal direction ver-
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FIG. 2: Aligning a precessing binary: Starting with a
precessing equal mass binary (a1 = 0.6ẑ, a2 = 0.6(x̂+ ẑ)/

√
2;

top panel), we derive the principal axis orientation from
〈

L(aLb)

〉

t
, restricted to l = 2 modes. The bottom panel shows

the transformed harmonics. The orientation transformation
is derived and applied at all times shown. To illustrate this
method’s robustness, in this figure we retain initial transients
and late-time errors.

sus time. The quasicircular orientation is recovered to
δθ ! 10−6 deg (i.e., δθ2 comparable to working machine
precision). As another example, in Figure 2, we compare
the mode amplitudes for a spinning, precessing binary
in an asymptotic inertial frame (top) and in the “coro-
tating” frame implied by this transformation (bottom).
The transformed modes resemble the modes of a spin-
aligned binary (Fig 1, right panel). Note that in going
from the generic-spin to “corotating” frame, the m = 1
and m = 0 modes have been reduced by more than an
order of magnitude during the inspiral.

Schmidt et al. [8] have previously reconstructed opti-
mal orientations from the emitted waveform. By contrast
to their maximization-based method for tuning ψ4, our
algebraic method is fast, accurate, and invariant. This
method can also be applied to any constant-l subspace.
For example, using the GT/PSU equal-mass, generic spin
simulation set summarized by O’Shaughnessy et al. [14]
we have reconstructed

〈

L(aLb)

〉

for all l ≤ 4 modes; for

GW modes in Lini frame GW modes in Corotating frame



Finding the preferred frame 

•Quadrupole-aligned frame  Determine the 
time-dependent direction that maximizes the l 
= 2, m = ±2 modes. [Schmidt et al (2011)]

• Corotating frame Efficient algebraic method 
for estimating the instantaneous/average 
emission direction. [O’Shaughnessy et al (2011)]

•Minimal rotation frame Make use of  the 
third (time-dependent) Euler angle also to 
maximize the modes. This “minimal-rotation” 
frame gets rid of  the unphysical “phase 
jumps”. [Boyle et al (2011)]
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initially coincides with the z axis. The precession cone has
an opening angle of roughly 15! initially, gradually widen-
ing to about 21!. Using the post-Newtonian waveform, we
can the find the radiation axis with the methods described
in Sec. II, then decompose the modes of the waveform
either in a frame with ! ¼ 0 or in a frame with minimal
rotation.

Again, we see the two features identified above. First,
the waveform decomposed in the minimal-rotation frame
appears to be smoother than the waveform decomposed in
the ! ¼ 0 frame. In particular, while the amplitudes are
identical in the two frames, the phase of the ð‘;mÞ ¼ ð2; 2Þ
mode in the ! ¼ 0 frame is constantly increasing relative
to the phase in the minimal-rotation frame, and jumps each
time the radiation axis passes near the z axis (each time
_" cos# is large). We plot the frequency of the (2, 2) mode
measured in the two frames in Fig. 3, where the phase
jumps show up as spikes.

Second, the waveform phase in the minimal-rotation
frame is invariant (up to a constant) under overall rotations
of the inertial frame in which the waveform is measured—
which is not the case for the ! ¼ 0 frame. We illustrate this

by tilting the post-Newtonian system by a 10! rotation
about the y axis, and redoing the decomposition in the
two frames. The frequencies for this rotated system are
also plotted (as dotted lines) in Fig. 3, where we see that the
curves for the minimal-rotation frame lie on top of each
other, while the ! ¼ 0 curve changes but still exhibits
spikes.
Figure 4 plots the phase differences of the (2, 2) mode

between the two post-Newtonian evolutions differing by a
rotation by 10!,

!$2;2 ¼ $2;2
untilted %$2;2

tilted: (21)

The minimal-rotation frame is invariant under this rotation,
and indeed the phases are identical to within the numerical
error [as measured by convergence of the integration of
Eq. (18)]. The coordinate-dependent choice ! ¼ 0, how-
ever, results in phase differences of multiple gravitational-
wave cycles.
While we designed this example to be a rigorous test

of the frame-alignment techniques, the later stages of in-
spiral and merger provide an even more stringent test, as

FIG. 3 (color online). Waveform frequency in various frames
aligned with the radiation axis. Here, waveform frequency refers
to the time derivative of the phase of the ð‘;mÞ ¼ ð2; 2Þ mode of
the gravitational waveform. The solid red line shows the fre-
quency measured in a frame derived from the inertial frame by a
rotation in which the third Euler angle ! is set to 0, while the
solid blue line shows the same quantity in a frame for which !
satisfies the minimal-rotation condition. Clearly, the latter curve
is much smoother. We also show as dotted lines the same
quantities when the physical system is tilted by 10!. The dotted
blue line coincides with the solid blue line, showing the invari-
ance of the waveform in that frame.

FIG. 4 (color online). Change of phase measured in frames
aligned to the radiation axis when the physical system is tilted by
10!. This phase difference is defined by Eq. (21), and plotted for
two cases: the first (in red) where $2;2 refers to phases measured
in a frame obtained from the inertial frame with a rotation in
which the final Euler angle ! is set to 0; the second (in blue)
where $2;2 refers to phases measured in frames satisfying the
minimal-rotation condition. The change in phase for the
minimal-rotation frames is 0 to within numerical error (roughly
a part in 105 here). Note that this waveform extends for roughly
the length of time such a system would be in the sensitive band
of Advanced LIGO if the total mass were about 10M&.

MICHAEL BOYLE, ROBERT OWEN, AND HARALD P. PFEIFFER PHYSICAL REVIEW D 84, 124011 (2011)

124011-8

[Boyle et al (2011)]

[Talk by R. Owen in session C8]
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•Distance reach Significant improvement in the 
“distance reach” for “high-mass” binaries. 
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[Ajith et al (2008)]

Distance to optimally-oriented equal-mass 
binaries producing SNR = 8 in Adv LIGO.
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FIG. 2: The 90% confidence upper limit on the merger rate as a
function of mass in units of M! (symmetric over m1 and m2). This
image represents the rate limit in units of Mpc−3 Myr−1. These lim-
its can be converted to traditional units of L−1

10 Myr−1 by dividing by
0.0198L10 Mpc−3 [91]. Only bins with mass ratios < 4 : 1 have up-
per limits computed due to uncertainty in the waveform models for
more asymmetric systems.

We integrate the normalized form of (V.8) to 90% to estab-
lish the 90% confidence upper limit on the merger rate (still
a function of component mass), R90%. The result is given in
figure 2. The upper limit in the lowest mass bin considered
in this search is an order of magnitude higher than the most
optimistic binary black hole merger rates predicted by current
population-synthesis studies (see, e.g., [13, 19, 28]). At the
upper end of the analyzed mass range, there are no reliable
estimates for merger rates for intermediate mass black holes,
whose very existence remains to be confirmed; however, see
[24–26, 28] for some intriguing possibilities.

As discussed above, due to the uncertainties in the wave-
form models for asymmetric systems, we do not present up-
per limits for mass ratios < 4 : 1. However, we do provide an
average range for systems with smaller mass ratios based on
the EOB and Phenomenological waveform models, in figure
3. The average range is defined as

〈R(m1,m2,FAR∗)〉= 1
∑i Ti

∑
i

TiRi(m1,m2,FAR∗) , (V.9a)

Ri(m1,m2,FAR∗) =

[
3

4π
Vi(m1,m2,FAR∗)

]1/3
, (V.9b)

where Vi(m1,m2,FAR∗) is defined in (V.2), Ri is the radius of
the sphere having volume of Vi and the average range 〈R〉 is
the time-weighted average of ranges computed from each of
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FIG. 3: Average range defined in (V.9) for the search in Mpc as a
function of mass (symmetric over m1 and m2), assuming target wave-
forms that match the EOB and Phenomenological models.

the ranges found by examining the loudest event in each of the
36 periods.

VI. CONCLUSIONS

We presented the result of a search for BBH coalescence
during LIGO’s fifth science run spanning approximately two
years of data taken from fall 2005 to fall 2007. We targeted bi-
naries with total mass M =m1+m2 in the range 25M! ≤M ≤
100M! and component masses of 1M! ≤ m1,m2 ≤ 99M!
with negligible spin. In order to effectually detect such sys-
tems with LIGO it was necessary to use template waveforms
that encompass the inspiral, merger and ringdown phases of
compact binary coalescence. We employed two waveform
families in this search to filter and assess the sensitivity. Both
had been tuned to numerical relativity simulations.

We did not detect any plausible gravitational-wave can-
didates. However we estimated our search sensitivity and
were able to constrain the merger rate of the targeted sources
in the nearby Universe. We established to 90% confidence
that the merger rate of black holes with component masses
19M! ≤ m1,m2 ≤ 28M!is less than 2.0 Mpc−3 Myr−1. We
note that this is still about an order of magnitude higher than
optimistic estimates for such systems [28] (see also [13, 19]).

There are a number of limitations in the current approach,
which will be addressed in future searches. The main lim-
itation is that the template waveforms neglect the effects of
spin. Although the statistical distribution of the spins of black
holes in binaries is not well known [118], there are exam-

Implications in GW data analysis 

•Distance reach Significant improvement in the 
“distance reach” for “high-mass” binaries. 

Improved upper limits. Significant 
enhancement in the detection probability in 
advanced detector era. 

31

[Abadie et al arXiv:1102.3781]

Distance reach (averaged) of the search for 
“high-mass” CBCs using LIGO S5 data. 
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• Parameter estimation Helps to disentangle 
the correlation between different parameters.
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Expected errors on sky-position (equal-mass binaries at 
1Gpc), detected by Adv LIGO-Virgo.  [Ajith & Bose (2009)]

Results from the first NINJA project 46

that yielded log10 B ≥ 3. The results for the masses show a behaviour that is
qualitatively consistent with the results obtained using a matched-filtering analysis,
see e.g. Figures 10, 11, and 20. The total mass is (in most of the cases) systematically
underestimated, although for 34 injections the recovered values were consistent with
the injected total mass. These injections correspond in all cases to waveforms with
(near) zero eccentricity and in 21 (out of 34) instances to non-spinning waveforms.
We have also checked that the errors on the masses do not show any significant
correlation with the value of the Bayes factor at which the injections were recovered
or the injected signal-to-noise ratio. However, despite the systematic errors on the
physical parameters, the sky location is on average fairly well determined. This is
most likely due to the fact that there is enough information in the (source-location
dependent) time of arrival of the signals at different instrument sites to recover
meaningful information about the position of the source in the celestial sphere. This
is currently under careful investigation and more details about this and other aspects
of the analysis can be found in Ref. [200].
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Figure 24. Comparison of the recovered mass parameters for the
IMRPhenA approximant. Left: The recovered (maximum likelihood) values
of the chirp mass as a function of the injected values. Right: The recovered
(maximum likelihood) values of the total mass as a function of the injected values.
The IMRPhenA approximant was used with a threshold of log10 BSN = 3.

5. Conclusion

The NINJA project was conceived as a first step towards a long-term collaboration
between numerical relativists and data analysts with the goal of using numerical
waveforms to enhance searches for gravitational waves. NINJA is unique in that it
focused on running existing gravitational-wave search algorithms on data containing
waveforms obtained from numerical simulations. Since this constitutes the first such
analysis, the scope of the project was deliberately kept somewhat modest: restrictions
were placed on the number of waveforms to be submitted by each numerical group,
no attempt was made to include transient noise sources in the data and only a limited
number of simulated signals were produced for the data analysis. This helped to
encourage significant involvement from both the numerical relativity and data analysis
communities, with ten numerical relativity groups providing waveforms and data-
analysis contributions from nine different groups.
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5. Conclusion

The NINJA project was conceived as a first step towards a long-term collaboration
between numerical relativists and data analysts with the goal of using numerical
waveforms to enhance searches for gravitational waves. NINJA is unique in that it
focused on running existing gravitational-wave search algorithms on data containing
waveforms obtained from numerical simulations. Since this constitutes the first such
analysis, the scope of the project was deliberately kept somewhat modest: restrictions
were placed on the number of waveforms to be submitted by each numerical group,
no attempt was made to include transient noise sources in the data and only a limited
number of simulated signals were produced for the data analysis. This helped to
encourage significant involvement from both the numerical relativity and data analysis
communities, with ten numerical relativity groups providing waveforms and data-
analysis contributions from nine different groups.
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Collaborative efforts between NR, AR and GW communities
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https://www.ninja-project.org
Hybrid waveforms in Ninja-2 catalogue.
[arXiv:1201.5319]
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[Talk by L. Pekowsky in session D8]

•NINJA Numerical-Relativity Injection-Analysis 

Use NR simulations to study the efficiency of  GW 
detection/parameter estimation pipelines in real 
LIGO/Virgo data. 

Formal collaboration with LIGO-Virgo. More than 
100 members from ~30 institutions. 



Collaborative efforts between NR, AR and GW communities

•NINJA Numerical-Relativity Injection-Analysis 

Use NR simulations to study the efficiency of  
GW detection/parameter estimation pipelines in 
real LIGO/Virgo data. 

Formal collaboration with LIGO-Virgo. More 
than 100 members from ~30 institutions. 

•NR-AR Collaboration 

Produce a catalogue of  NR simulations 
covering a large parameter space; develop 
analytical template families calibrated to NR; 
make them available for GW searches. 

NSF has made available 11M CPU hours in 
supercomputer Kraken (all used!). 

Currently building the first NR repository 
(29+30 waveforms). 34
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Summary

• Significant progress in the experimental efforts for the first direct detection of  GWs. Similar 
breakthroughs in the modelling of  GW sources.

• Numerical-relativity in combination with perturbative calculations enable us to model the 
coalescence of  compact binaries accurately. Important impacts on the expected detection rates 
and parameter estimation accuracies. 

• Analytical inspiral-merger-ringdown templates (calibrated to NR) are already mature for the 
purpose of  GW detection for some fraction of  the parameter space (non-spinning & non-
precessing BBHs with comparable masses).

• Community-lead efforts under way  to expand the parameter space (mass ratios, spins, length, 
accuracy, tidal effects, ...) of  NR simulations, and to use these simulations for the construction 
of  IMR templates + GW data analysis. 
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